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RATE OF CONVERGENCE OF IMPLICIT APPROXIMATIONS
FOR STOCHASTIC EVOLUTION EQUATIONS

ISTVAN GYONGY AND ANNIE MILLET

ABSTRACT. Stochastic evolution equations in Banach spaces with unbounded
nonlinear drift and diffusion operators are considered. Under some regularity
condition assumed for the solution, the rate of convergence of implicit Euler ap-
proximations is estimated under strong monotonicity and Lipschitz conditions.
The results are applied to a class of quasilinear stochastic PDEs of parabolic type.

1. INTRODUCTION

Let V. — H <— V* be a normal triple of spaces with dense and continuous
embeddings, where V' is a separable and reflexive Banach space, H is a Hilbert space,
identified with its dual by means of the inner product in H, and V* is the dual of V.
Thus (v, h) = (v, h) for all v € V and h € H* = H, where (v,v*) = (v*,v) denotes
the duality product of v € V, v* € V* and (hy, hy) denotes the inner product of
hi,he € H. Let W = {W(t) : t > 0} be a d;-dimensional Brownian motion carried
by a stochastic basis (Q, F, (F;)i>0, P). Consider the stochastic evolution equation

t et
u(t) = up + /0 A(s,u(s)) ds + Z/o By(s,u(s)) dW¥(s), (1.1)

where ug is a V-valued Fy-measurable random variable, A and B are (non-linear)
adapted operators defined on [0, co[xV x Q with values in V* and H% := H x...x H,
respectively.

It is well-known, see [, [I0] and [[[J], that this equation admits a unique solution
if the following conditions are met: There exist constants A > 0, K > 0 and an
Fi-adapted non-negative locally integrable stochastic process f = {f; : ¢ > 0} such
that

(i) (Monotonicity) There exists a constant K such that

di
2<u - v, A(tau) - A(ta U)> + Z |Bk(ta u) - Bk(ta U)ﬁ'{ < K|u - v|?’—[7
k=1

1991 Mathematics Subject Classification. Primary: 60H15 Secondary: 65M60 .

Key words and phrases. Stochastic evolution equations, Monotone operators, coercivity, implicit
approximations.

This paper was written while the first named author was visiting the University of Paris 1. The
research of this author is partially supported by EU Network HARP.

The research of the second named author is partially supported by the research project
BMF2003-01345.

1
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(ii) (Coercivity)

di
2(0, A(t,v)) + Y Bt o)l < = Aol + Kloli; + f(2),
k=1
(iii) (Linear growth)
A V)l < Kol + £(2),

(iv) (Hemicontinuity)
lim w0 A(t, 0+ ) = (w, A(t,v))

hold for all for u,v,w € V, t € [0,T] and w € Q.
Under these conditions equation ([[.1]) has a unique solution « on [0, T']. Moreover,

if Flugl? < oo and EfOT f(t)dt < oo, then

T
Esup |u(t)|3 + E/ lu(t)[3 dt < oo.
t<T 0

In [f] it is shown that under these conditions the solutions of various implicit and
explicit schemes converge to u.

Our aim is to prove rate of convergence estimates for these approximations. To
achieve this aim we require stronger assumptions: a strong monotonicity condition
on A, B and a Lipschitz condition on B in v € V. In the present paper we consider an
implicit discretization, and we require also the following regularity from the solution
u (see condition (T2)): El|ug|? < oo, and there exist some constants C' and v > 0
such that

Elu(t) —u(s)ly < C'Jt — s|*,
for all s,t € [0,7]. Then in the case of time independent operators A and B we
obtain the rate of convergence for the implicit approximation u” corresponding to
the meshsize 7 = T'/m of the partition of [0, T

Emax|u(it) — o (ir)|}, + E Y |u(it) —u’ (iT)[}7 < C7",
i<m
i<m
where C' is a constant independent of 7. If in addition to these assumptions A is
also Lipschitz continuous in v € V' then the order of convergence is doubled,

Emax|u(it) — u"(ir)[} + EY_ |u(it) — " (iT)[j7 < CT™.
i<m <m
If A and B depend on ¢, then one has the same results if one assumes some Holder
continuity of these operators in ¢ (conditions (T1) and (T3)).

As examples we present a class of quasi-linear stochastic partial differential equa-
tions (SPDEs) of parabolic type, and show that it satisfies our assumptions. Thus we
obtain rate of convergence results also for implicit approximations of linear parabolic
SPDEs, in particular, for the Zakai equation of nonlinear filtering.

We will extend these results to degenerate parabolic SPDEs; and to space-time
explicit and implicit schemes for stochastic evolution equations in the continuation
of this paper.

In section two, we give a precise description of the schemes and state the as-
sumptions on the coefficients which ensure the convergence of these schemes to the
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solution u to ([[J]). In Section 3 estimates for the speed of convergence of time im-
plicit schemes are stated and proved. Finally, in the last section, we give a class of
examples of quasi-linear stochastic PDEs for which all the assumptions of the main
theorem, Theorem [B.4], are fulfilled.

As usual, we denote by C' a constant which can change from line to line.

2. PRELIMINARIES AND THE APPROXIMATION SCHEME

Let (2, F, (Fi)i>0, P) be a stochastic basis, satisfying the usual conditions, i.e.,
(Fi)i>0 is an increasing right-continuous family of sub-o-algebras of F such that Fj
contains every P-null set. Let W = {W(t) : t > 0} be a d;-dimensional Wiener
martingale with respect to (F;)i>0, i.e., W is an F-adapted Wiener process with
values in R% such that W (t) — W (s) is independent of F; for all 0 < s < ¢.

Let T be a given positive number. Consider the stochastic evolution equation
(L) for t € [0,T] in a triplet of spaces

VeH=H" V"

satisfying the following conditions: V' is a separable and reflexive Banach space over
the real numbers, embedded continuously and densely into a Hilbert space H, which
is identified with its dual H* by means of the inner product (-,-) in H, such that
(v,h) = (v,h) for all v € V and h € H, where (-,-) denotes the duality product
between V and V*, the dual of V. Such triplet of spaces is called a normal triplet.

Let us state now our assumptions on the initial value uy and the operators A, B
in the equation. Let

A0, T xVxQ—=V* B:[0,T]xVxQ—H®"

be such that for every v,w € V and 1 < k < d;, (A(s,v),w) and (By(s,v),w) are
adapted processes and the following conditions hold:

(C1) The pair (A, B) satisfies the strong monotonicity condition, i.e., there exist
constants A > 0 and L > 0 such almost surely

2 (u—v, A(t,u) — A(t,v)) + Y |Bi(t,u) — Bi(t, )|}

A u—vl} < Llu—v|% (2.1)
for all ¢ €]0,T], w and v in V.

