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1 Introduction

Consider the discrete Schrödinger operators in l2(Z+):

Hθψ(n) = ψ(n− 1) + ψ(n + 1) + V (n)ψ(n), (1.1)

where V (n) is some real function, with boundary condition

ψ(0)cosθ + ψ(1)sinθ = 0, θ ∈ (−π/2, π/2). (1.2)

We shall consider the case of sparse potentials. Namely, V (n) = VN , if n = LN and V (n) =
0 else, where LN is monotone rapidly increasing sequence. Such potentials were studied,
in particular, in [G, P, S, SSP, SST, JL, K, KR, Z]. Their interest lies in the fact that the
spectrum on (−2, 2) may be singular continuous with nontrivial Hausdorff dimension. In
the present paper we will be interested by a particular case of such potentials, considered
by Jitomirskaya and Last [JL]. We consider a slightly more general model. Let

V (n) =
∞∑

N=1

L
η−1

2η

N δLN ,n +Q(n) ≡ S(n) +Q(n), (1.3)

where LN is some very fast growing sequence such that

L1L2· · ·LN−1 = LαNN , limN→∞αN = 0,

η ∈ (0, 1) is a parameter, andQ(n) is any compactly supported real function (i.e. Q(n) = 0
for all n ≥ n0). It is well known that the study of operator defined by (1.1)-( refin02)
is equivalent to the study of operator with Dirichlet boundary condition ψ(0) = 0 and
potential

V1(n) = V (n) − tanθδ1,n.
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It is clear that V1(n) = S(n)+Q1(n), where Q1 is another compactly supported function.
Thus, without loss of generality, we may consider only operators with Dirichlet boundary
condition and potentials given by (1.3). We shall denote by H the corresponding operator.

For such model, it is known [SST] that (−2, 2) belongs to the singular continuous
spectrum of H, and there may exist some discrete point spectrum outside of [−2, 2].
It was shown in [JL] that the Hausdorff dimensionality of the spectrum in (−2, 2) lies
between η and 2η

1+η
for all boundary conditions (they consider Q(n) = 0 in our notations).

Moreover, for Lebesgue a.e. θ, the spectrum on (−2, 2) is of exact dimension η. Combes
and Mantica [CM] showed that the parking dimension of the spectral measure restricted to
(−2, 2) is equal to 1. These spectral results imply dynamical lower bounds in a usual way
[L], [GSB]. However, for the considered model this is only partial dynamical information.
Some dynamical upper bounds were obtained by Combes and Mantica [CM] (in our proofs
we use some ideas of their paper). Krutikov and Remling [KR], [K] studied the behaviour
of the Fourier transform of the spectral measure at infinity.

The main motivations of the present paper are the following:
1. To give a rather complete description of the (time-averaged) dynamical behaviour of
the considered model related to the singular continuous part of the spectrum (and some
strong results in the case of more general initial states). This is the first example of
this kind where dynamics is studied in such a detailed manner. Although this model is
simple enough, the results suggest what could be done in more complicated cases, namely,
for Fibonacci potentials, bounded sparse barriers, random decaying potentials or random
polymers.
2. For some initial states ψ we find the exact expression of the intermittency function (see
definition below) β−

ψ (p) which is nonconstant in p. To the best of our knowledge, this is
the first model where such phenomenon of ”quantum intermittency” is rigorously proven.
3. Throughout the paper, we use many different methods to study dynamics and show
how their combination gives stronger results. In particular, we further develop the method
for proving lower bounds based on Parseval formula [DT], allowing more general initial
states ψ than δ1. We hope that these ideas will be useful in many other cases.
4. For a long time the priority was given to the spectral analysis of operators with s.c.
spectrum rather than to the analysis of the corresponding dynamics (and most dynamical
bounds were obtained as a consequence of spectral results). In the present paper we
show how it is possible to study direclty dynamics without virtually any knowledge of
the spectral properties. Indeed, the only information we need in our considerations is
that (−2, 2) ∈ σ(H). Although we prove that the spectral measure is of exact Hausdorff
dimension η on (−2, 2) for all boundary conditions (improving the result of Jitomirskaya
and Last), this is just a particular simple consequence of our dynamical results.

