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Abstract

We have studied one-body and two-body correlation functions in a ballistically expanding, non-

interacting atomic cloud in the presence of gravity. We find that the correlation functions are equiv-

alent to those at thermal equilibrium in the trap with an appropriate rescaling of the coordinates.

We derive simple expressions for the correlation lengths and give some physical interpretations.

Finally a simple model to take into account finite detector resolution is discussed.
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Whether a source emits photons or massive particles, if it is to be used in an interfero-

metric experiment, an essential property is its coherence. The study of coherence in optics

has shown that more than one kind of coherence can be defined [1]. The most familiar type

of coherence is known as first order coherence and is related to the visibility of interference

fringes in an interferometer. It is proportional to the value of the correlation function of the

associated field. Second order coherence is less intuitive and corresponds to the correlation

function of the intensity or squared modulus of the field. From a particle point of view,

second order coherence is a way of quantifying density correlations and is related to the

probability of finding one particle at a certain location given that another particle is present

at some other location. Particle correlations can arise simply from exchange symmetry ef-

fects and exist even when there is no interaction between the particles. This fact was clearly

demonstrated in the celebrated Hanbury Brown Twiss experiment which showed a second

order correlation for photons coming from widely separated points in a thermal source such

as a star [2].

Analogous correlations in massive particles have also been studied, particularly in the

field of nuclear physics [3, 4, 5, 6, 7]. Spatial correlations using low energy electrons have

also been studied [8, 9]. The advent of laser and evaporative cooling techniques has also

made it possible to look for correlations between neutral atoms and recently a wide variety of

different situations have been studied [10, 11, 12, 13, 14, 15, 16]. Correlation phenomena are

generally richer when using massive particles because they can be either Bosons or Fermions,

they often have a more complex internal structure and a large range of possible interactions

with each other. In the field of ultra-cold atoms, the many theoretical papers to date have

included treatments of bosons in a simple three dimensional harmonic trap [17, 18], a 1D

bosonic cloud in the Thomas Fermi regime and Tonks-Girardeau limit [19, 20, 21], the

Mott-insulator or superfluid phase for atoms trapped in optical lattices [22] and the 2D gas

[23].

Almost all these theoretical treatments have dealt with atomic clouds at thermal equi-

librium. On the other hand, all the experiments so far except Ref.[16] have measured

correlations in clouds released from a trap which expand under the influence of gravity

and possibly interatomic interactions. It is generally not trivial to know how the correla-

tion properties evolve during expansion. Moreover, matter waves have different dispersion

characteristics than light. All this raises interesting questions concerning the value of the
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correlation lengths during the atomic cloud expansion. In particular we would like to know

how to use the results of Ref.[17] to analyze the experimental results of Ref.[15], a con-

ceptually simple experiment in which second order correlations were measured in a freely

expanding cloud of metastable helium atoms. The correlation length was defined as the

characteristic length of the normalized second order correlation function. We will use the

same definition in this paper (see section IA for details).

To illustrate a more general question that comes up in thinking about the coherence

of de Broglie waves, consider a beam of particles with mean velocity v hitting a detector.

Two obvious length scales come immediately to mind, the de Broglie wavelength h̄/(m∆v)

associated with the velocity spread ∆v and the length associated with the inverse of the

energy spread of the source h̄v/m(∆v)2. These two scales are obviously very different if v is

large compared to the velocity spread. In this paper, we will show that in an experiment such

as [15], the correlation length corresponds to neither of the above length scales, although they

can be relevant in other situations. We find that the correlation length after an expansion

time t of a cloud of initial size s is h̄t/ms. This result is the atom optical analog of the van

Cittert-Zernike theorem [24]. It has also been stated in a different form in Ref. [25]. For

the special case of an ideal gas in a harmonic trap of oscillation frequency ω, the correlation

length can be recast as λωt where λ is the thermal de Broglie wavelength. Hence the

correlation length after expansion is simply dilated compared to that at equilibrium with

the same scaling factor as the spatial extent of the cloud itself.

We will confine ourselves here to the case of a cloud of non interacting atoms released

suddenly from a harmonic trap. The paper is organized as follows. We will begin in section

I with some simple definitions and general results about the correlation properties of a non-

interacting cloud both at thermal equilibrium in a trapping potential and after a ballistic

expansion. Without making any assumptions about the form of the trapping potential,

we can only find simple analytical results in the limit of a non-degenerate gas. Next we

will make a more exact and careful treatment by specializing to the very important case

of a harmonic potential. We introduce the flux operator [26] involved in the experimental

electronic detection with metastable helium and then calculate the correlation function of

the flux. We will summarize the results and give a physical interpretation in section III.

This interpretation will allow us to comment on the rather different case of a continuous

beam as in the experiments of Ref.[7, 10, 14]. In section IV we will use our results to analyse
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the experimentally important problem of finite detector resolution. Finally, the appendix

adds some detailed calculations concerning the expressions found in section IIB.

I. GENERAL RESULTS ON CORRELATION FUNCTIONS OF NON-

INTERACTING GASES

Here we recall some basic results concerning the density and first and second order cor-

relation functions for a cloud of non-interacting bosons at thermal equilibrium. A more

detailed analysis can be found in Ref.[17]. Theoretical treatments that take into account

interatomic interactions can be found in Ref.[17, 18, 27]. We also give some approximate

results for a non-interacting gas after it has expanded from a trap.

A. Definitions

Consider a cloud of N atoms at thermal equilibrium at a temperature T , confined in a

trapping potential. This potential is characterized by {ǫj, ψ0
j (r)} the energy and wavefunc-

tion of level j (here supposed non-degenerate for simplicity). In second quantization, one

defines the field operators

Ψ̂†(r) =
∑

j

ψ∗
j (r)â

†
j , Ψ̂(r) =

∑

j

ψj(r)âj.

The operator â†j creates and âj annihilates one particle in state |ψj〉 whereas Ψ̂†(r) creates

and Ψ̂(r) annihilates a particle at position r.

