
HAL Id: hal-00080644
https://hal.science/hal-00080644v3

Preprint submitted on 25 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Running Tree Automata on Trees and/or Dags
Barbara Fila, Siva Anantharaman

To cite this version:
Barbara Fila, Siva Anantharaman. Running Tree Automata on Trees and/or Dags. 2006. �hal-
00080644v3�

https://hal.science/hal-00080644v3
https://hal.archives-ouvertes.fr

Running Tree Automata on Trees and/or Dags

Barbara Fila

LIFO, Université d’Orléans (France), e-mail: fila@univ-orleans.fr

Siva Anantharaman

LIFO, Université d’Orléans (France), e-mail: siva@univ-orleans.fr

Abstract

We define tree/dag automata as extensions of (unranked) tree automata which can run indifferently on trees or
dags, in a bottom-up style. The runs of such an automaton A on any tree or dag t are defined by assigning states
not only to the nodes of t but also to its edges. Runs are so defined that A accepts t if and only if it accepts the
tree t̂ obtained by unfolding t, as a tree automaton running t̂, in the usual sense.

Keywords: Automata, Trees, Dags. Determinism.

1. Introduction

Several algorithms have been optimized in the
past, by using structures over dags instead of over
trees. Tree automata are widely used for querying
XML documents (e.g., [7,8,12,13]); on the other
hand, the notion of a compressed XML document
has been introduced in [2,6,11], and a possible ad-
vantage of using dag structures for the manipula-
tion of such documents has been brought out in
[11]. It is legitimate then to investigate the possi-
bility of using automata over dags instead of over
trees, for querying compressed XML documents.

Dag automata (DA) were first introduced and
studied in [3]; a DA was defined there as a natural
extension of tree automaton, i.e. as a bottom-up
tree automaton running on dags; and the language
of a DA was defined as the set of dags that get
accepted under (bottom-up) runs, defined in the
usual sense; the emptiness problem for DAs was
shown there to be NP-complete, and the mem-

bership problem proved to be in NP; but the
problem of stability under complementation of the
class of dag automata –closely linked with that of
determinization– was left open. These two issues
have since been settled negatively in [1], where
it was observed that a deterministic DA runs
(bottom-up) exactly alike on trees or dags, but this
is no longer true for non-deterministic DAs; it was
also shown there that the set of all terms (trees)
represented by the set of dags accepted by a non-
deterministic DA is not necessarily a regular tree
language. A consequence is that the class of tree
languages recognized by DAs as sets of accepted
dags, is a strict superclass of the class of regu-
lar tree languages. It is well-known however, that
answers to MSO-definable queries on (semi-)struc-
tured trees form regular tree languages ([15]). It
is thus necessary to define the languages of DAs
in a manner different from that of [3,1], if they
are to serve as tools for analyzing and querying
a document, independently of whether it is given

1

in a partially or fully compressed format, or as a
tree. Our aim in this work is therefore to redefine
the notion of the language of a DA suitably, with
such an objective.

For achieving that, we first present the notion of
a compressed document, as a tree/dag (trdag, for
short) designating a directed acyclic graph which
may be partially or fully compressed. The termi-
nology trdag has been chosen to distinguish it from
that of tdag employed in [1]; this latter term will
designate in this paper a fully compressed docu-
ment. A Tree/Dag automaton (TDA, for short)
is then defined as an automaton which runs on
trdags. The essential differences with the DAs of
[1] are as follows: (i) our TDAs can be unranked,
and (ii) although the transition rules of a TDA look
quite like those of the DAs in [1], or those of TAs, a
run of a TDA on any given trdag t will carry with
it not only assignments of states to the nodes of t,
but also to the edges of t. Runs will be so defined
that a TDA accepts any given trdag t if and only
if it accepts the tree t̂ obtained by uncompressing
t, as a tree automaton running on the tree t̂ in the
usual sense. It follows that for a TDA, the empti-
ness problem is decidable in time P , and the uni-
form membership problem in time NP .

