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Josephson transport through a double junction formed by a single molecule or carbon nanotube is considered
in the presence of a local vibrational mode which is linearlycoupled to the charge on the molecule. An exact
solution is obtained in the limit of a large superconductinggap, and it is complemented by a variational analysis
in the general case. Coherent charge fluctuations involve polaron dressing and are entangled with non-classical
phonon states. The flow of a Josephson current induces squeezing of the phonon mode, controlled by the
superconducting phase difference and by the junction asymmetry. Squeezing is maximal in the polaron crossover
regime, where a nearly minimum-uncertainty state with about 40 per cent squeezing can be obtained. Optical
probes of non-classical states are briefly discussed.

PACS numbers:

Nanoelectromechanical systems (NEMS) offer a way to
reach the quantum regime of mechanical oscillators. In par-
ticular, a challenging goal consists in creating non-classical
vibrational states, similar to non-classical states of light[1, 2].
Squeezed phonon states exhibit reduced quantum fluctuations
in one of the mode quadratures. The generation of such states
has been suggested in bulk materials [3, 4]. In nanosystems,
they may improve the sensitivity of force measurements, or al-
low the storing of quantum information [5]. Recently, squeez-
ing scenarios have been suggested for resonators driven by
nonlinear coupling [6] and for a superconducting island with
two charge states (qubit) coupled to a cantilever [7]. Here
we consider a superconducting molecular transistor, where
the molecule carries both electronic and vibrational degrees of
freedom. We show that squeezed states occur at equilibrium
when a dc Josephson current crosses the molecule. Compared
to the frequency range of micro-cantilevers (less than 1 GHz),
here the frequency range goes from 1 GHz to 10 THz depend-
ing on the system (single wall carbon nanotube (SWCNT) or
single molecule).

The excitation of molecular vibrations (phonons) by an
electronic current has been observed with normal metallic
leads in several molecules including fullerenes and carbon
nanotubes [8]. The latter are in fact NEMS, where charge
fluctuations couple to bending [9], stretching [10] or radial
breathing (RBM) modes [11]. Incoherent polaron-like charge
fluctuations due to transport trigger a non-equilibrium distri-
bution of the phonon mode [12]. Here we address the su-
perconducting regime and show that the presence of a super-
current through the molecule generates non-classical phonon
states, by exploiting the coherent regime of polaron dynam-
ics [13]. Recently, the proximity effect and the Josephson ef-
fect [14, 15] have been observed in gated carbon nanotubes.
Yet, in the tunneling regime and for strong enough electron-
phonon (e–ph) interaction, the Josephson current can be sup-
pressed due to the Franck-Condon dressing factor [16]. In
contrast, we show here that for transparent lead-molecule con-
tacts, the Josephson effect survives a quite stronge–ph inter-
action and triggers coherent phonon fluctuations. As a striking

consequence, the conjugate momentum of the molecular dis-
tortion displays reduced zero-point fluctuations. The super-
conducting phase difference and the junction asymmetry al-
lows to control non-classical squeezed phonon states, includ-
ing nearly (gaussian) minimum-uncertainty states.

The model Hamiltonian readsH = HM +HL +HR +HT ,
whereHM , HL,R andHT describe, respectively, the uncou-
pled molecule, two superconducting leads and the molecule-
lead coupling. Explicitly,

HM =
[

ǫ0 − λ
(

b+ b†
)]

∑

σ=↑,↓

(nσ − 1

2
) + Un↑n↓ + Ω b†b ,

(1)
wherenσ = d†σdσ with dσ, d†σ being the fermion operators
for spinσ =↑, ↓ on the molecular levelǫ0 = ǫ0(Vg), the po-
sition of which can be tuned by the gate,U is the repulsive
Coulomb interaction, andb, b† are the boson operators for the
local mode of frequencyΩ. The leads are described by a pair
of standard BCS Hamiltonians (j = L,R is the lead index),

Hj =
∑

k

Ψ†
jk (ξkσz + ∆σx)Ψjk , Ψjk =

(

ψjk,↑

ψ†

j(−k),↓

)

,

(2)
with the energy dispersionξk; the Pauli matricesσx,z act in
Nambu space. The molecule-lead coupling is given by