Correlation functions and the atomic density are statistical averages of such field opera-

tors. We use the Bose-Einstein distribution, 〈â†j âk〉 = δj k(e
β(ǫj−µ)−1)−1 where β = 1/(kBT ),

kB is the Boltzmann constant and µ is the chemical potential. The value of µ ensures the

normalization
∑

j

〈â†j âj〉 = N . We can then define

• the first order correlation function G(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉,

• the second order correlation function G(2)(r, r′) = 〈Ψ̂†(r)Ψ̂(r)Ψ̂†(r′)Ψ̂(r′)〉

• and the density ρeq(r) = 〈Ψ̂†(r)Ψ̂(r)〉 = G(1)(r, r).
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Several other first and second order correlation functions can be defined (see below) but

these are the most common ones. The first order correlation function appears in interference

experiments whereas second order correlation functions are related to intensity interference

or density fluctuation. First and second-order correlation functions are connected for thermal

non-interacting atomic clouds. The G(2) function contains a statistical average of the type

〈â†j âkâ
†
l ân〉 which can be calculated through the thermal averaging procedure (Wick theorem

[28]). One finds 〈â†j âkâ
†
l ân〉 = 〈â†j âj〉〈â†kâk〉(δjlδkn + δjnδkl) + 〈â†j âj〉δklδjn, which leads to

G(2)(r, r′) = ρeq(r)ρeq(r
′) + |G(1)(r, r′)|2 + ρeq(r)δ(r− r′)

The last term is the so-called shot-noise term. It will be neglected in the following because

it is proportional to N whereas the others are proportional to N2.

It is convenient to define a normalized second order correlation function

g(2)(r, r′) =
G(2)(r, r′)

ρeq(r)ρeq(r′)
.

If the cloud has a finite correlation length, then for distances larger than this length the first-

order correlation function vanishes. Then g(2)(r, r) = 2 and g(2)(r, r′) → 1 when |r− r′| →
∞. This means that the probability of finding two particles close to each other is enhanced

by a factor of 2, compared to the situation where they are far apart. This is the famous

bunching effect first observed by Hanbury Brown and Twiss with light [2].

The above expression of the G(2) function cannot be applied in the vicinity and below

the Bose-Einstein transition temperature. The calculation of 〈â†j âkâ
†
l ân〉 is performed in the

grand canonical ensemble which assumes the existence of a particle reservoir that does not

exist for the condensate. It is well known [29] that this gives unphysically large fluctuations

of the condensate at low enough temperature. This pathology disappears at the thermody-

namic limit if there is an interatomic interaction [29]. It has also been shown that it cancels

for a finite number of non-interacting particles if one uses the more realistic canonical en-

semble [30]. One way to keep using the grand canonical ensemble is to add the canonical

result for the ground-state [17]. This approach is validated by the results in Ref.[30] and

will be used in the following. The largest deviation is expected to occur near the transition

temperature [30]. The contribution of the ground state is −〈â†0â0〉2δj0δk0δl0δn0. Then, with

ρ0 the ground-state density, it follows that,
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G(2)(r, r′) = ρeq(r)ρeq(r
′) + |G(1)(r, r′)|2 − ρ0(r)ρ0(r

′) (1)

The normalized second order then becomes

g(2)(r, r′) = 1 +
|G(1)(r, r′)|2
ρeq(r)ρeq(r′)

− ρ0(r)ρ0(r
′)

ρeq(r)ρeq(r′)

Because the ground state density is negligible for a thermal cloud, the normalized cor-

relation function g(2)(r, r′) still goes from 2 to 1 as the separation of r and r′ increases.

On the other hand, for a BEC at T = 0, only the ground-state is occupied. Then

|G(1)(r, r′)|2 = ρeq(r)ρeq(r
′) = ρ0(r)ρ0(r

′) and g(2)(r, r′) = 1. The amount of particle bunch-

ing present in the second order correlation function can be quantified as g(2)(r, r′) − 1 and

this typically decays exponentially as the modulus squared of the separation between the

two points increases. We define the correlation length to be the characteristic length over

which the amount of particle bunching decays, that is the distance over which g(2)(r, r′)− 1

decays to 1/e of its maximum value. The correlation length of a BEC is infinite. Such a

system is said to exhibit bunching at high temperature over the correlation length and no

bunching in the condensed phase.

B. Correlations in an expanding cloud

In most experiments, particle correlations and other characteristics are not directly mea-

sured in the atom cloud, (Ref. [16] is an exception). Rather, the cloud is released from a

trap and allowed to expand during a “time of flight” before detection. For a sufficiently long

time of flight, and neglecting interactions between the atoms, the positions one measures at

a detector reflect the initial momenta of the particles. The results of section IA concerning

the correlation functions in position space all have analogs in momentum space. In fact the

correlation functions in the two reciprocal spaces are closely related. At equilibrium, i.e.

inside the trap, the following relationships can be easily derived:

∫

dp G(1)(p,p)e−ip.r/h̄ =
∫

dR G(1)(R − r/2,R + r/2)

∫

dr G(1)(r, r)eiq.r/h̄ =
∫

dP G(1)(P− q/2,P + q/2)

In other words, the spatial correlation length is related to the width of the momentum

distribution and the momentum correlation length is related to the width of the spatial
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distribution i.e. the size of the cloud. No equally simple and general relationship holds

for the second order correlation functions. This is because, close to the BEC transition

temperature, and at points where the ground state wave function is not negligible, the

special contribution of the ground state, the last term in Eq. 1 must be included, and this

contribution depends on the details of the confining potential. On the other hand, for an ideal

gas far from the transition temperature one can neglect the ground state density, make the

approximation that the correlation length is very short, neglect commutators such as [̂r, p̂],

and then write the thermal density operator as σ̂ = e−β P̂2

2m e−βV (̂r). These approximations

lead to:

G(2)(p,p′) = ρeq(p)ρeq(p
′) + |G(1)(p,p′)|2

and,

G(1)(P − q/2,P + q/2) ∼ e−β P2

2m

∫

dr e−βV (r)eiq.r
h̄

One sees that in this limit, the interesting part of G(2) in momentum space is proportional

to the square of the Fourier transform of the density distribution and independent of the

mean momentum P. This result is the analog of the van Cittert-Zernike theorem [24]. For a

trapped cloud of size sα in the α direction, one has a momentum correlation “length” given

by:

p(coh)
α =

h̄

sα
. (2)

If atoms are suddenly released from a trap and allowed to freely evolve for a sufficiently long

time t, the positions of the particles reflect their initial momenta and the spatial correlation

length at a detector is given by

l(d)
α =

p(coh)
α

m
t =

h̄t

msα
(3)

The normalized second order correlation function is then a Gaussian of rms width l(d)/
√

2.

This result was experimentally confirmed in Ref. [15]. One wonders however, to what extent

the approximations we have made are valid. The clouds used in Ref. [15] were in fact very

close to the transition temperature so that effects due to the Bose nature of the density

matrix may be important. Although the time of flight was very long, it is useful to quantify

the extent to which identifying the momentum correlation length in the trap with the spatial

correlation length at the detector is accurate. Finally, the effect of gravity on the falling

atoms never appears in the above approximate treatment, and we would like to clarify the
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role it plays. In order to answer these questions we undertake a more careful calculation. We

will confine ourselves to atoms initially confined in a harmonic trap, a good approximation

to the potential used in most experiments, and happily, one for which the eigenstates and

energies are known exactly.