2. Tree/Dag Automata

Definition 1 A tree/dag (trdag for short) over a
not necessarily ranked alphabet Σ is a rooted dag
(directed acyclic graph) t = (Nodes(t), Edges(t)),
where, for any u ∈ Nodes(t):

- u has a name namet(u) = name(u) ∈ Σ;
- the edges going out of any node are ordered;
- and if name(u) is ranked, then the number of

outgoing edges at u is the rank of name(u).

Given any node u on a trdag t, the notion of the
sub-trdag of t rooted at u is defined as usual, and is
denoted as t|u. If v is any node, γ(v) = u1 . . . un will
denote the string of all its not necessarily distinct
children nodes; for every 1 ≤ i ≤ n, the i-th outgo-
ing edge from v to its i-th child node ui ∈ γ(v) will

be denoted as e(v, i); we shall also write then v
i

−→
ui; the set of all outgoing (resp. incoming) edges
at any node v will be denoted as Outv(t), or Outv
(resp. Inv(t), or Inv); and for any node u, we set:

Parents(u) = {v ∈ Nodes(t) | u is a child of v}.
A trdag t will be said to be a tree iff for ev-

ery node u on t other than the root, Parents(u)
is a singleton. For any trdag t, we define the
set Pos(t) as the set of all the positions post(u)
of all its nodes u, these being defined recur-
sively, as follows: if u is the root node on t, then
post(u) = ǫ, otherwise, post(u) = {α.i | α ∈
post(v), v is a parent of u, u is an i-th child of v}.
The set Pos(t) consists of (some of the) words

over natural integers. To any edge e : u
i

−→ v

on a trdag t, is naturally associated the subset
post(e) = post(u).i of Pos(t).

The function namet is extended naturally to
the positions in Pos(t) as follows: for every u ∈
Nodes(t) and α ∈ post(u), we set namet(α) =
namet(u). Given a trdag t, we define its tree-
equivalent as a tree t̂ such that: Pos(t̂) = Pos(t),
and for every α ∈ Pos(t), we have namet(α) =
namet̂(α). It is immediate that t̂ is uniquely de-
termined up to a tree isomorphism; it can actually
be constructed canonically (cf. [6]), by taking for
nodes the set Pos(t), and for directed edges the
set {(α, α.i) | α, α.i ∈ Pos(t)}, each node α being
named with namet(α). There is then a natural,
name preserving, surjective map from Nodes(t̂)
onto Nodes(t); it will be referred to in the sequel
as the compression map, and denoted as c.

A trdag is said to be a tdag, or fully compressed,
iff for any two different nodes u, u′ on t, the two
sub-dags t|u and t|u′ have non-isomorphic tree-
equivalents; otherwise, the trdag is said to be par-
tially compressed when it is not a tree. E.g., the
tree to the left of Figure 1 is the tree-equivalent of
the partially compressed trdag to the right, and of
the fully compressed tdag to the middle.

We define now the notion of a Tree/Dag automa-
ton, first over a ranked alphabet Σ, to facilitate un-
derstanding. The definition is then easily extended
to the unranked case.

Definition 2 A Tree/Dag automaton (TDA,
for short) over a ranked alphabet Σ is a tuple
(Σ, Q, F, ∆), where Q is a finite non-empty set of
states, F ⊆ Q is the set of final (or accepting)
states, and ∆ is a set of transition rules of the
form: f(q1, ..., qk) → q, where f ∈ Σ is of rank k,
and q1, . . . , qk, q ∈ Q.

2

 Compressed

 Tree
Compressed
 Partially

f

a a b a

f

a a abb

f

 Fully

Fig. 1. A tree, tdag, trdag

It will be convenient to write the transition rules
of a TDA in a different (but equivalent) form: a
transition of the form f(q1, . . . , qk) → q is also
written as (f, q1 . . . qk) → q, where q1 . . . qk is seen
as a word in Q∗, of length = rank(f) in the ranked
case. The notion of a TDA is then extended eas-
ily to the unranked case, i.e., where the signature
symbols naming the nodes are not assumed to be
of fixed rank: it suffices to define the transitions to
be of the form (f, ω) → q, where ω ∈ Q∗; we may
assume wlog that ω is a ‘∗’-regular expression on
Q not involving ‘+’, by replacing any rule of the
form (f, ω + ω′) → q, by the two rules (f, ω) →
q, (f, ω′) → q.