(C2) (Lipschitz condition on B) There exists a constant L, such that almost
surely

dy
S IBultu) ~ Bt o)l < L u— of} 22)
k=1

for all t € [0, 7], uw and v in V.
(C3) (Lipschitz condition on A) There exists a constant Ls such that almost
surely
‘A(tv u) - A<t7 U)
for all t € [0, 7], w and v in V.

ve < Lylu—vl} (2.3)
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(C4) up : Q — V is Fo-measurable and E|ug|?, < oo. There exist non-negative
random variables K7 and K5 such that FK; < oo, and

dy
D Bt 0[5 < K (2.4)
k=1

[A(t, 0)[i+ < Ky (2.5)

for all t € [0, 7] and w € Q.

Remark 2.1. If A = 0 in (B.0)) then one says that (A, B) satisfies the monotonicity
condition. Notice that this condition together with the Lipschitz condition (B.3) on
A implies the Lipschitz condition (2) on B.

Remark 2.2. (i) Clearly, (B3)-(BH) and (B2)-(B:4) imply that A and B satisfy

the growth condition

dy
> IBi(t,v)[3 < 2Lafol} + 2K, (2.6)
j=1
and
|A(t,v) [} < 2Lo |vf3 + 2Ks (2.7)

respectively, for all t € [0,T], w € Q andv € V.
(11) Condition (233) obviously implies that the operator A is hemicontinuous:

li_r)rg)(A(t, u+ev),w) = (A(t,u), w) (2.8)

forallt € [0, T and u,v,w € V.

(111) The strong monotonicity condition (C1), (C2) and (B4), (BH) yield that the
pair (A, B) satisfies the following coercivity condition: there exists a non-negative
random variable K3 such EK3 < oo and almost surely

dy
2 (v, A(t,0)) + > |Biu(t, )3 + 3 [0} < Livfy + Ky (2.9)
k=1

for allt €]0,T), w e Q andv € V.

Proof. We show only (iii). By the strong monotonicity condition

di

2 (v, Alt,0) + D 1Bult, vl + 3 ol < Lol + Ra(t) + Rolt)  (2.10)
with :
Ri(t) = 2(v, A(t,0)),
d1 dy
Ba(t) = SO IB(t ) +2 (Bultv) = By(t,0), By(t,0))

Using (C2) and (R.F), we have

[Ra| < glofy + 552,
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d T [ dy 2
| R| < 2 (ZIBk(t,v)—Bk(t,O)I?{) (ZIBk(t,O)I?{> + K

j=1 k=1

Thus, (C1) concludes the proof of (E-9).
U

Definition 2.3. An H-valued adapted continuous process u = {u(t) : t € [0, T} is
a solution to equation on [0,T] if almost surely

/ 0 dt < oo, (2.11)

and
t et
(u(t),v) = (ug,v) +/0 (A(s,u(s)),v)ds + Z/o (Bi(s,u(s)),v) dWk(s) (2.12)

holds for allt € [0,T] and v € V.
The following theorem is well-known (see [§], and [[3).

Theorem 2.4. Let A and B satisfy the monotonicity, coercivity, linear growth and
hemicontinuity conditions (i)-(iv) formulated in the Introduction. Then for every
H -valued Fy-measurable random wvariable ug, equation (I.4) has a unique solution

u. Moreover, if E|uo|? < oo and EfOT f(t)dt < oo, then
T
E( sup |u(®)]3) +E/ lv(s)|? dt < oo (2.13)
te[0,7) 0

holds.
Hence by the previous remarks we have the following corollary.

Corollary 2.5. Assume that conditions (C1), (C2) hold. Then for every H-valued
random variable ug equation ([]) has a unique solution u, and if E|ug|} < oo, then

(BI3) holds.

Approximation scheme. For a fixed integer m > 1 and 7 := T'/m we define the
approximation u” for the solution u by an implicit time discretization of equation

(L1 as follows:
UT (to) = Ug,
UT(tH_l) = UT(tz) + 7 A; (UT(tH_l))

+ Z BE, (w(t:) (WH(tiva) — WH(t))  for 0 <i<m, (2.14)

where t; := 7 and

tiv1
Al (v) = = / A(s,v)ds , (2.15)
t;
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1 tiv1
B,;O(v) =0, B,:vtm(v) = —/ By(s,v)ds (2.16)
ti

-
fori=0,1,2,....m

A random vector u” := {u"(t;) : ¢ = 0,1,2,...,m} is called a solution to scheme
(B14) if u(¢;) is a V-valued F;,-measurable random variable such that E|uT(¢;)[3 <
oo and (2:14) hold for every i =0,--- ,m

We use the notation

ki(t) ==t for t € [ir, (i+ 1)7], and ko(t) := (i+ 1)1 for t €lir, (i+1)7] (2.17)
for integers ¢ > 0, and set
A(v) = Ay, (v),  Biy(v) = By, (v)

fort € [t;, t;q],1=0,1,2,..m —1and v € V.
The following theorem establishes the existence and uniqueness of u™ for large
enough m, and provides estimates in V' and in H.

Theorem 2.6. Assume that A and B satisfy the monotonicity, coercivity, linear
growth and hemicontinuity conditions (i)—(iv). Assume also that (C4) holds. Then
there exist an integer mo and a constant C, such that for m > myq equation (2.14)
has a unique solution {u™(t;) : 1 =0,1,...,m}, and

Eorgzg;n‘u iT ‘H—l—E;‘uT(iT)ﬁ/T <C. (2.18)
Proof. This theorem with estimate
Jax. E’u (i1 ’H + EZ ’uT(iT)ﬁ/T <C (2.19)

in place of (BI§) is proved in [[] for a slightly different implicit scheme. For the
above implicit scheme the same proof can be repeated without essential changes.
Now we show (E-I9). From the definition of ™ we have

(0 = luof} + T(05) + T, Z\AT M (220
for t; = j7, j = 0,1,2, ...m, where

26) = 2 [ als)) Al (o)) s,

T0) = X IS BGDOT ) ~ W

Ke) = 2% / B (W (s (5))) AW (5),

and k1, ko are piece-wise constant functions defined by (B.17). By Itd’s formula for
every k.l =1,2,....d;