II. DENSITY AND CORRELATION FUNCTIONS FOR A HARMONIC TRAP

A. At equilibrium in the trap

The eigenfunctions for a 3-dimensional harmonic potential of oscillation frequency ωα in

the α direction, are given by:

ψ0
j (r) =

∏

α=x,y,z

Ajα e
− r2

α
2σ2

α Hjα(rα/σα).

Here σα =
√

h̄
mωα

is the harmonic oscillator ground-state size, Hjα is the Hermite poly-

nomial of order jα and Ajα = (
√
πσα2jα(jα)!)−1/2. The eigenenergies are given by

ǫj =
∑

α=x,y,z
h̄ωα(jα + 1/2). Then [17, 29], with τα = βh̄ωα and µ̃ = µ − h̄

∑

ωα/2, one

finds:

ρeq(r) =
1

π3/2

∞
∑

l=1

eβlµ̃
∏

α

1

σα

√
1 − e−2ταl

e
− tanh( ταl

2
)

r2
α

σ2
α

and

G(1)(r, r′) =
1

π3/2

∞
∑

l=1

eβlµ̃
∏

α

1

σα

√
1 − e−2ταl

exp



− tanh(
ταl

2
)

(

rα + r′α
2σα

)2

− coth(
ταl

2
)

(

rα − r′α
2σα

)2


 .

The above expressions can be transformed into more familiar forms in limiting cases:

• For high temperature, µ → −∞ and one recovers the Maxwell-Boltzmann distribu-

tion. The density is ρeq(r) = N
λ3

∏

α
ταe

− τα
2

r2
α

σ2
α with λ = h̄

√
2π√

mkBT
the thermal de Broglie

wavelength. The size of the cloud is sα = σα/
√
τα =

√

kBT
mω2

α
.

The first order correlation function is

G(1)(r, r′) =
N

λ3

∏

α

ταe
− τα

2
(
rα+r′α
2σα

)2e−π(
rα−r′α

λ
)2 . (4)

Using our definition, the correlation length is l(t) = λ/
√

2π.
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• For a temperature close to but above the Bose-Einstein transition temperature, one has

to keep the summation over the index l. The density is ρeq(r) = 1
λ3 g3/2[e

βµ̃∏

α
e
− τα

2

r2
α

σ2
α ]

where ga(x) =
∞
∑

l=1
xl/la is a Bose function. The first order correlation function is

G(1)(r, r′) =
1

λ3

∞
∑

l=1

elβµ̃

l3/2

∏

α

e−
ταl
2

(
rα+r′α
2σα

)2e−
π
l
(
rα−r′α

λ
)2 .

As the temperature decreases, the number of values of l that contribute significantly

to the sum increases. It is then clear from the above expression for G(1) that the

correlation length near the center of the trap will increase and that the normalized

correlation function is no longer Gaussian. Far from the center, only the l = 1 term is

important and the correlation function remains Gaussian. Thus close to degeneracy

the correlation length is position-dependent (for an explicit example see Sec.II B 5).

• Near and below the transition temperature, the second order correlation function

is given by Eq. (1) with ρ0(r) = eβµ̃

1−eβµ̃

∏

α

e−r2
α/σ2

α

(
√

πσα)3
. As the temperature decreases,

the correlation at zero distance, g(2)(0, 0) decreases from 2 to 1 and the correlation

length increases. Around the transition temperature, g(2)(0, 0) is already significantly

different from 2 since the condensate peak density is already very large for a non-

interacting harmonically trapped cloud [31]. At T = 0, the correlation length is

infinite and g(2)(r, r′) = 1.

B. Correlations in a harmonically trapped cloud after expansion

Here we consider the cloud after expansion. First we discuss two classes of detection

methods which must be distinguished before calculating correlation functions.

1. Detection

We assume that the trapping potential is switched off instantaneously at t = 0. The

cloud expands and falls due to gravity. Two types of detection can be performed:

• Snap shot. An image is taken of the entire cloud at t = t0. We have then access to

G
(2)
im.(r, t0; r

′, t0) = 〈Ψ̂†(r, t0)Ψ̂(r, t0)Ψ̂
†(r′, t0)Ψ̂(r′, t0)〉
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The usual imaging technique is absorption, and so one has access to the above cor-

relation functions integrated along the imaging beam axis. This was used for the

experiments of Ref.[12, 13].

• Flux measurement. The atoms are detected when they cross a given plane. We will

only consider the situation in which this plane is horizontal at z = H . One has access

to

G
(2)
fl. (r = {x, y, z = H}, t; r′ = {x′, y′, z′ = H}, t′) = 〈Î(r, t)Î(r′, t′)〉

where Î is the flux operator defined below. The detection systems required for such

experiments correspond most closely to those of Refs. [10, 15], in which a micro-

channel plate, situated below the trapped cloud, recorded the arrival times and in

one case the positions of the atoms. It also corresponds closely to imaging a cloud

that crosses a thin sheet of light [32], or to the experiment of Ref.[14], in which the

transmission of a high finesse optical cavity records atoms as they cross the beam.

These two correlation functions are different, but if the detection is performed after a long

time of flight, they are in fact nearly equivalent. This equivalence will be discussed in the

following.

The flux operator is defined quantum-mechanically by

Î(r, t) =
h̄

m
Im

[

Ψ̂†(r, t)∂zΨ̂(r, t)
]

=
h̄

2mi

[

Ψ̂†(r, t)∂zΨ̂(r, t) − ∂zΨ̂
†(r, t)Ψ̂(r, t)

]

The flux has thus the dimensions of a density times a velocity. We will give the explicit

expression of this velocity in the section IIB 4. Here, the atomic field operators Ψ̂(r, t)

depend on space coordinates as well as on time. They represent the time evolution of the

atomic field during the flight of the atoms, falling from the trap. The field operators for the

falling cloud can be easily derived if we assume that there are no interactions between the

atoms and that the occupation number in each mode is constant (as in free expansion). In

this case, these operators can be defined as

Ψ̂†(r, t) =
∑

j

ψ∗
j (r, t)â

†
j , Ψ̂(r, t) =

∑

j

ψj(r, t)âj

where the spatiotemporal dependence is carried by the wave function and the statistical

occupation by the creation and annihilation operators.
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2. Ballistic expansion of a harmonic oscillator stationary state

After switching off the trap, the harmonic oscillator wave-functions noted ψ0
j are no

longer stationary states. There are two ways to calculate the correlation after expansion:

propagation of wavefunctions or propagation of the density matrix (the Schrödinger or the

Heisenberg picture). In the following we will use the first approach which is physically more

transparent (see [33] for the Heisenberg picture).

The ballistic expansion of a cloud is easy to calculate with the appropriate Green function.