A TDA is said to be bottom-up deterministic
iff whenever there are two transition rules of the
form (f, ω) → q, (f, ω′) → q′, with q 6= q′, we
have necessarily ω ∩ ω′ = ∅; otherwise it is said to
be non-deterministic. We also agree to denote the
transitions of the form (f, ∅) → q simply as f → q,
and refer to them as initial transitions.

For defining the notion of runs of TDAs on a
trdag in a bottom-up style, we need some pre-
liminaries. Let A be a TDA with state set Q

and transition set ∆. Suppose t is a trdag and
assume given a map M : Edges(t) → Q. If u is
any node on t with u1 . . . un as the string of all
its (not necessarily distinct) children, the string
M(e(u, 1)) . . .M(e(u, n)), formed of states as-
signed by M to the outgoing edges at u, will be
denoted as M(Outu). We then define, recursively
in a bottom-up style, a binary relation at u on
the states of Q, with respect to (w.r.t. or wrt, for
short) the given map M ; this relation, denoted as
⊳M

u = ⊳u, is defined as follows:

Definition 3 Let A, t, M be as above, and u any
given node on the trdag t.
• If u is a leaf with name(u) = a , then q ⊳u q′ iff

whenever a → q ∈ ∆ we also have a → q′ ∈ ∆;
• otherwise q ⊳u q′ iff:
(i) (name(u), M(Outu)) → q is an instance of

a transition rule in ∆; i.e., ∆ has a rule
(name(u), ω) → q such that M(Outu) is in ω;

(ii) there exists a map σq′ : Q → Q, such that:
- σq′(q) = q′, and the rule

(name(u), σq′(M(Outu))) → q′ is also
an instance of a transition rule in ∆;

- for any edge e : u
i

−→ u′ ∈ Outu,
we have: M(e) ⊳u′ σq′(M(e)).

Definition 4 Let A = (Σ, Q, F, ∆) be any given
TDA, and t any given trdag. A run of A on t is
a pair (r, M), where r : Nodes(t) → Q and M :
Edges(t) → Q are maps such that the following
conditions hold, at any node u on t:

(1) if name(u) = f , then the rule (f, M(Outu)) →
r(u) is an instance of a transition rule in ∆;

(2) there is an incoming edge e ∈ Inu with
M(e) = r(u); and for every e′ ∈ Inu such that
M(e′) = q′ 6= q = r(u), we have q ⊳M

u q′

A run (r, M) is accepting on a trdag t iff r(ǫ) ∈
F , i.e, r maps the root-node of t to an accepting
state. A trdag t is accepted by a TDA iff there is an
accepting run on t. The language of a TDA is the
set of all trdags that it accepts, up to bisimulation.

Remark 1. i) Note that if t is a tree, then Inu is
singleton at every non-root node u on t, so a run
(r, M) of any TDA on t can be identified with its
first component r; we get then the usual notion of
runs of tree automata on trees.

Example 1. Over the unranked signature {a, f, g}

3

consider a TDA A, with the following transitions:

a → p, b → q′, b → p, b → q,
(a, p) → q, (a, q) → p, (a, q′) → q,
(g, q Q∗) → q, (g, p q) → p,
(f, q p q) → qfin, (f, p Q∗) → qfin,

with Q = {p, q, q′, qfin}, and qfin as the unique
accepting state. An accepting bottom-up run of A
on a tdag is depicted on the left of Figure 2, and
on its right, the “same” run as seen on the tree
equivalent of the tdag.

fin

p

f

g

b

q
fin

q

q

q

ap

p

p

q

q

a

b

gp

q

p

q g

p

a

b

q p b

qb

bq

f
q

Fig. 2. A bottom-up accepting run of the TDA of Example
1 on a trdag, and the same seen on its tree equivalent.