(WH(tien) = W) (W (ti1) — W' (5:))
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= Sp(tivn — t;) + MM (ti 1) — MM (1),
where 0;; = 1 for k£ = [ and 0 otherwise, and
t t
MM (t) = / (Wk( ) — Wk(/il(s)))dWl(s) +/ (Wl(s) — Wl(/ﬁ(S))) dWk(s).
0 0

Thus we get
J(tj) = Ji(ty) + Tat;),

Z Z|Bkt, |H7'

1<i<y k&

/ ZBM (1 (5))), BT (7 (1 (5)))) dMH(s).

with

By the Davis inequality we have
Emax |Jo(t5)] =
j<m

1/2
<3ZE{ / B (u <m<s>>>|§|st<uf<m<s>>>|zd<M’“><s>}

1/2

<Y B [ IBL (s (D)) = W (s (5))] ds

e i)
<Gy B max B, (0 ()], V7

k.l

«<{ /OT|B;,S<uT<m<s>>>|%I»Wl< - Wsi(s) s} ]

T

N

< d,Cy Z TE mjax ‘Bgvtj(u t
k

T
+Cr Y E/ B (07 (k1 (8))) |5 [W(s) = Wk (s))|ds
k.l 0

<G(1+EY. Ww(jnfir),

Jj<1

where € and Cy are constants, independent of 7. Here we use that by Jensen’s
inequality for every k

t;
™ BL, (i) By < / |Bu(s, a7 (o)) ds,
0

1<i<y

and that the coercivity condition (ii) and the growth condition on (iii) imply the
growth condition (R.6) on B with some constant L; and random variable K satis-
fying FK; < co. Hence by taking into account the coercivity condition we obtain

E max [Z(t;) + T ()]
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Jj<m

< P [ 2 (07 (6a(6) . Al (ea(9)) + 3 Bl (o)) ] s
+ £ max [7(t;)]
< C<1+Ijn§a7u7>1< E|uT(jT)|§,+EZ|uT(jT)|2‘VT) (2.21)

with a constant C' independent of 7. By using the Davis inequality again we obtain

j<m

T 1/2
E max |[K(t;)| <6 E {/0 > y(UT(M(S)),Bg,s(uv(m(s)))}ms}

T 1/2
<6 B [max|u (7], { / ZlBZ,s(UT(m(S)))\?{dS}

T
T . T T 2
<3 Pl Gr)fy + 15 F [ 32|70 (ka(s))
- k
<ilE max lu (j7)|H + C <1+E > |u7<ﬁ)\2vf> (2.22)
- j<m

with a constant C' independent of 7. From (2.19)-(P-29) we get
B wax [ (7 < Bluol® + B max (T(t;) + 7)) + B max [K()
Jj<m j<m ji<m

< 5 B maxu’ ()l + € (1+ max Elu”(jr)l; + B > TGl

j<m
<iE max lu(§7)[H +C (1+ L) < o0
by virtue of (.I9), which proves the estimate (B.13). O

3. CONVERGENCE RESULTS

In order to obtain a speed of convergence, we require further properties from
B(t,v) and from the solution u of ([L.1]).

We assume that there exists a constant v €]0,1/2] such that:

(T1) The coefficient B satisfies the following time-regularity: There exists a con-
stant C' and a random variable n > 0 with finite first moment, such that almost

surely
dy

Y 1Bt v) = Bils, o)l < [t = s (n+ Cloff) (3.1)
k=1
for all s € [0,7] and v € V.

(T2) The solution u to equation ([.1]) satisfies the following regularity property:
there exists a constant C' > 0 such that

Elu(t) — u(s)\%, <C|t— s|2” (3.2)
for all s,t € [0,T7.



RATE OF CONVERGENCE OF IMPLICIT APPROXIMATIONS 9

Remark 3.1. Clearly, (B.3) implies

sup Elu(t)]? < oo. (3.3)
te[0,7)

In order to establish the rate of convergence of the approximations we first suppose
that the coefficients A and B satisfy the Lipschitz property.

Theorem 3.2. Suppose that the conditions (C1)-(C4), (T1) and (T2) hold. Then

there exist a constant C' and an integer mo > 1 such that

sup Elu(lt) —u (zT)|H+EZ\u GT) =T (57)|PT < C ¥ (3.4)

0<i<m
7=0
for all integers m > my.
The following proposition plays a key role in the proof.

Proposition 3.3. Assume assumptions (i) through (iv) from the Introduction. Sup-
pose, moreover condition (C4). Then

lu(t)) —u’ (4|5 = 2 /l <u(m2(s)) —u"(ko(s)), A(s,u(s)) — A(s,u” >ds
+ Z

+2Z / (Buls, u(s)) = BL,(w (1), u(rka(s)) — u” (k1 (s))) dWW™(s)

/t MZ [Bu(s, u(s)) — BL(u" (t))] AW (s)

i

'L+1 2

u(s)) — A(s,u" (tiy1)) ] ds

H

holds for every [ =1,2,....m
Proof. Using (B-I4) we have for any i =0,--- ,m — 1
[u(tivn) = u(tir) [y — lults) — " ()| =

) /t | T Cutian) — (), Als, u(s)) — A(s, a7 (ti51))) ds

1+1

+2 Z (/ [Bi(s, u(s)) — B (u"(t:))] AW (s) , u(tir) — uT(tm))

‘/‘tﬁl (s, u( A(SauT(tiH))]ds

2

H

* Z /t - [Bi(s, u(s)) — BE,(u"(t:))] dW*(s)

k=1

- /t a <“(tz‘+1) —u (tis1), A(s,u(s)) — A(s, uT(ti+1))> ds
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dy

> /t h [Bi(s,u(s)) — Bf J(u”(t;))] dW*(s)

k=1

2
+

49 Z (/ [Bu(s, uls)) — BE, (™ (8))] dWH(s) , ults) — uT(ti))

2

tiy1
[ TG ul) - Al () ] ds
ti H
Summing up for i = 1,--- [ — 1, we obtain (B.5). O

Proof of Theorem [3.3.