The Green function K is defined as

ψj(r, t) =
∫ ∞

−∞
dr0 K(r, t; r0, t0) ψ

0
j (r0, t0).

As the ψ0
j functions are stationary states for t < 0, we can take t0 = 0 in the following. The

Green function for particles in an arbitrarily time-varying quadratic potential is known [34].

After expansion, the potential is only due to gravity and the Green function is then

K(r, t; r0) =
(

m

2iπh̄t

)3/2

eia(r−r0)2eib(z+z0)e−ic

with a = m
2h̄t
, b = mgt

2h̄
and c = mg2t3

24h̄
.

One can then derive an analytical expression of ψj(r, t) [35, 36]:

ψj(r, t) = eiφ(r,t)
∏

α

eijα(δα+3π/2)

√
ωαt− i

ψ0
j (r̃) (5)

where δα = tan−1[ 1
ωαt

],

φ(r, t) =
m

2h̄t

[

(x̃ωxt)
2 + (ỹωyt)

2 + (z̃ωzt)
2 + 2gt2(z − 1

8
gt2)

]

− c− 3π

4
(6)

and, with r̃ = {x̃, ỹ, z̃},

x̃ =
x

√

1 + ω2
xt

2
, ỹ =

y
√

1 + ω2
yt

2
, z̃ =

H − 1
2
gt2

√

1 + ω2
zt

2
(7)

In the case of flux measurement, the position of the detector is fixed at z = H . The

phase φ(x̃, ỹ, t) is global as it does not depend on the index j; it will cancel in second

order correlation measurements. This is in contrast to interferometric measurements where

it is this phase that gives rise to fringes. The above results show that after release, the

wavefunction is identical to that in the trap except for a phase factor and a scaling factor

in the positions [37]. This scaling is obviously a property of a harmonic potential, and it

considerably simplifies the expression of the correlation functions as we will see below.
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3. Flux operator

Using ∂zHn(z) = 2nHn−1(z), the spatial derivative of the wavefunction can be written:

∂zψj(r, t) =
m

h̄

{

[iv2 − v1]ψjz(z, t) − iv3

√

jz ψjz−1(z, t)
}

ψjx(x, t)ψjy(y, t)

where the velocities v1 v2 and v3 are time dependent and are given by

v1(t) = ωz

H − 1
2
gt2

1 + ω2
zt

2
(8)

v2(t) =
1

t

[

H +
1

2
gt2 − H − 1

2
gt2

1 + ω2
zt

2

]

(9)

v3(t) =

√
2ωzσz

√

1 + ω2
zt

2
eiδz (10)

The velocity v2 is usually much larger than the other two and will give the dominant con-

tribution for the mean flux and the second order correlation function. An atom with zero

initial velocity will acquire after a time t a velocity gt which is close to v2(t). The flux

operator is,

Î(r, t) =
∑

j,k

[

v2ψ
∗
jψk − 1

2

(

v3

√
k ψ∗

j ψk−1z
+ v∗3

√

j ψ∗
j−1z

ψk

)]

â†j âk (11)

where j− 1z is the vector (jx, jy, jz − 1) and where we write ψ = ψ(r, t).

4. Mean density and mean flux

We will first calculate the mean density ρ(r, t) = 〈Ψ̂†(r, t)Ψ̂(r, t)〉. Using Eq.(5), one

finds easily that ρ(r, t) = 1
∏

α

√
1+ω2

αt2
ρeq(r̃). This means that the density has the same form

during expansion up to an anisotropic scale factor given by Eq.(7) [37, 38]. The statistical

average of Eq.(11) leads to

〈Î(r, t)〉 =
∑

j

[

v2|ψj|2 −
√
jz
2

(

v3ψ
∗
jz
ψjz−1 + v∗3ψjzψ

∗
jz−1

)

|ψjxψjy |2
]

〈â†j âj〉.

Because v3ψ
∗
jz
ψjz−1 = i |v3|√

1+ω2
zt2
ψ0

jz
(z̃)ψ0

jz−1(z̃) = −v∗3ψjzψ
∗
jz−1, the second term cancels out.

Then, without any approximation,

〈Î(r, t)〉 =
v2(t)

∏

α

√

1 + ω2
αt

2
ρeq(r̃) = v2(t)ρ(r, t)

12



The flux is proportional to the density of a cloud at thermal equilibrium with rescaled

coordinates. This means that the mean flux of an expanding non-interacting cloud is pro-

portional to the atomic density without any approximation. This results holds with and

without gravity taken into account.

5. Second order correlation

Here we calculate the correlation functions. A discussion is given in the next section.

The snap-shot correlation function is

G
(2)
im.(r, t; r

′, t) =
∑

j,k,l,n

ψ∗
j ψk × ψ′

l

∗
ψ′

n 〈â†j âkâ
†
l ân〉.

Using Eq.(5), one finds, without any approximation (except the neglect of the shot-noise

term):

G
(2)
im(r, t; r′, t) =

1
∏

α
(1 + ω2

αt
2)

(

ρeq(r̃)ρeq(r̃
′) + |G(1)(r̃, r̃′)|2 − ρ0(r̃)ρ0(r̃

′)
)

.

As in the case of the mean density, the snap-shot correlation function has the same form as

in the trap except for an anisotropic scale factor.

The calculation of G
(2)
fl. is similar:

〈Î(r, t)Î(r′, t′)〉 = −
(

h̄

2m

)2
∑

j,k,l,n

[ψ∗
j (∂zψk)− (∂zψ

∗
j )ψk]× [ψ′

l

∗
(∂zψ

′
n)− (∂zψ

′
l

∗
)ψ′

n] 〈â†j âkâ
†
l ân〉

Two major differences appear compared to the mean flux calculation: the terms in v3 and

the phase factor δα + 3π/2 in Eq.(5) do not cancel. This makes the exact calculation very

tedious. It is postponed to the appendix.

Experiments are usually performed in situations satisfying two conditions: (1) the width

of the cloud after expansion is much larger than that of the trapped cloud, and (2) the mean

velocity acquired during free fall is much larger than the velocity spread of the trapped

cloud. The first condition means that ωαt ≫ 1 and the second one that gt ≫
√

kBT/m.

The latter condition also means that the mean arrival time, t0 =
√

2H/g, is much larger

than the time width
√

kBT/mg2 of the expanding cloud. With these approximations the

scale factors become quite simple. x̃ ∼ x
ωxt0

, ỹ ∼ y
ωyt0

and z̃ ∼ H− 1
2
gt2

ωzt0
∼ g(t0−t)

ωz
. In particular,

the coordinate z̃ is proportional to the arrival time t. This means that in experiments that

13



measure arrival times, the results have the same form when expressed as a function of vertical

position.