A few comments on the above run may be of help
(the nodes here have distinct names, so we may
refer to them by using symbol names): we start
with assigning state q to the leaf node b, under
r; the assignments of state q under M to all the
incoming edges at this node b poses no problem; we
can then assign state p to node a, and subsequently
also p to the node g, under r, via the transition rule
(g, pq) → p of the TDA; we then assign p under
M to the first incoming edge at g; to assign state
q under M to the second incoming edge at g, we
just need to check that:

- for a map σ : Q → Q such that σ(p) = q, σ(q) =
p, the rule (g, σ(p)σ(q)) → q is an instance of a
transition rule of the TDA;

- for the outgoing edge g → a, labeled with p by
M , we do have p ⊳a q = σ(p) at a; and

- for the outgoing edge g → b, labeled with q by
M , we do have q ⊳b p = σ(q) at b;

reaching qfin at the root-node is trivial via the last
transition rule. (Note that we could have as well

assigned p under M to the second incoming edge
at g, with no conditions to check, then reach qfin.)

Remark 1 (contd.) ii) Unlike the DAs of [3] or [1],
the following bottom-up non-deterministic TDA:
a → q1, a → q2, f(q1, q2) → qa, with q0, q1, qa

as states and qa as the accepting state, has a non-
empty language: as a TDA it accepts f(a, a).

For a deterministic TDA, we have the following
result (as expected):

Proposition 1 Let A be a bottom-up determinis-
tic TDA, and t any given trdag; then there is at
most one run of A on t.

Proof: Let Q be the set of states of A, and M :
Edges(t) → Q any given map assigning states to
the edges on t. We shall show by induction that
the hypothesis of determinism on A implies that,
at any node u on t, the binary relation ⊳M

u = ⊳u

defined above (Definition 3), wrt the map M , is the
identity relation on the set Q. The proposition will
then follow from conditions (1) and (2) on runs,
cf. Definition 4; we will get, in particular, that for
every incoming edge e at u, M(e) must be the same
as r(u); so the run can actually be identified with
its first component r (as on a tree).

The induction will be on a non-negative integer
du –that we define at any node u of t, and refer to
as its height on t– as the maximal number of arcs
on t from u to the leaf nodes. If du = 0, then u is
a leaf node; that ⊳u is the identity relation on Q in
this case is immediate, from the determinism of A,
and the definition of ⊳u. So, assume that du > 0,
and let v1 . . . vn be the string of all the children
nodes of u on t. By the inductive hypothesis, for
every i, 1 ≤ i ≤ n, the relation ⊳vi

is identity; it
follows then, from the conditions (i) and (ii) on
the relation ⊳u (Definition 3), that this latter must
also be the identity relation on Q. 2

We may now formulate the principal result of
this paper:

Proposition 2 i) A TDA accepts a trdag t if and
only if it accepts the tree equivalent of t.

ii) The emptiness problem for a TDA is decidable
in time P w.r.t. its number of states.

iii) The uniform membership problem for a TDA
is decidable in time NP (resp. time P) w.r.t. its
number of states, and the number of edges (resp.

4

and the number of positions) on the given trdag.
Proof: Let t̂ be the tree equivalent of the trdag t,

and c the natural surjective compression map from
Nodes(t̂) onto Nodes(t).

Property i): For proving the ‘only if’ part, one
uses the following reasoning, coupled with induc-
tion on the height function at the nodes of t (de-
fined in the proof of the previous proposition): Let
(r, M) be an accepting run of the given TDA on
the trdag t; consider a node s on the tree equivalent
t̂, of which the node u on t is the image under the
compression map c; let r(u) = q under the given
run of the TDA on t; then, for every state q′ of the
TDA such that q ⊳M

u q′, one can construct a partial
run of the TDA –seen as a usual tree automaton–
on the tree t̂, climbing up from a leaf below s on
t̂ to the node s, and assigning the state q′ to this
node (for an illustrative example, see the tree to
the right of Figure 2).