Taking expectations in both sided of (B.J) and using the strong monotonicity con-
dition (C1), we deduce that for [ =1, --- | m,

Blu(ty) —u”(t) |7

<E /0 2ulka(s)) — w7 (ka(5)), Als, ulral(s))) — Als, w7 (x(s))) s

k=1

3 E / T Bu(s, () — Buls, w7 (sa(s)) 2 ds + 3 R
<A [ fulia(s) = (s ds

+LE/l [u(ra(s)) — w7 (sa(s)) 3 ds + 3 R (3.6)
0 k=1

where

Ry :E/O l 2 (u(ka(s)) — u”(k2(s)), A(s, u(s)) — A(s, u(ka(s)))) ds,

d .
Re= 3 [ Bl o) s,
d 1-1

Ry = ZZE[/ ds | Bu(s, u(s)) - l/ttilBk(t,uT(ti)dt‘z

T )
k=1 i=1 1—

ti
~ [ 1Bt u(e)) = Bttt ]
ti—1
The Lipschitz property of A imposed in (B-3), (B-3) and Schwarz’s inequality imply

| B | < LzE/l |u(ka(s)) — u"(ka(s))lv [u(s) — ulra(s))lv ds,

<L2( /|M2 $)) — " (ks |Vds) ( /|u — u(ka(s |Vds)

< § /0 [u(ko(s)) — u (Ka(s))|}ds + CT. (3.7)
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A similar computation based on (B.2) yields

d 1-1

Rl <33F [ [ as(1Butsul) - Bt )

k=1 i=1

— | Belt, u(t) = Bi(tw (1)) )

<2p / T u(ra(8)) — 7 (mat)) ot + C R

=3

where

K1(8)
R, = ZE / ds/ dt | By (s, u(s)) — Bi(t, u(ra(t))|3.

1(s)—

Hence, using (), (@) and (B.4) we have
dy 2 rk1(s)
<y [ dt][Balsu(s)) = Bt (o)l
+ [ Bi(t, uls)) — Bi(t, u(t)[3 + | Bi(t, u(t)) — Bu(t, u(ka(t))) |

" 1 ti_1 Ko (t)+7
< [ Rarons [T [ bl -k
T Jo r2(t)

t1

+ult) — u<@<t>|2v] <O

Hence
|Rs| < Cm + %E/tk [u(ka(s)) — u” (Ka(s))|Eds . (3.8)
Furthermore (B.g) and (B-3) imply 0
|Ro| < C7 (3.9)
with a constant C' independent of 7. For m large enough, K;7 < %, and the

inequalities (B.4)-(B.9) show that for m large enough,
A b
Blu(t) ~ (1) + 5B | Jula(s)) = o ras) s
0
< ZLTE|u(ti) —u ()5 + O, (3.10)

Since sup,, Y -, LT < 400, a discrete version of Gronwall’s lemma yields that there
exists C' > 0 such that for m large enough

sup Elu(t) —u™ ()3 < CT%.
0<i<m

This in turn with (B.2) implies

E / us) — o () [Bds < Cr,

which completes the proof of the theorem. O
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Assume now that the solution u of equation ([-I]) satisfies also the following as-
sumption:
(T3) There exists a random variable ¢ > 0 such that F¢?* < oo and

sup [u(t)|y <€ (as.).
t<T

Then we can improve the estimate (B.4)) in the previous theorem.

Theorem 3.4. Let (C1)-(C4) and (T1)-(T3) hold. Assume also (T3). Then for
all sufficiently large m

Eorgnj%ﬁn lu(jT) — u"(j7)|% + EZO lu(j7) —u” ()3T < C 7 (3.11)
J:

holds, where C' is a constant independent of T.
Proof. For k=1,--- ,dy, set
Fy(t) = Br(t, u(t)) — By (u" (k1 (t)))
dyq t
m(t) = Z/ Fi(s)dW¥(s) and G(s) =m(s) — m(k(s))
k=10

Then by Ito’s formula

pmitse) —m(el =2 [ 360, Fils) dWHG)

d1 tit1
+Z[ Fu(s)]?, ds
k=1 i

for i = 0,...,m — 1. Hence by using (B.H) we deduce that for [ =1,--- ,m

u(ty) — ™ (8)[% < L(t) + Io(ty) + 2My(t) + 2Ma(t) (3.12)
with
1) =2 [ (ulra(s) = 7 ra(s)) . Als.u(s) = Als, 1 (ra(s)) s,
d1 t
B(0)i= 3 [ |Buls.uo) = BLLr (ea(s))fy s
k=170
M(t) := Z/o (G(s), Fy(s)) dW*(s),
di t .
Ms(t) := Z/ (Fi(s), u(ki(s)) — u"(k1(s))) dW*(s).

k=10

By (C3)

pr@NSAhWMm—w@Mm@%+hA|M®—Mwwm%k

0<i<m
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T
(1+2Ly) Z lu(t; tolrT + 2L2/ lu(s) — u(ka(s))]} ds.
0
Hence by Theorem B.2 and by condition (T2)
E sup |L(t)] < Cr%, (3.13)
0<i<m

where C' is a constant independent of 7.
Using Jensen’s inequality, (B-f) and condition (T1) we have for s < 7

D 1E($)E =Y 1Br(s,uls))[f < 2 L fuls) [ + 2 K, (3.14)

k k

while for s € [t;,t;11], 1 <i < m, one has for some constant C' independent of 7

Z|Fk Z/t | Br.(s,u(s)) — By(r,u” (t;))|3; dr
<3l Z/ Bi(s, u(s)) — Bulr,u(s) [}

+[Bu(r, u(s)) = Bi(r,u(t)[i + | Bu(r, u(t:)) — Bi(u'(t ‘))I?{] dr
< C [ (g4 u(s)}) + Ju(s) = ult) + fu(t) — " @R ].  (3.15)
Thus, (B.14) and (B.17) yield

T
sup |L(t)] < C/ lu(s |Vds+CT+C'7'2”/ (77+C’|u(s)|%/) ds
0

0<i<m

+C/O IU(S)—U(Hz(S))|€d5+CZIU(ti)—uT(ti)IQVT-

Hence by Theorem and by condition (T2)
E sup |L(t)| < Cr*, (3.16)

0<i<m

where C' is a constant independent of 7. By using the Davis inequality, and the
simple inequality ab < %aQ + %lﬁ we get

1
T d 3
E sup |M1 t) |<3E</ Z| Fy(s )|2ds>

§3E<<m [/ G <s>|%fdsr>

3 T
< 3Tmeg+ E/ G(s)[% ds, (3.17)
2 2 Jo

where I is the set of random variables ( satisfying

sup Z|Fk 1NZ < ¢ (as).