In the correlation function of the flux, the above approximations also lead to v2 ≈
√

2gH

and |√jz v3/v2| ≈
√

kBT
h̄ωz

σz√
2H

= sz√
2H

where sz is the width of the cloud inside the trap and

where the typical value of the occupied trap level, jz, is ∼ kBT
h̄ωz

. The term containing v3 is

then very small compared to the one proportional v2. In Ref.[15] for instance the above

ratio is ∼ 10−5. We will neglect terms containing v3 in the following. The phase factors δα

in Eq.(5) are also very small since ωαt≫ 1 and can be neglected (see appendix VID 2).

Under all these approximations, one finds

G
(2)
fl. (r, t; r

′, t′) =
v2v

′
2

∏

α

√

(1 + ω2
αt

2)(1 + ω2
αt

′2)

(

ρeq(r̃)ρeq(r̃
′) + |G(1)(r̃, r̃′)|2 − ρ0(r̃)ρ0(r̃

′)
)

We again find the same correlation function as in the trap, rescaled by a slightly different

factor compared to G
(2)
im.. This factor simply reflects the expansion of the cloud between the

times t and t′.

The scaling laws for the harmonic potential result in a very simple expression for the

correlation lengths at the detector:

l(d)
α = l(t) ×

√

1 + (ωαt)2. (12)

Where l(d)
α is the correlation length along the α direction at the detector and l(t)α is the

correlation length in the trap. If the gas is far from degeneracy l(t) = λ√
2π

, and we recover

the result of Eq. 3. Close to degeneracy the correlation length is position dependent. In the

case of a pulse of atoms as in Ref. [15], this formula applies along all three space axes. In

addition, when making a flux measurement, one often expresses the longitudinal correlation

length as a correlation time. For a pulse of atoms from a harmonic trap, with a mean

velocity v at the detector, the correlation time is:

t(coh) =
l(d)
z

v
= l(t) × ωz

g
. (13)

It is independent of the propagation time as long as ωzt≫ 1.

These calculations are illustrated in the following figures. For simplicity we have used an

isotropic trapping potential. As pointed out above, the normalized second-order correlation

14



FIG. 1: (Color online) Two-body normalized correlation function at the trap center, g(2)(r̃, 0)

for 106 atoms as function of the position r̃ = r/ωt for various temperatures around transition

temperature. The horizontal axis is labelled in units of the size of the harmonic oscillator wave

function σ. The thick dashed line corresponds to the transition temperature T ∗ defined in Ref.[31]

and is 93.37 h̄ω/kB for 106 atoms. The temperature step is 0.4 h̄ω/kB . The thermal de Broglie

wavelength is ∼ 0.26 σ. The effect of the ground state population is clearly visible in the reduction

of g(2)(0, 0), and in the rapid flattening out of the correlation function slightly below T ∗.

functions g
(2)
im. and g

(2)
fl. are virtually identical with typical parameters (see appendix VIC)

and we will use the shorter notation g(2). In Fig. 1 we show the normalized correlation

function g(2)(r̃, 0) as a function of r̃ ∼ r/ωt for various temperatures in the vicinity the

Bose-Einstein phase transition T ∗. We use the saturation of the excited state population

to define T ∗ [31]. This is the correlation function at the center of the cloud. One sees that

at T = T ∗ (the thick dashed line in the figure), the correlation function at zero distance is

already significantly diminished compared to higher temperatures. The correlation length,

on the other hand, is larger than λωt/
√

2π. Also, one sees that the correlation function is

almost flat for temperatures a few percent below T ∗.

In many experiments of course, one does not measure the local correlation function,

but the correlation function averaged over all points in the sample [15]. The effect of this

averaging is shown in Fig. 2. We plot g(2)
m (r̃) =

∫

dR G(2)(R+r̃e,R)
∫

dR G(1)(R+r̃e,R+r̃e)G(1)(R,R)
where the vector

e is a unit vector in some direction. One sees that the amplitude of the correlation function
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FIG. 2: (Color online) Two-body normalized correlation function g
(2)
m (r̃) for 106 atoms as a function

of r̃. This function is an average of the two-body correlation function over the cloud. The conditions

are the same conditions as for Fig.1. Unlike Fig.1, the shape is always almost Gaussian and

converges more slowly to a flat correlation for low temperatures. This is because only a small

region around r̃ = 0 is fully sensitive to the quantum atomic distribution.

decreases more slowly, and that after averaging, the correlation length hardly varies as one

passes T ∗.

To illustrate how local the effects which distinguish Figs. 1 and 2 are, we also plot in

Fig. 3 the value of g(2)(r̃, r̃), the zero distance correlation function as a function of r̃ in

the vicinity of the cloud center. One sees that even below T ∗, the correlator is close to 2

at a rescaled distance of a few times the harmonic oscillator length scale. We can simply

interpret this effect by observing that at r̃ the effective chemical potential is µ−V (r̃). Away

from the center, the effective chemical potential is small and this part of the cloud can be

described as a Boltzmann cloud.

Before interpreting these results further, we recall some of our assumptions and their

possible violation. First, we obtain Eq.(12) if we make a semi classical approximation

assuming that kBT greatly exceeds the energy spacing in the trap in each dimension of

space. In an anisotropic trap, this condition can be violated in one or two dimensions and

then correlation length along these directions will be larger and can become infinite for a

small enough temperature. Second, we have assumed a non-interacting gas throughout.
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FIG. 3: (Color online) Two-body normalized correlation function g(2)(r̃, r̃) for 106 atoms as function

of r̃. The conditions are the same as for Fig.1. Even for T < T ∗ the correlation goes to 2 far from

the center. This is due to the finite spatial extent of the condensate. It can also be understood

in terms of the chemical potential µ(r̃) which, in a local density approximation, decreases as r̃

increases and thus the correlation is equivalent to that of a hotter cloud.

Repulsive interactions inflate the trapped cloud, and thus reduce the length l(d) at the

detector. We expect this to be the main effect for atomic clouds above the Bose-Einstein

transition threshold, where the effects of atomic interactions are typically small. The reduc-

tion is typically a few percent. Even slightly below T ∗, the condensate density is quite high,

expelling the thermal atoms from the center of the trap. The effects of interactions inside

the trap and during the cloud’s expansion cannot be neglected. Taking them into account

is then complex and beyond the scope of this paper.

III. PHYSICAL INTERPRETATIONS

The main result of this paper is that in an experiment which averages over a detector

in the sense of Fig. 2, even at T = T ∗, the correlation lengths at the detector are well

approximated by:

l(d)
α = l(t) × ωαt
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The correlation length increases linearly with the time of flight. A simple way to understand

this result is to consider the analogy with optical speckle. Increasing the time of flight

corresponds to increasing the propagation distance to the observation plane in the optical

analog. The speckle size, i.e. the correlation length, obviously increases linearly with the

propagation distance. Another way to understand the time dependence is to remark that

after release, the atomic cloud is free and the phase space density should be constant. Since

the density decreases with time as
∏

α
(ωαt) and the spread of the velocity distribution is

constant, the correlation volume must increase by the same factor [25].