Let ψ ∈ l2(Z+) be some initial state (in particular, ψ = δ1). The time evolution is
given by

ψ(t) = exp(−itH)ψ,

where exp(−itH) is the unitary group. We shall be interested by the time-averaged
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quantities like

aψ(n, T ) =
1

T

∫ ∞

0
dt exp(−t/T )|ψ(t, n)|2.

This definition of time-averaging is virtually equivalent to the Cesaro average, but is more
convinient for technical reasons. We consider the time averaging because of the rather
irregular behaviour in time of |ψ(t, n)|2 in the case of singular continuous spectrum. For
the sparse barriers model one can see it from numerical simulations in [CM]. Moreover,
effective analytical methods exist to study time-averaged quantities. Mention that upper
bounds for the return probability as t → ∞ without time-averaging are obtained in [K],
[KR], and this is difficult technically.

We shall study the inside and outside time-averaged probabilities defined as

Pψ(n ≤M,T ) =
∑

n≤M

aψ(n, T )

and
Pψ(n ≥M,T ) =

∑

n≥M

aψ(n, T )

respectively. Here M > 0 are some numbers which may depend on T (growing with T ).
The quantity Pψ(n ≤ M,T ) can be interpreted as the time-averaged probability to find
a system inside an interval [0,M ] and similarly for outside probabilities. The obtained
results are of the form

Pψ(n ≥ M1(T ), T ) ≥ c > 0, Pψ(n ≤M2(T ), T ) ≥ c > 0, (1.4)

or
Pψ(n ≥M3(T ), T ) ≥ h(T ), Pψ(n ≤M4(T ), T ) ≥ g(T ), (1.5)

and similarly for the upper bounds, where Mi(T ) → +∞ are some growing functions,
and h(T ), g(T ) tends to 0 not faster then polynomially. Thus, we control the essential
parts of the wavepacket (1.4), as well as polynomially small parts of the wavepacket (1.5)
(such bounds for outside probabilities imply lower bounds for the moments of the position
operator).

We also consider the more traditional quantities:

〈|X|pψ〉(T ) =
∑

n>0

npaψ(n, T ), p > 0,

called time-averaged moments of order p of the position operator, as well as their growth
exponents β±

ψ (p) (both functions non decreasing in p):

β−
ψ (p) =

1

p
limsupT→∞

log〈|X|pψ〉(T )

logT
, p > 0,

and similarly for β+
ψ (p). Since

〈|X|pψ〉(T ) ≥ MpPψ(n ≥M,T )
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for any M > 0, it is clear that probabilities and moments are related.
We shall also study the time-averaged return probability:

Jψ(1/T,R) =
1

T

∫ ∞

0
dt exp(−t/T )|〈ψ(t), ψ〉|2.

Let us present the main results. Assume first that ψ belongs to the subspace of
continuous spectrum of H. Then due to RAGE theorem, the system escape with time
(after time-averaging) from any finite interval [1,M ] and thus the quantum particle goes
to infinity. Since the barriers are very sparse, the picture of motion is rather obvious. If
the main part of the wavepacket is far enough from the barriers: LN−1 << n << LN for
some N , then the propagation is ballistic (as in the case of the free particle). When the
wavepacket reaches a barrier V (LN ) (at time T of order LN ) the motion is slowed down
and the process of tunneling through the high barrier begins. The time necessary for the
essential part of the wavepacket to go through is about LNV

2(LN ) = L
1/η
N . During this

time the main part of the wavepacket is confined in the interval [1, LN ]. For T >> L
1/η
N

most of the wavepacket is on [LN +1,∞) and a new period of ballistic motion begins. It is
clear that given a large value of T , it is crucial to locate it with respect to the LN . Thus,
throughout the paper for any T we shall denote by N (depending on T and N → ∞ if
T → ∞) the unique value such that LN/C ≤ T < LN+1/C with some C > 1. We prefer
considering LN/C ≤ T < LN+1/C rather than LN ≤ T < LN+1 for the following reason:
if LN/C ≤ T ≤ LN , the far tail of the wavepacket is already approaching the barrier
V (LN) and the tunneling begins. For simplicity, we take C = 4 (of course, one could take
any other value).