0<s<T
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By (B:) and (B13) we deduce
sup Z |Fi(s)lf < C 7 (s futs IV +n+1) +C max Ju(t;) —u”(t)[

0<s<T
¢ (1 +&+ max fu(t;) —u (tz)|v>7

where ¢ is the random variable from condition (T3) and C' is a constant, independent
of 7. Hence Theorem B.9 yield

TéIGIfE§<TC(E77+E€ )+ CT ZE|u (t)]} < Oy, (3.18)

where (' is a constant, independent of 7. Similarly, due to conditions (T1)-(T2)
and Theorem

T T
EZ/ | Fe(s)[% ds gcT2V(1+E/ u(s)I} ds)
k 0 0

+CT + CTEY Ju(t) =" (t)[; <C7  (3.19)
i=1
with a constant C, independent of 7. Furthermore, the isometry of stochastic inte-

grals and (B:232) yield

1 (" ) 1 (7
~-F |G(t)|5dt < —FE
T 0 T 0

1 T t
< ;E/ dt/ > |Fi(s)[3ds < C 7 (3.20)
0 I{l(t k

Thus from (BI7) by (B:1§) and (B:2() we have
E sup |My(t)| < Ct* (3.21)

1<Il<m

/ t(t) > Fi(s)dWh(s)| dt

H

Finally, the Davis inequality implies

E sup [My(t)|n <3E (/ > (Fr(s () —uT(m(s)))Ws)

1<i<m

N

<LE s fula(s) = D)+ 18 [ IAG s (322

1<I<m

Thus, from (BI3) by inequalities (B-13), (B-19), (B:2])) and (B-29) we obtain

1
—E sup |u(t)) —u"(t)|5 < C T,
2 1<Il<m

with a constant C, independent of 7, which with (B.4]) completes the proof of the
theorem. ]

We now prove that if the coefficient A does not satisfy the Lipschitz property
(C3) but only the coercivity and growth conditions (B.7])-(B.9), then the order of
convergence is divided by two.
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Theorem 3.5. Let A and B satisfy the conditions (C1), (C2) and (C4). Suppose
that conditions (T1) and (T2) hold. Then there ezists a constant C', independent of
T, such that for all sufficiently large m

sup Elu(jr) —u (jT)\H+EZ|u JT) —uT (7)) T < CTV. (3.23)

0<j<m =1

Proof. Using (B.3), taking expectations and using (C1) with u(s) and u”(kz(s)), we
obtain for every [ =1 --- 'm

Blu(ty) —u(t)l5 < —AE/ Ju(s) — " (ra(s)[% ds

3
+E/ Ky |u(s) — u (ka(s)[3 ds + Z (3.24)

k=1
where

R, = ZQE/ (u(ka(s)) —u(s), A(s,u(s)) — A(s,u" (ra(s)))) ds,

R, =ZE / (Bu(s, u(s))[% ds,
d1 -1

m=yyE [ / ]| By(s,u(s)) — Bult. w7 (1))

k=1 i=1
—|By(t,u(t)) = Byt u (k)|
Using (.7), (B2), (B-3) and Schwarz’s inequality, we deduce

RI<CE [ futra(s) — u e o)l + sl + K] s
<o (& [lut - umz(s))@dsf (& [ (1 =ttt ds)é
+C <E /Otl lu(s) — u(%aﬂs))ﬁ,ds)é

<Cr. (3.25)

Furthermore, Schwarz’s inequality, (C2) and computations similar to that proving
(B-g) yield for any 0 > 0 small enough

Ry <6 ZE / IBult, ult)) — Bu(t, u (ra(t))[2 dt

dp -1 tit1 t;
LC ZZ / ds / dtIBu(su(s)) = Belt.ut)fy

A

<3P [ luts) = (o)) s+ €7
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This inequality and (B.25) imply that
A f
Elu(t) — o (t)[i + 35 E/ [u(s) — u" (ka(s))[v-ds
0
t
<Ko [ Eluls) — u (ra(s)ff ds + O
0

Hence for any t € [0, 7],
Elu(t) — u" (ka3 < 2 Elu(ra(t)) — u” (k2(t) [ + 2 Elu(t) — u(k2(0) 4

Ka(t)
§2K1/0 Elu(s) — u (k2(s))[frds + C 77 + 2 Elu(t) — u(ka(t))[
§2K1/0 Elu(s) — u"(ka(s) [y ds + C 77 + 2 Elu(t) — u(ra(t)) [}
+ 7 [sup B(fu(s)[f; +u”(ra() )|
It6’s formula and (B.9) imply that for any ¢ € [0, T,

Ka(t) d1
mmw~wam@=E[' [20A(s,u(s)) , u(s)) + D | Byls, u(s))[ | ds

K2 (t)
ng/ u(s) ds < Ky v sup Elu(s)[2.
t 0<s<T

Hence (P-13)) and (B.1§) imply that

Elu(t) — u"(x ())|H<2K1/OEIu() u” (ka(s))[7y ds + C' 77

and Gronwall’s lemma yields

sup Bluft) — o (a()ff < O (3.26)
and .
E/o lu(t) — u” (ko (t)|3 dt < CT¥ (3.27)

follows by (B:24). Finally taking into account that by (T2) there exists a constant
C' such that

Elu(t) — u(ka(t))* < Cr*for all t € [0, 7],
from (B.26) and (B.27) we obtain (B.23). O

Using the above result one can easily obtain the following theorem in the same
way as Theorem B.J is obtained from Theorem [B.4].

Theorem 3.6. Let A and B satisfy the conditions (C1), (C2) and (C4). Suppose
that conditions (T1), (T2) and (T3) hold. Then there exists a constant C' such that
for m large enough,

E max |u(j7) —u"(j7) |5 + EZ lu(j7) —u"(jT)[pT < C 7V (3.28)

0<j<m
1> =0
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Remark 3.7. By analyzing their proof, it is not difficult to see that Theorems [3.3,

04, B3 and [3.9 remain true, if instead of (B18) one defines BJ, (v) in the approz-
imation scheme (B.14) by B, (v) := By(ti,v) fori=0,1,2,.m—1,k=1,2,...,d,
andv e V.

4. EXAMPLES

4.1. Quasilinear stochastic PDEs. Let us consider the stochastic partial differ-
ential equation

du(t, z) =(Lu(t) + F(t,z, Vu(t, z), u(t,z)) dt
dy
+ Z (Myu(t,z) + Gi(t, z, u(t,z))) dW*(t), (4.1)
k=1
for t € (0, 7], z € R? with initial condition
u(0,7) = up(w), = €R (4.2)

where W is a d;-dimensional Wiener martingale with respect to the filtration (F;);>0,
F and G}, are Borel functions of (w,t,z,p,7) € 2 x [0,00) x R? x RY x R and of
(w,t,z,r) € Q% [0,00) x R x R, respectively, and L, M, are differential operators
of the form

Ltyo(x) = Y D*(a*(t,x)D%(x)), M(t)o(x) = > by(t,x)D(x),
lo|<1,|81<1 o<1
(4.3)
with functions a®® and b¢ of (w,t,z) € Q x [0,00) x R?, for all multi-indices o =
(a1, ....;aq), B = (P1,..., Ba) of length |a| = >, o, <1, || < 1.