Proving the ‘if’ part of Property i) is a little more
complex. We start with a given accepting run r̂ of
the given TDA, as a bottom-up tree automaton
running in the usual sense on the tree t̂; from this
run r̂, we shall construct a run (r, M) of the TDA
on the trdag t, by an inductive, top-down traver-
sal of the tdag t; for this top-down traversal, we
will be using an integer valued function defined at
any node u of t –and referred to as its depth on t–
as the maximal number of arcs on t from the root
node on t to the node u. We shall also use the fact
that the nodes of t̂ are in natural bijection with
the set Pos(t) of positions on t. The top-down con-
struction of the run (r, M) is done by the following
pseudo-algorithm, where d stands for the maximal
depth on t at its leaf nodes.

BEGIN

/* define first r at the root node on t,

and M on its outgoing edges */

r(ǫt) = r̂(ǫt̂);
For every outgoing edge ej , 1 ≤ j ≤ k,

at ǫt, set M(ej) = r̂(ǫ.j);
i = 1; /* Now go down */

while (i < d) do {
For every node u at depth i do {

choose e ∈ Inu(t), and α ∈ post(e)
such that M(e) = r̂(α);
set r(u) = M(e);

For every ej ∈ Outu(t), 1 ≤ j ≤ m,

outgoing from u, set M(ej) = r̂(α.j);
}

i = i + 1; }
END.

It is not difficult to check then, that by construc-
tion, the pair of maps (r, M) gives an accepting
run of the TDA on the trdag t. (The reasoning is
illustrated below.)

Properties ii) and iii) follow, in the ranked case,
from the proof of i) and the results of TATA ([4]),
Chapter 1; in the unranked case, one can either em-
ploy a reasoning based on reduction to the ranked
case as in [9], or appeal directly to the results of
[10]. (Note: the number of positions on a trdag is
the same as the size of its tree-equivalent.) 2

We illustrate here the reasoning employed in the
proof of the ‘if’ part of assertion i) of the above
proposition, with the tdag t of Example 1. We start
with the run r̂ on its tree-equivalent t̂, as depicted
to the right of Figure 2. At start, to the root node
on t (at depth 0) is assigned the state qfin, and
to its three outgoing edges, are asigned the three
states p, q, q respectively; at g, which is the only
node on t at depth 1, we choose the first incoming
edge (of position 1, and labeled with p by M), and
set r(u) = r̂(1) = p; the two outgoing edges at g

on t have as positions the sets {11, 21}, {12, 22} re-
spectively; to these two outgoing edges at g on t,
we assign the states that r̂ assigns to the two sons
of the node g at position 1 on t̂, namely p, q respec-
tively (this means in essence that we have ’selected’
the positions 11 and 12 on the two outgoing edges
at g on t); next, we go to depth 2 on t, where a is
the unique node, to which we then have to assign
the state r̂(11) that M has already assigned to its
incoming edge; the rest of the reasoning is obvious,
so left out.

Remark 2. Let t 6= t′ be two given trdags such
that Pos(t′) = Pos(t), and there is a name pre-
serving surjective map c′ from Nodes(t′) onto
Nodes(t). We can then define t to be a compres-
sion, or compressed form, of t′; and refer to t′ as
an uncompressed equivalent of t, and to the sur-
jective map c′ on Nodes(t′) as the compression
map on t′. It is easily checked that t and t′ have

5

then the same tree-equivalent; it follows then from
Proposition 2 above, that any given TDA A ac-
cepts t if and only if it accepts t′. This means that
it is legitimate to define the langauge of a TDA as
the set of all tdags that it accepts (or trees that it
accepts), or as the set of all trdags accepted, up to
tree-equivalence.