HT =
∑

jk

Ψ†
jk Tj d+ H.c. , d =

(

d↑
d†↓

)

, (3)

whereTj=L/R = tjσz e
±iσzφ/4, tj is thejth lead-molecule

tunneling amplitude, andφ is the superconducting phase dif-
ference across the molecule. Averaging over the leads by us-
ing the Wick theorem yields a partition function for the molec-
ular site,Z[φ] = Tr

{

e−βHMW (β, 0)
}

, with

W (β, 0) = Tτ exp

{

−
∫ β

0

dτdτ ′ d†(τ) Σ(τ − τ ′) d(τ ′)

}

,

(4)
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whereTτ is the imaginary-time ordering operator,β is the
inverse temperature,Σ(τ −τ ′) =

∑

j T
†

j (τ) g(τ −τ ′) Tj(τ
′),

andg(τ) = −∑

k (∂τ + ξkσz + ∆σx)
−1
δ(τ) is the Green

function of the uncoupled leads. Assuming a constant density
of states near the Fermi level in the (normal) leads,ν, one
obtains:

Σ(τ−τ ′) = Γ

[

∂τ + ∆

(

cos
φ

2
σx + γ sin

φ

2
σy

)]

Q(τ−τ ′) ,
(5)

with Q(τ) = β−1
∑

ωn
e−iωnτ/

√

ω2
n + ∆2, whereωn =

π(2n+ 1)/β is a fermionic Matsubara frequency,Γ = ΓL +
ΓR, γ = (ΓL − ΓR) /Γ andΓj = πνt2j .

First we focus on the case where the relevant molecule dy-
namics is restricted to the low-frequency domain on the scale
of the superconducting gap (in particular,Γ ≪ ∆). In this
limit, the Σ term in Eq. (4) becomes local in time with
Q(τ − τ ′) → ∆−1δ(τ − τ ′) at low frequencies,ωn ≪ ∆.
As a result, one can write an effective Hamiltonian for the
molecule as

Heff = HM + Γ d†
(

cos
φ

2
σx + γ sin

φ

2
σy

)

d . (6)

The Hilbert space ofHeff is divided into two subspaces,
H1 and H2, spanned by electron states{ | ↑〉, | ↓〉 } and
{|0d〉, | ↑↓〉}, respectively. In the large∆ limit, these sub-
spaces are decoupled. In what follows, we assume the re-
pulsionU to be relatively small,U/2 < Γ, a condition veri-
fied for sufficiently good contacts [15]. As a consequence, the
ground state of the system lies in theH2 subspace [17]. Intro-
ducing the Pauli-matrix operatorsτz = |0d 〉〈 0d| − | ↑↓〉 〈↑↓ |
andτ+ = (τ−)

†
= |0d〉 〈↑↓ |, and performing the rotation

Heff = eiτzχ/2H̃ e−iτzχ/2 with χ = arctan
(

γ tan φ
2

)

lead

to an effective spin-boson Hamiltonian:

H̃ = Ω b†b−
[

ǫ− λ
(

b+ b†
)]

τz + Γ̃(φ) τx , (7)

whereΓ̃(φ) = ρ(φ)Γ, ρ(φ) =
√

cos2(φ/2) + γ2 sin2(φ/2),

andǫ = ǫ0 + U/2. Any eigenstate of̃H , and particularly the
ground state|Ψ̃0〉, can be written as

|Ψ̃0〉 = e−iτzχ/2|Ψ0〉 =

∞
∑

n=0

(

A(0)
n |0d〉 +A(2)

n | ↑↓〉
)

|n〉 , (8)

where|n〉 =
(

b†n/
√
n!

)

|0ph〉 is then-phonon Fock state.

The state (8) exhibits entangled charge and vibrational states.
We notice in passing that in the case ofǫ = 0, the amplitudes
in Eq. (8) are related byA(0)

n = (−1)n+1A
(2)
n , owing to the

parity symmetry
[

H̃ , τx(−1)b†b
]

= 0.