Here, and later on D* denotes D{*...D$* for any multi-indices a = (o, ..., ag) €
{0,1,2,...}¢, where D; = 8%1 and DY is the identity operator.

We use the notation V, := (9/dp, ...,0/0pg). For r > 0 let Wi (R?) denote the
space of Borel functions ¢ : R — R whose derivatives up to order r are square
integrable functions. The norm |p|, of ¢ in W] is defined by

et = 3 [ 107l do.

[y|<r

In particular, W§(R%) = Ly(R?) and ||y := |¢|1,®a). Let us use the notation P for
the o-algebra of predictable subsets of 2 x [0, 00), and B(R?) for the Borel o-algebra
on R%.

We fix an integer [ > 0 and assume that the following conditions hold.

Assumption (A1) (Stochastic parabolicity). There exists a constant A > 0 such

that
dy
Z <a“ﬁ(t, x) — %Z bR (8, :1:)) 227 >\ Z |22 (4.4)
k=1

la]=1,]8|=1 laf=1

forallw e Q, t €[0,T], z € R and z = (2, ..., 2%) € R, where 2® := 201 25%...25¢
for z € RY and multi-indices o = (o, a, ..., ag).
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Assumption (A2) (Smoothness of the linear term). The derivatives of a®® and b2
up to order | are P ® B(RY) -measurable real functions such that for a constant K

D7 (t,2)| < K, |Db¢(t,z)| <K, forall|o|<1,|B <1, k=1,---,d,
(4.5)
for allw € Q, t € [0,T], z € R and multi-indices y with |y| < 1.
Assumption (A3) (Smoothness of the initial condition). Let ug be a Wi-valued
Fo-measurable random variable such that

E|ug|} < oo. (4.6)

Assumption (A4) (Smoothness of the nonlinear term). The function f and their
first order partial derivatives in p and r are P ® B(RY) @ B(R?) @ B(R)-measurable
functions, and g, and its first order derivatives inr are PQB(R?Y)@B(R) -measurable
functions for every k = 1,..,dy. There exists a constant K such that

di
9, F (0, p, )+ |2 F (2, pr) + S |2Ga(r 2)] < K (47)

k=1

forallw € Q, t€[0,T], z € R4, peR? andr € R. There exists a random variable
& with finite first moment, such that

dy
k=1

for allw € Q and t € [0,T].

Definition 4.1. An Ly(R%)-valued continuous F;-adapted process u = {u(t) : t €
[0, T} is called a generalized solution to the Cauchy problem ({1))-(EF) on [0,T] if
almost surely

T
/ lu(t)|F dt < oo
0

and
du), o) ={ > (1)@ DPult), D*0) + (F(t, Vu(t),u(t)) , ) } dt
lal<1,]81<1
dy
+ Z{ > (0pDult), @) + (Gilt,ult)), ¢)}dwk(t)
k=1 |al<1

holds on [0,T] for every ¢ € C°(R%), where (v, ) denotes the inner product of v
and ¢ in Ly(R?).

Set H = Ly(R%), V = W}(R?) and consider the normal triplet V — H — V*
based on the inner product in Lo(R%), which determines the duality (, ) between
V and V* = W, ' (RY). By (E), (1) and ([£]) there exist a constant C' and a
random variable £ with finite first moment, such that

dy
Y (D)I(@() Do, D) < Clulilel, DO I0RMD Y, 9 < Cloldlel,

la]<1,8|<1 k=1
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dy
[(F(t, Vv,0), )P < Clolileli +& D I(Gilt,ut), @) < Clolilols + ¢
k=1
for all w, t € [0,T] and v, € V. Therefore the operators A(t), By(t) defined by

(At,v),0) = Y (=DN(a*?(t) D%, D) + (F(t, Vo,v), ¢),

lo|<1,[8]<1
(B(t,v), @) = (bg(t)Dav, <p) + (Gk(t,v), go), v,p eV (4.9)

are mappings from V into V* and H, respectively, for each k£ and w,t, such that
the growth conditions (B.q) and (.4) hold. Thus we can cast the Cauchy problem
(EQ)- (E32) into the evolution equation ([[.1), and it is an easy exercise to show that
Assumptions (Al), (A2) with [ = 0 and Assumption (A4) ensure that conditions
(C1) and (C2) hold. Hence Corollary B. gives the following result.

Theorem 4.2. Let Assumptions (A1)-(A4) hold with | = 0. Then problem ([.1])-
(E2) admits a unique generalized solution w on [0,T]. Moreover,

E< sup \u(t)|3) + E/OT lu(t)]? dt < oco. (4.10)

te[0,7)
Next we formulate a result on the regularity of the generalized solution. We need
the following assumptions.

Assumption (A5) The first order derivatives of Gy, in x are P ® B(RY) @ B(R) -
measurable functions, and there exist a constant L, a P ®@B(R) -measurable function
K of (w,t,x) and a random variable £ with finite first moment, such that

dy
> IDGyt,a,r)| < Llr[ + K(t,2),  [K(0]F <€
k=1
for all multi-indices o with |a| =1, for allw € Q, t € [0,T], x € R? and r € R.

Assumption (A6) The first order derivatives of F in x are P @ B(RY) ® B(R?) @
B(R)-measurable functions, and there exist a constant L, a P @ B(R) -measurable
function K of (w,t,z) and a random variable & with finite first moment, such that

Vo (t,x,p,r)| < L(lpl + Ir]) + K(t,z), [K(®)]s<¢
forall w,t,z,p,r.
Assumption (A7) There exist P @ B(R) -measurable functions g such that

Gr(t,x,r) = gr(t,x) forall k=1,2,....dy, t,z,r,

and the derivatives in x of gy up to order | are P @ B(R) -measurable functions such

that
dy

S lg0) <.

k=1
for all (w,t), where £ is a random variable with finite first moment.