Let ψ = f(H)δ1 6= 0, where f is a complex function from f ∈ C∞
0 ([−2 + ν, 2 − ν]) for

some ν ∈ (0, 1). The operator f(H) is given by spectral theorem. We shall call these ψ
initial states of the first kind.

The followng bounds are proven:
For T : LN/4 ≤ T ≤ 2LN ,

C1L
1−1/η−αN
N ≤ Pψ(n ≥ 2LN , T ) ≤ C2L

1−1/η
N , (1.6)

where αN → 0 as N → ∞ (i.e. as T → ∞)
These bounds describe the beginning of tunneling.

For T : 2LN ≤ T ≤ L
1/η
N ,

C1TL
−1/η−αN
N ≤ Pψ(n ≥ T, T ) ≤ Pψ(n ≥ 2LN , T ) ≤ C2TL

−1/η
N , αN → 0. (1.7)

These bounds describe the main part of the tunneling process.
In particular, for T : LN/4 ≤ T ≤ L

1/η
N

Pψ(n ≤ 2LN , T ) ≥ ||ψ||2 − CTL
−1/η
N . (1.8)

Thus, for T : LN/4 ≤ T ≤ cL
1/η
N with c small enough, the main part of the wavepacket

is located in [1, 2LN ].
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Moreover, for T : LN/4 ≤ T ≤ LBN with some B > 0,

Pψ(LN/4 ≤ n ≤ LN , T ) ≥ C(B)L−αN
N . (1.9)

For T : LN/4 ≤ T ≤ L
1/η
N the following bounds hold for the time-averaged moments of

position operator:

C1L
−αN
N (LpN + T p+1L

−1/η
N ) ≤ 〈|X|pψ〉(T ) ≤ C2(L

p
N + T p+1L

−1/η
N ). (1.10)

The bounds (1.6)-(1.10) are proved in Theorem 3.4 and Theorem 4.3. The upper bound
in (1.10) for the moments averaged over the boundary condition θ (1.2) was proved by
Combes and Mantica in [CM] for p ≤ 2. Our result holds for all p > 0 and all compact
potential Q (in particular, for all boundary conditions).

The next bounds describe the beginning and the end of ballistic regime. If T : L
1/η
N ≤

T ≤ L
1/η+δ
N or T : L1−δ

N+1 ≤ T < LN+1/4 for some δ > 0, then

CL−αN
N ≤ Pψ(n ≥ T, T ) ≤ Pψ(n ≥ 2LN , T ) ≤ ||ψ||2, (1.11)

and for the moments
C1T

pL−αN
N ≤ 〈|X|pψ〉(T ) ≤ C2T

p. (1.12)

These bounds are proved in Theorem 4.3.
Finally, if T : L

1/η+δ
N ≤ T ≤ L1−δ

N+1, the motion is exactly ballistic. Namely, for any
θ > 0 there exists τ > 0 small enough (independent of T ) such that

||ψ||2 − θ ≤ Pψ(n ≥ τT, T ) ≤ ||ψ||2, (1.13)

for T large enough, and
C1T

p ≤ 〈|X|pψ〉(T ) ≤ C2T
p. (1.14)

Moreover, for T : L
1/η
N ≤ T < LN+1/4,

Pψ(n ≤ 2LN , T ) ≤ CL
1/η+αN
N T−1. (1.15)

The bounds (1.13)-(1.14) are proved in Theorem 4.4, and (1.15) follows from (3.7) of
Lemma 3.3.