The Josephson current flowing through the molecule can
be obtained by taking a functional derivative of the gen-
erating functionalZξ ≡ Z[φ + ξ(τ)] with respect to the
source variableξ(τ), J = −2 δ lnZξ/δξ(0)|ξ=0. After av-
eraging over the leads and neglecting retardation of the ker-
nel Σ in Eq. (4), the equation for the Josephson current

reduces toJ = Z−1Tr
{

e−βHMW (β, 0)Ĵ
}

, where Ĵ =

Γd† (− sin(φ/2)σx + γ cos(φ/2)σy) d is an effective current
operator [18] in terms ofd. In the rotated basis of Eq. (7), the
current operator takes the form

J̃ = (Γ/2ρ(φ))
[(

1 − γ2
)

sinφ τx + 2γ τy
]

. (9)

Note that in the presence of phonons (λ 6= 0), the current
operator does not commute with the Hamiltonian (7), which
results in quantum fluctuations of the current even in the case
of ǫ = γ = 0.

In the ground state, the relevant experimental quantity is the
current expectation value,J(φ) = 〈Ψ0|Ĵ |Ψ0〉, which probes
the overlap of phonon states in Eq. (8). To make further
progress, we perform a unitary transformationUα = e−iαPτz

on H̃ of Eq. (7), whereP = i(b† − b) andα = λ/Ω:

H̃ ′ = Ωb†b − ǫτz + Γ̃ [cos(αP ) τx + sin(αP ) τy ] , (10)

To lowest order inΓ/Ω, for ǫ = 0, one obtains the ground state
|Ψ0〉 = eiχ/2|α〉| 0d〉 − e−iχ/2| − α〉| ↑↓〉, where| ± α〉 =
U±α|0ph〉 are coherent states of the phonon mode. In the limit
of largeα, the Josephson currentJ(φ) = Γe−α2 | sin(φ/2)|
becomes strongly suppressed [16]. As we show below, in a
molecular transistor, a sizeable Josephson current may flow
for relatively strong coupling to the leads and generate squeez-
ing without the necessity of an external drive. This is in con-
trast with Ref. [7] where an external oscillator (Ω < 1GHZ)
is coupled to a Cooper pair box, for whichΩ ≪ Γ andα < 1
holds.

In order to probe the generic squeezing properties of the
molecular phonon, we now compute the mean square fluctu-
ations of both the displacement coordinateX = b + b† and
the conjugate momentumP in the ground state of the system
assuming zero temperature. The ground state (8) is found nu-
merically by truncating the phonon Fock space to a maximum
number of phonons,nmax >> λ/Ω. In the range of param-
eters considered,nmax = 30 is sufficient to be sufficient to
ensure the convergence of the calculations. When discussing
the numerical results, we setΩ = 1.

Coherent charge fluctuations enhance fluctuations ofX ,

δX =
(

〈Ψ0|X2|Ψ0〉 − 〈Ψ0|X |Ψ0〉2
)1/2

, over the quan-
tum zero-point magnitude. Concomitantly, the charge fluc-
tuations reduce the fluctuations of the momentum,δP =
〈Ψ0|P 2|Ψ0〉1/2. It should be mentioned that〈Ψ0|P |Ψ0〉 = 0
always, while〈Ψ0|X |Ψ0〉 = 0 for ǫ = 0 only.

The effective polaronic interaction constantλ2/Γ̃(φ) of the
spin-boson Hamiltonian (7) depends on the superconducting
phase difference and becomes infinite atφ = π for a symmet-
ric junction,γ = 0. Fig. 1 displays theφ-dependent variation
of the momentum fluctuationδP as well as the uncertainty
δXδP . (The ground-state value ofδXδP for an harmonic os-
cillator is 1.) Squeezing (δP < 1), occurs for a wide range
of parameters, and its intensity depends onφ, in accordance
with the effective polaronic interaction.

For smallΓ (stronge–ph interaction), the resulting coher-
ent states| ± α〉 are not squeezed, i.e., squeezing marks a
deviation from the displaced oscillator (coherent) states. The
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generation of gaussian squeezing can be understood from the
Hamiltonian (10) by noticing thatP 2 is not modified by the
transformationUα. Expanding the third term in Eq. (10) for
small λ gives 1

2α
2Γ

(

b2 + (b†)2
)

τx, which precisely gener-
ates gaussian (two-phonon) squeezed states [2]. The vari-
ation of δP betweenφ = 0 and π, where Γ̃(φ) is max-
imum/minimum, shows that squeezing is a crossover phe-
nomenon and is maximal for intermediate coupling parame-
ters of the polaron problem [3]. In general, squeezing does not
involve (gaussian) minimum-uncertaintystates. Yet,δXδP =
1 can be made very close to1, as shown in Fig. 1b, for inter-
mediateλ andΓ.