Theorem 4.3. Let Assume (A1)-(A4) with I = 1. Then for the generalized solution
uw of (E1)-(E3) the following statements hold:
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(i) Suppose (A5). Then u is a Wi (RY)-valued continuous process and
T
E(sup |u(t)|%> + E/ lu(t)|3dt < oo (4.11)
t<T 0

(ii) Suppose (A6) and (A7) with | = 2. Then u is a W3(R%)-valued continuous
process and

E(i;1$|u(t)|g> +E/0 lu(t)|3dt < oo. (4.12)
Proof. Define
Y(t,x) = F(t,z, Vu(t,z),u(t,z)), or(t,x) = Gr(t,z,u(t, x))

for t € [0,7T], w € Q and z € R?, where u is the generalized solution of (fET)-(E3).
Then due to (FI0)

T T
B[ Wohd <o, EY [ o<
0 o Jo

Therefore, the Cauchy problem
dv(t,x) = (Lo(t,z)+(t,x))dt

dy
+ 3 (Myo(t, z) + ¢i(t,2)) dWE(t), te€(0,T], xeR’, (4.13)
k=1
v(0,2) = u(z), xcR? (4.14)
has a unique generalized solution v on [0, 7]. Moreover, by Theorem 1.1 from [[q], v
is a W.}-valued continuous F;-adapted process and

E(sup |v(t)|%> + E/OT lv(t)|3 dt < .

t<T

Since u is a generalized solution to (.13)—(f.14), by virtue of the uniqueness of the
generalized solution we have u = v, which proves (i). Assume now (A6) and (AT).
Then obviously (A5) holds, and therefore due to (f.11))

T T
E / P <oe, B3 / e(D2di < oo,

Thus by Theorem 1.1 of [[]] the generalized solution v = u of (EI3)-([EI4) is a
W2 (R%)-valued continuous process such that ([E12) holds. The proof of the theorem
is complete. O

Corollary 4.4. Let (A1)-(A4) hold with | = 2. Assume also (A6) and (A7). Then
there exists a constant C' such that for the generalized solution u of (E1)-(E3) we
have

Blu(t) —u(s)|] < Ot —s| forall s,t € [0,T].

Proof. By the theorem on It6’s formula from [§] (or see [[]) from almost surely

u(t) = ug + /0 (Lu(s) +v(s)) ds + Z/O (Myu(s) + gi(s) dW*(s)
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holds, as an equality in Ly(RY), for all t € [0, T], where

’QZ)(S, ) = F(Sa -VU(S, ')7 U(S, ))
Due to (ii) from Theorem

E‘/:(Lu(r)—irw(r)) arf < E(/St\Lu(r)+w(r)\1dr)2
<i- S\E/St|Lu('r) () dr

T T
<Clt— s (E/ lu(t)|3 dt + E/ w(t)ﬁdt) <Ot — 3|
0 0

for all s,t € [0,T], where C' is a constant. Furthermore, by Doob’s inequality
2

E /t Mu(r) + ge(r) dWk(r)| < 4/tE|Mku(r) + gi(r)|3 dr

1
< Ch|t — s [1 + E<§E§) |u(t)|§>] < Gyt — s

for all s,t € [0,T], where C; and Cy are constants. Hence

Elu(t) — u(s)|j <2F ‘ /St (Lu(r) +¥(r)) dr‘

2
1
dy t 9
+2E]Z/ (Mu(r) + gu(r)dWH(r)| < Cle = 5],
k=1""%

and the proof of the corollary is complete.

The implicit scheme (R.14)) applied to problem (f1])-(E.2) reads as follows.
UT(to) = Ug,
u(tivr) = u'(t) + (LLu" (ti) + Fy(u” (tin)) 7

21

+ ) (M7 (1) + Gry (a7 (1)) (W) = WH(H)) . (4.15)

for 0 <i < m, where

Liv:= Z Do‘(agﬁ(x)Dﬁv), M, = Z by, D™,
lo|<1,[B|<1 la]<1
1 tit1

al’(z) 1 =~ / a®?(s, ) ds, (4.16)
1 tit1
B =0 By @ =1 [ s ds (.17
t;
1 tit1
F(z,p,r): = —/ F(s,z,p,r)ds,
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Definition 4.5. A random wvector {u"(t;) : i = 0,1,2,....,m} is a called a gen-
eralized solution of the scheme ([ET) if u™(ty) = wo, u”(t;) is a Wi (RY)-valued
Fi,-measurable random variable such that

E|lu(:)]3 < o0
and almost surely

W (t).0) = > (=D (a’DPum(t;), D) + (F]_ (Vu],_ . uj,_ ), @)

la]<1,]8|<1
£ (Db Dy + G (uf ), ) (WE(E) = WE(E 1)
ko Jal<1
fori=1,2,...m and all p € C°(R?), where (-,-) is the inner product in Ly(RY).
From this definition it is clear that, using the operators A, By defined by ([9),

we can cast the scheme (fI7) into the abstract scheme (EI4). Thus by applying
Theorem P.G we get the following theorem.

Theorem 4.6. Let (A1)-(A4) hold with | = 0. Then there exists an integer mq
such that (E17) has a unique generalized solution {u™(t;) : i =0,1,...,m} for every
m > mg. Moreover, there exists a constant C' such that

0<i<m

E max [u(t)|5+ EY ()] < C
=1

for all integers m > my.

To ensure condition (T1) to hold we impose the following assumption.
Assumption (H) There ezists a constant C' and a random variable & with finite
first moment such that for k =1,2,...,d;

|DY(b(t, 2) — b (s,2))| < Clt — s forallwe Qe R and |y| <1,

l9(s) — gu(s)Ii < €]t — ]
for all s,t €10, 7).
Now applying Theorem B.4 we obtain the following result.

Theorem 4.7. Let (A1)-A(4) and (A6)-(A7) hold with | = 2. Assume (H) with
[l =0. Then (1)-HE3) and (EIF) have a unique generalized solution u and u™ =
{u™(t;) : i =0,1,2,...,m}, respectively, for all integers m larger than some integer
mg. Moreover, for all integers m > my

E max |u(it) — o (it)|§ + E Y _ |u(iT) — " (i1)[;7 < Cr, (4.18)

0<i<m
i=1
where C' is a constant, independent of T.

Proof. By Theorems (f.3) and .G (E1)—(EJ) and (F.I9) have a unique solution u
and u”, respectively. It is an easy exercise to verify that Assumption (H) ensures
that condition (T1) holds. By virtue of Corollary .4 condition (T2) is valid with
v = 1/2. Condition (T3) clearly holds by statement (i) of Theorem .. Now we
can apply Theorem B.4 , which gives (.1§).

U
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4.2. Linear stochastic PDEs. Let Assumptions (A1)-(A3) and (A7) hold and
impose also the following condition on F'.