For the time-averaged return probability for any T : LN/4 ≤ T < LN+1/4 the bounds
hold (Theorem 4.2):

C

LN (1 + TL
−1/η
N )

≤ Jψ(1/T,R) ≤ CLαNN

LN(1 + TL
−1/η
N )

. (1.16)

A related result (Lemma 3.3) states that

aψ(n, T ) = 〈|ψ|2(t, n)〉(T ) ≤ CLαNN

LN (1 + TL
−1/η
N )

(1.17)
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for any n.
As a particular corollary of our bounds for the time-averaged moments, we obtain the

exact expression for the functions β±
ψ (p) (the result for β+

ψ (p) follows also from dimP (µψ) =
1 proved in [CM]):

β−
ψ (p) =

p + 1

p+ 1/η
, β+

ψ (p) = 1, p > 0. (1.18)

Thus, the upper bound for β−
ψ (p), obtained in [CM] for p ≤ 2 and for a.e. boundary

conditions, gives in fact the exact expression of β−
ψ (p) for all p > 0 and all boundary

conditions, as it was conjectured in [CM]. The result (1.18) is important from two points
of view:
1. This is the first example where nontrivial (i.e. nonconstant) function β−

ψ (p) is rigorously
calculated.
2. It implies (Corollary 4.5) that the restriction of the spectral measure on (−2, 2) is of
exact Hausdorff dimension η. This result holds for all compact potentials Q and thus, in
particular, for all boundary conditions θ in (1.2). This improves the result of [JL], where
it was proven only for Lebesgue-a.e. θ.

Consider now more general initial states ψ, for example, ψ = δ1. The problem is that
we have no control of the discrete spectrum outside (−2, 2). Thus, it is possible that
some part of the wavepacket remains well localized at any time. On the other hand, it
is also possible that the part of the wavepacket related to the discrete spectrum moves
quasiballistically (the well known example is the one of [DRJLS]).

As a consequence, we cannot prove nontrivial upper bounds for the outside probabil-
ities and for the moments, and we cannnot prove that all the wave function escapes from
[1, LN ] as T >> L

1/η
N .

However, the part of the wavepacket corresponding to the continuous spectrum (if
nonzero) behaves in the same manner. It escapes from any interval [1,M ], moves ballis-
tically between the barriers, tunnels through the barrier etc. Therefore, we are able to
prove nontrivial lower bounds for outside probabilities and for the moments.

Consider ψ = f(H)δ1 6= 0, where f is some bounded Borel complex function such that
for some interval S = [E0−ν, E0 +ν] ⊂ [−2+ν, 2−ν], f is C∞ on S and |f(x)| ≥ c > 0 on
S. We call these ψ initial states of the second kind. In particular, previously considered
ψ and ψ = δ1 verify this condition.

For ψ described above, the following bounds hold (proved essentially in Theorem 4.3
and Theorem 4.4):
The first bound in (1.6), and the first and the second bounds in (1.7) remain true. Instead

of (1.8) we prove that for some δ > 0 small enough and T : LN/4 ≤ T ≤ δL
1/η
N ,

Pψ(n ≤ 2LN , T ) ≥ c1 > 0.

The bound (1.9) remains true as well as the first bound in (1.10). The bound (1.11)
and the first bound in (1.12) hold (we do not have a priori ballistic upper bound for the
considered ψ, except the case where f is smooth, in particular, ψ = δ1). Instead of (1.13),
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one has the bound
Pψ(n ≥ τT, T ) ≥ c1 > 0.

The first bound in (1.14) follows. For the time-averaged return probability the lower
bound in (1.16) holds (Theorem 4.2). For the functions β±

ψ (p), one has lower bounds

β−
ψ (p) ≥ p+ 1

p+ 1/η
, β+

ψ (p) ≥ 1.

One can ask whether the smoothness condition on f is relevant. As for the upper
bounds for moments and outside probabilities, it seems essential. Some results, namely,
Lemma 2.1, Corollary 2.6, Lemma 3.3 and Theorem 4.2, hold for nonsmooth f . Probably,
lower bounds for outside probabilities and for the moments (for both kinds of ψ) can be
proved without smoothness of f .