0 0,2 0,4 0,6 0,8 1

φ / 2 π

-0,5

0

0,5

J 
/ Γ

0,85

0,9

0,95

1

δP

0 0,5 1
1

1,5

2 δX δP  

FIG. 1: (a) Squeezing of the momentum, (b) Josephson current, as
function of the phase. The inset in (a) displays the Heisenberg uncer-
tainty (1 stands for the harmonic oscillator ground state):Γ = 0.5
(circles) ,2 (squares), and4 (triangles) forλ = 0.9, ǫ = 0, γ = 0.

Squeezed states can only be produced with a sizeable
Josephson current. Actually, optimal squeezing (in the sense
of minimum-uncertainty) is generated in the parameter range
whereJ is moderately affected bye–ph interaction. To illus-
trate this, the Josephson current is plotted as a function ofthe
bare interactionλ2/ΓΩ (Fig. 2a): as expected,J decreases
but moderately ifλ is not too large. The inflexion region
corresponds to the polaron crossover where optimum squeez-
ing is achieved. Interestingly, the asymmetryγ 6= 0 leads to
strong (up to40 percent) and nearly harmonic squeezing, hav-
ing a weak dependence with the phase difference (Fig. 2b).

In order to substantiate that the squeezing property is
generic and not only restricted to the large∆ limit, the case of
finite ∆ is checked using a variational ansatz approach [3].
A modified polaronic transformationUp(η) = eηα(b†−b)τz

is performed on the original Hamiltonian, Eqs. (1)–(3), fol-
lowed by a harmonic squeezing transformationUsq(β) =

0 1 2 3 4 5 6

λ2 / ΓΩ

0

0,2

0,4

0,6

0,8

J 
/ Γ

0 0,2 0,4 0,6 0,8 1
φ / 2 π

0,7

0,8

0,9

1

δP

0 0,5 1
φ / 2 π

1

1,5

2

δX
 δ

P
  

FIG. 2: (a) Josephson current as a function of the electron-phonon
interaction, atφ = π/2: Γ = 0.5 (circles),1 (squares) and2 (tri-
angles) forǫ = 0, γ = 0; (b) Same as Fig. 1a, asymmetric case:
γ = 0.5 (squares) and0.75 (triangles) forλ = 1.5, Γ = 4, ǫ = 0.

eβ(b†2−b2), whereη andβ are variational parameters. Aver-
aging over the zero-phonon state leads to renormalized tun-
neling amplitudesT ′

j = Tj exp
(

− 1
2α

2η2e−4β
)

and the ef-
fective interactionU ′ = U − 2η(2 − η)(λ2/Ω). The degree
of squeezing is given byδP = e−2β. For relatively largeΓ,
using the Hartree approximation, one minimizes the ground
state energy of the system with respect toη and β. This
yields a good qualitative agreement with the exact large∆
calculation. For finite∆, squeezing is still present provided
that λ > Ω. For instance, with the parameters of Fig. 2b
(λ = 1.5,Γ = 4, γ = 0.75) andφ = 0, one findsδP = 0.79
and 0.76 for∆ = 100 and 4, respectively. In the opposite
limit of ∆ ≪ Γ, assuming∆ = 0.1, λ = 1.2, Γ = 2, γ = 0,
one finds (atφ = π/2) δP = 0.77 with δXδP = 1.1, indicat-
ing that even with rather high frequency modes such as RBM
in nanotubes (Ω ≈ 10meV ), squeezing could be obtained (as-
suming niobium contacts,∆ ≈ 1meV ).