Assumption (A8) There exist a P ® B(R) -measurable function f such that
F(t,x,p,r) = f(t,x), forallt,xz,p,r,
and the derivatives in x of f up to orderl are P @ B(R) -measurable functions such
that
HOIe3
for all (w,t), where £ is a random variable with finite first moment.
Now equation (f.I3) has become the linear stochastic PDE
dy
du(t,z) = (Lu(t,z) + f(t,x)) dt + Z(Mku(t, x) + gr(t, ) dW* (1), (4.19)
k=1
and by Theorem B.4 we have the following result.

Theorem 4.8. Let v > 0 be an integer. Let Assumptions (A1)-(A3) and (A7)-
(A8) hold with | := r+ 2, and let Assumption (H) hold with | = r. Then there is an
integer mo such that (E19)-(E3) and (EI15) have a unique generalized solution u

andu™ ={u"(t;) : 1 =0,1,2,...,m}, respectively, for all integers m > my. Moreover,

E max |u(it) — o (it)|} + B Y _ |u(it) — (i) 2,7 < CT (4.20)

0<i<m —
1=
holds for all m > mgy, where C is a constant independent of T.

Proof. For r = 0 the statement of this theorem follows immediately from Theorem
BE7. Forr > 0set H=W3(R%) and V = W, (R?) and consider the normal triplet
V — H = H* — V* based on the inner product (-,-) := (-,), in WJ(R?), which
determines the duality (-, -) between V and V*. Using Assumptions (A3), (A7) and
(A8) with [ = r, one can easily show that there exist a constant C' and a random
variable ¢ such that F£? < oo and

Z (—1)‘0‘| (aaﬁ Dy, Da@)r‘ < Clvlrs1|@lrs1s
lo|<1,[81<1
dy

D 1D, ) P < Clof2y, lel?,
k=1

d1
[(F8), @), P < &lelr, D lgr(t), @), 12 < Elol?
k=1

for all w, t € [0,7] and v, € Wi(R%). Therefore the operators A(t,-), By(t,-)
defined by

(At v),0) = Y (=D D%, D) + (f(1), ©),,
lo|<1,|8]<1
(Bk(ta U) ) SO) = (szava 90)7, + (gk(t) ) (p)ra v,pE 4 (421)
are mappings from V into V* and H, respectively, for each k and w, ¢, such that the
growth conditions (B-@) and (B.7) hold. Thus we can cast the Cauchy problem (f.19)-
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(E2) into the evolution equation ([[.]]), and it is an easy to verify that conditions
(C1)—(C4) hold. Thus this evolution equation admits a unique solution u, which
clearly a generalized solution to (fEI9)- (E3). Due to assumptions (Al)-(A3) and
(A7)-(A8) by Theorem 1.1 of [ u is a W (R?)-valued stochastic process such
that
T
Esup u(t)|?,, + E/ [u(t) 2,5 dt < oo.
t<T 0

Hence it is obvious that (T3) holds, and it is easy to verify (T2) with v = % like it is
done in the proof of Corollary [f.4. Finally, it is an easy exercise to show that (T1)
holds. Now we can finish the proof of the theorem by applying Theorem [.4. O

From the previous theorem we obtain the following corollary by Sobolev’s embed-
ding from W3 to CY.

Corollary 4.9. Let q be any non-negative number and assume that the assumptions
of Theorem [[.8 hold with r > q + g. Then there exist modifications u and u” of
u and u”, respectively, such that the derivatives DVu and D u™ in x up to order q
are functions continuous in x. Moreover, there exists a constant C independent of
T such that

E max sup Z \D”(ﬁ(iﬁ x) —a" (i, az))\2

PR eRt 1y
+BY sup Y |D(alir,x) — @ (ir,2)['r <O (4.22)
i=1 TRy <1
REFERENCES

[1] Gyongy, I, Krylov, N.V. On stochastic equations with respect to semi-martingales II. Ito
formula in Banach spaces, Stochastics, 6 (1982), 153-173.
[2] Gyongy, I. On stochastic equations with respect to semimartingales ITI, Stochastics, 7 (1982),
231-254.
[3] Gyongy, 1. Lattice approximations for stochastic quasi-linear parabolic partial differential
equations driven by space-time white noise II., Potential Analysis, 11 (1999), 1-37.
[4] Gyongy, I. Martinez, T., Solutions of partial differential equations as extremals of convex
functionals, submitted for publication.
[5] Gyongy, L., Millet, A., On Discretization Schemes for Stochastic Evolution Equations, Poten-
tial Analysis, 23 (2005), 99-134.
[6] Krylov, N. V. Extremal properties of solutions of stochastic equations, Theory Probab. Appl.
29 (1984), 209-221.
[7] Krylov, N.V. Rosovskii, B.L., On Cauchy problem for linear stochastic partial differential
equations, Math. USSR Izvestija, Vol. 11 4 (1977), 1267-1284.
[8] Krylov, N.V. Rosovskii, B.L., Stochastic evolution equations, J. Soviet Mathematics, 16
(1981), 1233-1277.
[9] Lions, J.L., Quelques méthodes de résolution des problémes aux limites non linéaires, Etudes
mathématiques, Dunod Gauthiers-Villars, 1969.
[10] Pardoux, E., Equations aux dérivées partielles stochastiques nonlinéares monotones. Etude
de solutions fortes de type It6, Thése Doct. Sci. Math. Univ. Paris Sud. (1975).
[11] Pardoux, E., Stochastic partial differential equations and filtering of diffusion processes,
Stochastics, 3-2 (1979), 127-167.
[12] Pardoux, E., Filtrage non linéaire et équations aux derivées partielles stochastiques associées,
Ecole d’été de Probabilités de Saint-Flour 1989.



RATE OF CONVERGENCE OF IMPLICIT APPROXIMATIONS 25

[13] Rozovskii, B., Stochastic evolution systems. Linear theory and applications to nonlinear filter-
ing. Kluwer, Dordrecht.

SCHOOL OF MATHEMATICS, UNIVERSITY OF EDINBURGH, KING’S BUILDINGS, EDINBURGH,
EH9 3JZ, UniTED KINGDOM
E-mail address: gyongy@maths.ed.ac.uk

LABORATOIRE DE PROBABILITES ET MODELES ALEATOIRES (CNRS UMR 7599), UNIVER-
SITES PARIS 6-PARIS 7, BoiTE COURRIER 188, 4 PLACE JUSSIEU, 75252 PARIS CEDEX 05, and
SAMOS-MATISSE, CENTRE D’ECONOMIE DE LA SORBONNE, UNIVERSITE PARIS 1 PANTHEON
SORBONNE CNRS, 90 RUE DE TOLBIAC, 75634 PARrIS CEDEX 13

E-mail address: amil@ccr. jussieu.fr and annie.millet@univ-parisl.fr