Yet another way to look at the correlation length is to observe that, far from degeneracy,

the correlation length inside the trap is the thermal de Broglie wavelength, that is, λ√
2π

=

h̄/∆p where ∆p = m∆v is the momentum width of the cloud. By analogy, after expansion,

the correlation length is h̄/(∆p)loc, where (∆p)loc is the “local” width of the momentum

distribution. As the pulse of atoms propagates, fast and slow atoms separate, so that at a

given point in space the width in momentum is reduced by a factor sα

∆vt
.

For a continuous beam, the formula (12) only applies in the transverse directions. In

the longitudinal direction, an argument in terms of a local thermal de Broglie wavelength

can be used to find the coherence length or time. If the atoms travel at velocity v without

acceleration, the momentum spread and correlation length remain constant. Defining the

energy width of the beam as ∆E = mv∆v, one finds a correlation time λ/v = h̄/∆E [7]. In

the presence of an acceleration such as gravity, the momentum spread of the beam decreases

(the energy spread at any point ∆E is constant), which increases the correlation length.

The correlation time, however, remains h̄/∆E [10].

The result that the coherence length of a cloud of atoms can vary with the distance of

propagation, is in apparent contradiction with the results of Refs. [39, 40]. Those papers give

convincing reasons, both experimental and theoretical, for why the dispersion associated with

the propagation of massive particles should not result in an increase of the coherence length.

The contradiction is resolved by noting that the Mach-Zender interferometer considered in

that work is sensitive to the function f(r, t) =
∫

dR G(1)(R, t;R + r, t). If the Hamiltonian

commutes with the momentum operator, i.e. if plane waves are stationary states, one can

easily demonstrate that the function f and hence its width are independent of the time t.

The experiments we analyze are sensitive to the modulus of G(1) whose width will always

increase with time. Thus the coherence length can depend on the interferometer as well as
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the source.

The role of the acceleration of gravity in these experiments is minor. It governs the prop-

agation time and the speed of the particles when they reach the detector. In a pulsed beam,

gravity has no effect on the correlation length, although it does affect the correlation time.

It also renders the rescaling of the z coordinate linear for large times so that the correlation

function in position z and time have the same form. Without gravity (cancellation with a

magnetic field gradient for example), a pulse of atoms would take longer to reach the detec-

tor, thereby giving the correlation length more time to dilate, and in addition they would

hit the detector at a lower velocity. The correlation time would then increase with time and

its order of magnitude would be λωt0
vT

= h̄ω
kBT

t0 where vT =
√

kBT
m

is the thermal velocity and

t0 = vT/H is the time of flight to the detector.

IV. EFFECT OF FINITE DETECTOR RESOLUTION

In the preceding sections, the detector was considered ideal, i.e. with arbitrarily good

spatial and temporal resolution. Here we will consider a model of a more realistic detector,

in which we suppose that the spatial resolution in the x− y plane is Gaussian. This is often

the case due to smearing in pixels [13, 16] and is also approximately true in Ref. [15]. To

simplify the discussion we will restrict our analysis to the case T ≫ T ∗ and use a Maxwell-

Boltzmann distribution rather than Bose-Einstein distribution. In this case, each direction

of space is independent and we will only consider one direction at a time in the following.

There are three different scales in the problem: the size of the cloud at the detector

s(t) ≈
√

kBT
m

t, the correlation length at the detector l(d) and the r.m.s. width of the

detector resolution function d. The definition of the resolution function is that for a density

ρ(x) = Ae
− x2

2s(t)2 , the observed density is given by a convolution:

ρobs(x) =
∫

dx0ρ(x0)
e−

1
2
(

x−x0
d

)2

√
2πd

=
A

√

1 + d2/s(t)2
e
− x2

2[s(t)2+d2] .

Similarly if G(1)(x, x′) = Aeiφe
− (x+x′)2

2(2s)2 e
− (x−x′)2

2(l(d))2 is the first order correlation function and

G
(1)
obs(x, x

′) the observed one, we have

|G(1)
obs(x, x

′)|2 =
∫

dx0dx
′
0|G(1)(x0, x

′
0)|2

e−
1
2
(

x−x0
d

)2

√
2πd

e−
1
2
(

x′−x′0
d

)2

√
2πd

(14)
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=
|A|2

√

(1 + d2/s2(t))(1 + 4d2/(l(d))2)
e
− (x+x′)2

4[s(t)2+d2]e
− (x−x′)2

(l(d))2+4d2 (15)

Consequently, with α = x, y and z:

• The amplitude of the normalized correlation function becomes

g
(2)
obs(0, 0) =

(

G
(1)
obs

(0,0)

ρobs(0)

)2

= 1 +
∏

α

√

1+d2
α/s2

α(t)

1+4d2
α/(l

(d)
α )2

.

• The observed widths of the cloud are sα(t) →
√

s2
α(t) + d2

α.

• The observed correlation lengths are l(d)
α →

√

(l
(d)
α )2 + (2dα)2. The factor 2 can be

understood as
√

2 ×
√

2 where the first term comes from the fact that dα is defined

for one particle and not for a pair of particles and the second one comes from the fact

that the correlation length is not defined as an r.m.s. width.

In the experiment of Ref. [15] the trapped cloud had a cigar shape. At the detector the

cloud was spherical but the correlation volume was anisotropic with l(d)
x ≪ d ≈ l(d)

y /4. In

the third (vertical) direction, the resolution width was much smaller than any other length

scale. The observed contrast of the correlation function was therefore approximately, l
(d)
x

2d
.

V. CONCLUSION

The most important conclusion of this paper is that the expansion of a non-interacting

cloud from a harmonic trap in thermal equilibrium, admits a rather simple, analytical treat-

ment of the time variation of the density and the correlation functions. In such a pulse

of atoms, correlation lengths scale in the same way as the size of the density profile. The

agreement with experiment indicates that the neglect of interactions is a good approxima-

tion above the BEC transition temperature. An important next step however, is to examine

interaction effects so that the next generation of experiments, which will be more precise

and better resolved, can be fully interpreted.
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VI. APPENDIX

A. Explicit expression of the flux correlation function

We found in section IIB, the following expression for the flux operator:

Î(r, t) =
∑

j,k

[

v2ψ
∗
j ψk − 1

2

(

v3

√
kψ∗

j ψk−1z
+ v∗3

√

jψ∗
j−1z

ψk

)]

â†j âk

where j− 1z is the vector (jx, jy, jz − 1) and where we write ψ = ψ(r, t).