Nonclassical phonon states (other than squeezed states) can
be generated by projecting the ground state on the current
eigenstates, which are in principle accessible experimentally.
The ground state in the current state basis (defined from Eq.
(9) asJ̃ |±〉 = ±J |±〉) reads:|Ψ0〉 = |Φ+〉|+〉 + |Φ−〉|−〉,
with |Φ±〉 = e∓iχ′/2

∑∞
n=0

(

eiχ/2A
(0)
n ± e−iχ/2A

(2)
n

)

|n〉

andχ′ = arctan
(

γ cot φ
2

)

. In the smallΓ regime, one ob-

tains, forǫ = 0, the “phase cat” states,

|Φ±〉 = e∓iχ′/2
(

eiχ/2|α〉 ± e−iχ/2| − α〉
)

/
√

2 , (11)

which are superpositions of opposite coherent states of the
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phonon mode. More generally, states like|Φ±〉 are similar to
those generated in Quantum Optics [1]. They carry nontrivial
phases, obtained here by tuning the junction asymmetryγ. In
particular, forγ = 0, they are built from phonon Fock states
with even/odd occupation numbers only, being linked, respec-
tively, to the|±〉 current states. At moderateλ it is possible to
achieve such nontrivial states. They have a substantial overlap
between phonon states and a sizable Josephson current.

We have checked that squeezing is robust against envi-
ronmental effects induced by coupling of the local vibra-
tional mode to an external phonon bath, using the reduced
density matrix formalism. Provided that the quality factor
Q = Ω/η, with η the dissipative coupling constant is large
enough (Q ∼ 102 − 104 has been suggested [9, 10, 11]), the
squeezing property of the ground state is protected due to the
gap (∼ min(Ω,∆)) in the excitation spectrum of the system.

A direct probe of squeezed states, and non-classical phonon
states is needed. For low-Ω bending modes in SWCNT,
capacitive detection through a single-electron transistor can
be envisioned. Optical detection techniques may be used,
such as Resonant Raman Scattering (RRS), which has been
achieved in carbon nanotubes [20] for RBM modes. In RRS,
the incident photon excites an electronic transition within the
molecule, and a photon is re-emitted with excitation of the
phonon modes. We denoted′ the state corresponding to a
low lying molecular orbital, which is assumed to be decoupled
from the molecular vibrations. We complement the molecule
Hamiltonian as

H ′
M = HM + ǫ′d′†d′ +

(

ζe−iωtd†d′ +H.c.
)

. (12)

One uses the golden rule transition rate from state (i), as a sum

over all final states (f) of the virtual transition. The initial state
is the projection of the ground state (8) on the zero-electron
subspace, with the phonon part|Φ(0)〉 =

∑∞
n=0A

(0)
n |n〉,

while the final state withone electron in the orbitald (to-
gether with a hole ind′), involves an arbitrary number of
phonons without a net displacement:|i〉 = |Φ(0)〉|0〉d| ↑↓
〉d′ and |f〉 = |n〉|σ〉d| − σ〉d′ . Resonant Raman emission
lines (Stokes) will appear at energiesǫ0 − ǫ′ + nΩ − E0(φ)
(E0(φ) is the ground state energy), with probabilities given

by 〈n|Φ(0)〉2 = |A(0)
n |2; this yields a spectroscopy of the

squeezed state|Φ(0)〉. While absorption from a filled molecu-
lar orbital (d′) probes|Φ(0)〉, similarly absorption towards an

empty orbital will probe|Φ(2)〉 =
∑∞

n=0 A
(2)
n |n〉 by taking

out an electron from the state| ↑↓〉d. Concerning ”cat states”,
experimental evidence could be gained by far-infrared optical
absorption, involving a transition from the subgap (Andreev)
bound state to quasiparticle states in the leads.

In summary, phonon squeezing results from the nonlin-
ear interaction brought by coherent charge fluctuations in a
superconducting molecular junction. Squeezing occurs for
a wide range of parameters and is easily controllable, pro-
vided that the local vibrational mode is weakly coupled to
the environment. For these purposes, suspended nanotubes
present the advantage that their various vibrational modesare
well characterized and the corresponding quality factors are
large. Besides interesting fundamental properties, the gener-
ation of non-classical phonon states promises applications to
nanoelectromechanics and to quantum information.

D. F. and T. M. acknowledge support from the A.C.
Nanosciences Program NR0114 of Ministry of Research.
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