The paper is organized as following. In Section 2 we first prove upper bounds for the
transfer matrices with complex energies T (n, 0; z) associated to the equation Hu = zu.
With this result we obtain some lower bounds for probabilities and for the moments (The-
orem 2.4) using Parseval formula. The combination of this method with the traditional
approach going back to Guarneri, allows us to obtain some control of the essential part
of the wavepacket (Corollary 2.6) as well as better lower bound for the time-averaged
moments (Corollary 2.7 and Theorem 2.8). The approach of Section 2 can be applied to
a more general class of models, where the transfer matrix has nontrivial upper bound like

||T (n, 0;E + iε)|| ≤ g∆(n), E ∈ ∆, ε ∈ (0, 1).

Here ∆ is any compact interval in (−2, 2), and the function g∆(n), growing not too fast,
does not depend on E ∈ ∆, ε ∈ (0, 1). In particular, g∆ = C(∆)nα with some α > 0 is
possible (Theorem 2.9).

The bounds of Theorem 2.4 show the importance of the integrals

I(∆, ε) = ε
∫

∆
dEIm2F (E + iε), ∆ ⊂ (−2, 2),

where F denotes the Borel transform of spectral measure. Good lower bounds for I(∆, ε)
imply better lower bounds for probabilities and thus for the moments. These integrals are
closely related to the time-averaged return probabilities and to the correlation dimensions
of the spectral measure restricted to (−2, 2).

In Section 3, which is specific to the considered model with growing sparse potentials,
we obtain upper bounds for inside (Lemma 3.3) and outside probabilities and moments
(Theorem 3.4). These results are proved for ψ = f(H)δ1 with f compactly supported on
(−2, 2) (and moreover f ∈ C∞

0 in Theorem 3.4). When considering the inside probabilities,
we obtain some upper bound for ImF (x+ iε), x ∈ (−2, 2). It implies a very simple proof
of the fact that for any δ > 0, ν > 0 the spectral measure is uniformly η − δ-Hölder
continuous on [−2 + ν, 2 − ν] (the result which follows also from the proofs of [JL]).

In Section 4 we first use the obtained upper bounds for outside probabilities to obtain
lower bound for the integrals I(∆, ε) which is virtually optimal (Corollary 4.1). Together
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with Theorem 2.4, it implies better lower bounds for probabilities and for the moments
(which are optimal for ψ of the first kind up to the factors like LαNN , where αN → 0).
It implies also bounds for the time-averaged return probabilities (Theorem 4.2). The
upper bounds of Section 3 are also used (Theorem 4.4) to control the essential part of
the wavepacket on [1, 2LN ] and on [τT,+∞) with some τ > 0. Finally, we show that the
obtained upper bounds for the moments imply that the restriction of spectral measure on
(−2, 2) is of exact Hausdorff dimension η.
Acknowledgments. I would like to thank F. Germinet for useful discussions.

2 Direct lower bounds for probabilities and moments

Define the time-averaged quantities (which we call probabilities) of the form

Pψ(n ≥M,T ) =
∑

n≥M

〈|ψ(t, n)|2〉(T ) ≡
∑

n≥M

1

T

∫ +∞

0
dte−t/T | exp(−itH)ψ(n)|2

and similarly for Pψ(n ≤ M,T ), Pψ(L ≤ n ≤ M,T ), where M,L may depend on T . We
shall call Pψ(n ≥ M,T ) outside and Pψ(n ≤ M,T ) inside probabilities respectively.

Throughout the paper we shall consider two kinds of initial states ψ:
1. ψ = f(H)δ1, where f ∈ C∞

0 ([−2 + ν, 2 − ν]) for some ν > 0 and f(x0) 6= 0 for some
x0. We shall call these ψ initial states of the first kind.
2. ψ = f(H)δ1 where f : R → C is a bounded Borel function such that for some
[E0 − ν, E0 + ν] ⊂ [−2 + ν, 2 − ν], with ν > 0,

f ∈ C∞([E0 − ν, E0 + ν]) and |f(x)| ≥ c > 0, x ∈ [E0 − ν, E0 + ν]. (2.1)

In particular, one can take ψ = δ1. We shall call these ψ initial states of the second kind.
One can observe that any ψ of the first kind belongs to the second kind.