The second order correlation function for the flux is then,

〈Î(r, t)Î(r′, t′)〉 =
∑

j,k,l,n

[

v2ψ
∗
jψk − 1

2

(

v3

√
kzψ

∗
j ψk−1z

+ v∗3
√
jzψ

∗
j−1z

ψk

)]

×
[

v′2ψ
′∗
lψ

′
n − 1

2

(

v′3
√
nzψ

′∗
lψ

′
n−1z

+ v′∗3
√
lzψ

′∗
l−1z

ψ′
n

)]

〈â†j âkâ
†
l ân〉

Neglecting the shot-noise and ground-state contributions, this leads to

〈Î(r, t)Î(r′, t′)〉 = 〈Î(r, t)〉〈Î(r′, t′)〉 + Re(A)

with

A =
∑

j,l
[v2v

′
2 ψ

∗
jψ

′
jψlψ

′∗
l + 1

2
v3v

′
3

√
jzlz ψ

∗
jψ

′
j−1z

ψl−1z
ψ′∗

l + 1
2
v3v

′∗
3 lz ψ

∗
jψ

′
jψl−1z

ψ′∗
l−1z

−v2v
′
3

√
jz ψ

∗
j ψ

′
j−1z

ψlψ
′∗
l − v′2v3

√
lz ψ

∗
j ψ

′
jψl−1z

ψ′∗
l ]〈â†j âj〉〈â†l âl〉

We write A =
5
∑

i=1
Ti where the Ti terms can be recast, using tan δα = 1/ωαt, tan δ′α = 1/ωαt

′,

∆α = δ′α − δα,
∑

α
jα(δ′α − δα) = j.∆, ψ0

l = ψ0
l (r̃) and ψ′0

l = ψ0
l (r̃

′).

• T1 = v2v
′
2

∑

j,l
ψ∗

jψ
′
jψlψ

′∗
l 〈â†j âj〉〈â†l âl〉

=
v2v′2

∏

α

√
(1+ω2

αt2)(1+ω2
αt′2)

∑

j,l
ψ0

jψ
′0
jψ

0
l ψ

′0
l e

i
∑

α

(jα−lα)(δ′α−δα)

〈â†j âj〉〈â†l âl〉

=
v2v′2

∏

α

√
(1+ω2

αt2)(1+ω2
αt′2)

∣

∣

∣

∣

∣

∑

j

ψ0
jψ

′0
j e

ij.∆〈â†j âj〉
∣

∣

∣

∣

∣

2

• T2 = 1
2
v3v

′
3

∑

j,l

√
jzlz ψ

∗
jψ

′
j−1z

ψl−1z
ψ′∗

l 〈â†j âj〉〈â†l âl〉

= −1
2

|v3v′3|
∏

α

√
(1+ω2

αt2)(1+ω2
αt′2)

(

∑

j

√
jzψ

0
j ψ

′0
j−1z

eij.∆〈â†j âj〉
)

(

∑

l

√
lzψ

0
l−1z

ψ′0
l e

−il.∆〈â†l âl〉
)
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• T3 = 1
2
v3v

′∗
3

∑

j,l
lz ψ

∗
jψ

′
jψl−1z

ψ′∗
l−1z

〈â†j âj〉〈â†l âl〉

= 1
2

|v3v′3|
∏

α

√
(1+ω2

αt2)(1+ω2
αt′2)

(

∑

j

ψ0
jψ

′0
j e

ij.∆〈â†j âj〉
)

(

∑

l

lzψ
0
l−1z

ψ′0
l−1z

e−il.∆〈â†l âl〉
)

• T4 = −v2v
′
3

∑

j,l

√
jz ψ

∗
jψ

′
j−1z

ψlψ
′∗
l 〈â†j âj〉〈â†l âl〉

= −i v2|v′3|
∏

α

√
(1+ω2

αt2)(1+ω2
αt′2)

(

∑

j

√
jzψ

0
jψ

′0
j−1z

eij.∆〈â†j âj〉
)

(

∑

l

ψ0
l ψ

′0
l e

−il.∆〈â†l âl〉
)

• T5 = −v′2v3
∑

j,l

√
lz ψ

∗
j ψ

′
jψl−1z

ψ′∗
l 〈â†j âj〉〈â†l âl〉

= −i v′2|v3|
∏

α

√
(1+ω2

αt2)(1+ω2
αt′2)

(

∑

j

ψ0
j ψ

′0
j e

ij.∆〈â†j âj〉
)

(

∑

l

√
lzψ

0
l−1z

ψ′0
l e

−il.∆〈â†l âl〉
)

The term T1 is a real number which is not the case for T2, T3, T4 and T5.

B. Calculation for harmonic oscillator stationary states

All the above terms can be calculated analytically. All the series are identical in the

direction x and y. We are then left with the calculation of three series in only one direction:

•
∞
∑

n=0

√
nψ0

n−1(z̃)ψ
0
n(z̃′)e−nu

•
∞
∑

n=0

√
nψ0

n(z̃)ψ0
n−1(z̃

′)e−nu

•
∞
∑

n=0
nψ0

n−1(z̃)ψ
0
n−1(z̃

′)e−nu

The function gu(z̃, z̃
′) =

∞
∑

n=0
ψ0

n(z̃)ψ0
n(z̃′)e−nu is known [17, 29] and its expression is gu(z̃, z̃

′) =

1

σ
√

π(1−e−2u)
exp[− tanh(u

2
)
(

z̃+z̃′

2σ

)2 − coth(u
2
)
(

z̃−z̃′

2σ

)2
].

Using z̃ψ0
n(z̃) = σ√

2
〈z̃|â+ â†|ψ0

n〉 = σ√
2
[
√
nψ0

n−1(z̃) +
√
n+ 1ψ0

n+1(z̃)], one finds

z̃gu(z̃, z̃
′) =

σ√
2
[
∑√

nψ0
n−1(z̃)ψ

0
n(z̃′)e−nu + eu

∑√
nψ0

n(z̃)ψ0
n−1(z̃

′)e−nu].