3. Conclusion

Neither the dag automata of [3,1], nor the
Tree/Dag automata that we have presented in this
paper, can be seen as special cases of the vertex
marking or the edge marking automata on graphs,
defined in [14]: the reason is that a boundedness
assumption was made there on the number of in-
coming edges at the nodes; in particular, contrary
to the Example 2.7 of [14], it is easy to construct
a DA (resp. a TDA) whose language is the the set
Lb of all the dags (resp. trdags) that contain a
node named with some given symbol b.

The notion of a trdag that we have defined in
this paper, is none other than that of an acyclic
graph obtained from a (possibly unranked) tree,
by identifying –fully or partially– the nodes where
the sub-trees are isomorphic. We have also shown
how to run any tree automaton A on any trdag t,
without having to uncompress t; the runs are de-
fined in a bottom-up style, in such a way that A
accepts t if and only if it accepts the tree equiv-
alent of t, in the classical sense. Validating XML
documents that are given in a compressed format,
with respect to a specifying tree grammar (without
having to uncompress them) is one possible area
of application for the view that we have presented
in this paper; a second area of application is that
of querying directly a compressed XML document,
without having to unfold it into a tree. The in-
terested reader may consult [5], where the results
that we have already obtained in this connection
are presented.

References

[1] S. Anantharaman, P. Narendran, M. Rusinowitch,
Closure Properties and Decision Problems of Dag

Automata, In Information Processing Letters, 94(5):231–
240, 2005.

[2] P. Buneman, M. Grohe, C. Koch, Path queries on
compressed XML. In Proc. of the 29th Conf. on VLDB,
2003, pp. 141–152, Ed. Morgan Kaufmann.

[3] W. Charatonik, Automata on DAG Representations of
Finite Trees, Technical Report MPI-I-99-2-001, Max-
Planck-Institut für Informatik, Saarbrücken, Germany.

[4] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, M. Tommasi, Tree Automata
Techniques and Applications, http://www.grappa.univ-
lille3.fr/tata/

[5] B. Fila, S. Anantharaman, Automata for Positive
Core XPath Queryies on Compressed Documents, In
Proc. of the Int. Conf. LPAR-13, November 2006, LNAI,
Springer-Verlag (To appear). Full version available as
part of RR-2006-03, LIFO, Université d’Orléans (Fr.).
http://www.univ-orleans.fr/lifo/prodsci/rapports/

[6] M. Frick, M. Grohe, C. Koch, Query Evaluation of
Compressed Trees, In Proc. of LICS’03, pp. 188–197,
IEEE,

[7] G. Gottlob, C. Koch, Monadic Queries over Tree-
Structured Data, In Proc. of LICS’02, pp. 189–202, IEEE.

[8] G. Gottlob, C. Koch, Monadic Datalog and the
Expressive Power of Languages for Web Information
Extraction, In Journal of the ACM, 51(1):12–28, 2004.

[9] G. Gottlob, C. Koch, R. Pichler, L. Segoufin, The
complexity of XPath query evaluation and XML typing
In Journal of the ACM 52(2):284-335, 2005.

[10] W. Martens, F. Neven, On the complexity of
typechecking top-down XML transformations, In
Theoretical Computer Sc., 336(1): 153–180, 2005.

[11] M. Marx, XPath and Modal Logics for Finite DAGs.
In Proc. of TABLEAUX’03, pp. 150–164, LNAI 2796,
2003.

[12] F. Neven, Automata Theory for XML Researchers, In
SIGMOD Record 31(3), September 2002.

[13] F. Neven, T. Schwentick, Query automata over finite
trees, In Theoretical Computer Science, 275(1–2):633–
674, 2002.

[14] A. Potthof, S. Seibert, W. Thomas, Nondeterminism
versus determinism of finite automata over directed
acyclic graphs, In Bull. Belgian Math. Society, 1:285–
298, 1994.

[15] J.W. Thatcher, J.B. Wright, Generalized finite
automata theory with an application to a decision problem
of second-order logic, In Math. Syst. Theory, 2(1):57–81,
1968.

6