It follows easily that

•
∞
∑

n=0

√
nψ0

n−1(z̃)ψ
0
n(z̃′)e−nu =

√
2

σ
z̃−euz̃′

1−e2u gu(z̃, z̃
′)

•
∞
∑

n=0

√
nψ0

n(z̃)ψ0
n−1(z̃

′)e−nu =
√

2
σ

z̃′−euz̃
1−e2u gu(z̃, z̃

′)

Moreover,
∞
∑

n=0
nψ0

n−1(z̃)ψ
0
n−1(z̃

′)e−nu = e−u[gu(z̃, z̃
′) − ∂ugu(z̃, z̃

′)]. Then,

•
∞
∑

n=0
nψ0

n−1(z̃)ψ
0
n−1(z̃

′)e−nu = [ 1
1−e−2u + 1

2
( z̃+z̃′

2σ cosh u
2
)2 − 1

2
( z̃−z̃′

2σ sinh u
2
)2]e−ugu(z̃, z̃

′)
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C. Explicit expression of the flux correlation function-Part II

We define G
(1)
B (r, r′,u) =

∞
∑

n
ψ0

n(r)ψ0
n(r′)e−nu. This function, the 3D equivalent of

the function gu, is connected to the one-body correlation function by G(1)(r, r′) =
∞
∑

l=1
eβlµ̃G

(1)
B (r, r′, lτ ) with τα = βh̄ωα.

Then,

• T1 =
v2v′2

∏

α

√
(1+ω2

αt2)(1+ω2
αt′2)

∣

∣

∣

∣

∑

l
eβlµ̃G

(1)
B (r̃, r̃′, lτ − i∆)

∣

∣

∣

∣

2

• T2 = −1
2

|v3v′3|
∏

α

√
(1+ω2

αt2)(1+ω2
αt′2)

(

∑

l
eβlµ̃

√
2

σ
z̃−elτz−i∆z z̃′

1−e2(lτz−i∆z) G
(1)
B (r̃, r̃′, lτ − i∆)

)

×
(

∑

k
eβkµ̃

√
2

σ
z̃′−ekτz+i∆z z̃
1−e2(kτz+i∆z) G

(1)
B (r̃, r̃′, kτ + i∆)

)

• T3 = 1
2

|v3v′3|
∏

α

√
(1+ω2

αt2)(1+ω2
αt′2)

(

∑

l
eβlµ̃G

(1)
B (r̃, r̃′, lτ − i∆)

)

×
(

∑

k
eβkµ̃[ 1

1−e−2(kτz+i∆z) + 1
2
( z̃+z̃′

2σ cosh kτz+i∆z
2

)2 − 1
2
( z̃−z̃′

2σ sinh kτz+i∆z
2

)2]e−(kτz+i∆z)G
(1)
B (r̃, r̃′, kτ + i∆)

)

• T4 = −i v2|v′3|
∏

α

√
(1+ω2

αt2)(1+ω2
αt′2)

(

∑

l
eβlµ̃

√
2

σ
z̃−elτz−i∆z z̃′

1−e2(lτz−i∆z) G
(1)
B (r̃, r̃′, lτ − i∆)

)

×
(

∑

k
eβkµ̃G

(1)
B (r̃, r̃′, kτ + i∆)

)

• T5 = −i |v3|v′2
∏

α

√
(1+ω2

αt2)(1+ω2
αt′2)

(

∑

l
eβlµ̃ G

(1)
B (r̃, r̃′, lτ − i∆)

)

×
(

∑

k
eβkµ̃

√
2

σ
z̃′−ekτz+i∆z z̃
1−e2(kτz+i∆z) G

(1)
B (r̃, r̃′, kτ + i∆)

)

The dominant term is T1 and is the one used in section IIB 5.

D. Contribution of neglected terms in the correlation of the flux

Here we evaluate the neglected the terms T2 to T5 and the shot-noise contribution. They

will be evaluated in the case of clouds far above BEC threshold. Under this assumption, all

the functions are separable in the variables x, y and t and the summation over the index l

in the previous equations reduces to the single term l = 1.
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1. Shot-noise contribution

Using the above analysis one can show that the main term is still proportional to v2v
′
2.

The additional term is then,

v2v
′
2

∏

α

√

(1 + ω2
αt

2)(1 + ω2
αt

′2)
eβµ̃G

(1)
B (r̃, r̃′, τ − i∆)G

(1)
B (r̃, r̃′, i∆)

For t = t′, ∆ = 0 and G
(1)
B (r̃, r̃′, 0) = δ(r̃ − r̃′). The shot-noise term is then

v2
2

∏

α
(1 + ω2

αt
2)
ρeq(r̃)δ(r̃ − r̃′)

As expected, this term corresponds also to the one at equilibrium with rescaled coordi-

nates.

2. T2 − T5 contribution

We have G
(2)
fl. (r, t; r

′, t′) = 〈Î(r, t)Î(r′, t′)〉 = 〈Î(r, t)〉〈Î(r′, t′)〉 + Re(A) where A =
5
∑

i=1
Ti

• Case t = t′.

– ∆ = 0,

– then T1 =
v2v′2

∏

α

√
(1+ω2

αt2)(1+ω2
αt′2)

∣

∣

∣G(1)(r̃, r̃′)
∣

∣

∣

2
, T2 and T3 are real number and

Re(T4) = Re(T5) = 0.

– One finds, to leading orders,

g(2)(0, 0, t; 0, 0, t) − 2 ≈ 1
8

(

sz

H

)2
(1 − 2 t−t0

t0
)(1 − τ2

z

6
) where sz is the initial size of

the cloud in the vertical direction and t0 =
√

2H/g.

– The deviation from 2 is extremely small in the experimental conditions of [15]

(∼ 10−11) but shows that the bunching is strictly speaking not 2 at the center.

This behavior is expected for any flux correlation function of dispersive waves

[41].

– The correlation lengths at the detector are not modified by the additional terms.

• Case t 6= t′.
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– The correlation function can be written as

g(2)(0, 0, t; 0, 0, t′) = 1 +
|G(1)

B (̃r,̃r′,τ+i∆)|2

G
(1)
B (̃r,̃r,τ )G

(1)
B (̃r′ ,̃r′,τ )

[1 + ǫ].

– where
|G(1)

B (̃r,̃r′,τ+i∆)|2

G
(1)
B (̃r,̃r,τ )G

(1)
B (̃r′ ,̃r′,τ )

≈ e
−
(

t−t′

t(coh)

)2

(1− τ2
z
6

)[1−(
t+t′−2t0

t0
)]

and

– ǫ ≈ 1
8

(

wz

H

)2
[1 − ( t+t′−2t0

t0
)](1 − τ2

z

6
) − 3

2(ωzt0τz)2

(

t−t′

t0

)2
(1 + τz

3
).

We have neglected terms in τz, (t− t0)3, (t′− t0)3, (t− t0)2(t′− t0), (t− t0)(t′− t0)2

and higher orders.

– The value of ǫ is extremely small (∼ 10−10) using Ref.[15]. The deviation from

e
−
(

t−t′

t(coh)

)2

is mainly due to the mean time (t + t′)/2 contribution and changes

the value of the correlation time in the wings of the time-of-flight by ∼ 3 %. The

effect of the phase factor ∆ is negligible.
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