In the case of any ψ we shall denote by µψ the corresponding spectral measure, and
by µ ≡ µδ1 the measure of the state δ1. Observe that

dµψ(x) = |f(x)|2dµ(x).

Let ψ be any vector and µψ its spectral measure. For any Borel set ∆ and ε > 0 define
the following integrals:

Jψ(ε,∆) =
∫

∆
dµψ(x)

∫

R

dµψ(y)R((x− y)/ε),

where R(w) = 1/(1 + w2). These quantities will play an important role in the sequel.
What one can observe is the following identity (which can be easily proved using spectral
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theorem):
1

T

∫ ∞

0
dt exp(−t/T )|〈ψ(t), ψ〉|2 = Jψ(ε,R), ε = 1/T. (2.2)

Thus, Jψ(ε,R) coincides with the time-averaged return probability.
The first statement is of a rather general nature, and holds in fact for any self-adjoint

operator H.

Lemma 2.1 Let H be some self-adjoint operator in l2(N) and ψ any vector such that
c1 = µψ(∆) > 0, where ∆ is some Borel set. Let M(T ) = c21/(16Jψ(T

−1,∆)). Then

Pψ(n ≥M(T ), T ) ≥ c1/2 > 0.

Proof. The result follows rather directly from [T] and is obtained using the traditional
approach developed by Guarneri-Combes-Last. For the sake of completeness we shall give
the main lines of the proof. Define

ρ = X∆ψ, χ = ψ − ρ,

where XS is the spectral projector of the operator H on the set S. One has ρ 6= 0 since
‖ρ‖2 = µψ(∆) = c1 > 0. One shows [T] that for any M > 0,

Pψ(n ≥ M,T ) ≥ ||ρ||2 − 2|D(M,T )|, (2.3)

where

D(M,T ) =
1

T

∫ +∞

0
dt exp(−t/T )

∑

n<M

ψ(t, n)ρ(t, n).

Lemma 2.1 of [T] (with h(u) = exp(−u), u > 0) implies

|D(M,T )| ≤
∫

∆
dµψ(x)

√
b(x, T )SM (x), (2.4)

where

b(x, T ) =
∫

R

dµψ(u)R((T (x− u)) = εImFµψ(x + iε), ε =
1

T
, (2.5)

Fµψ is the Borel transform of spectral measure, SM(x) =
∑
n<M |uψ(n, x)|2, and uψ(n, x)

are generalised eigenfunctions associated to the state ψ. Since

∫

R

dµψ(x)|uψ(n, x)|2 ≤ 1

for any n, the bound (2.4) and Cauchy-Schwarz inequality yield

|D(M,T )|2 ≤MJψ(ε,∆), ε = 1/T. (2.6)

Let us take M = ||ρ||4(16Jψ(ε,∆))−1. It follows from (2.3), (2.6) that

Pψ(n ≥M,T ) ≥ ||ρ||2/2 = c1/2 > 0.
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The proof is completed.
In the sequel we shall also need the following integrals:

Iψ(ε,∆) = ε
∫

∆
dEIm2Fψ(E + iε) = ε3

∫

∆
dE

(∫

R

dµψ(u)

ε2 + (E − u)2

)2

,

where ψ is some state and Fψ denotes the Borel transform of its spectral measure. In
fact, the integrals Iψ(ε,∆) and Jψ(ε,∆) are closely related.

Lemma 2.2 Let 0 < ε < 1, ∆ = [a, b] some bounded interval. The uniform estimate
holds:

Jψ(ε,∆) ≤ C(∆)Iψ(ε,∆). (2.7)

Proof. For simplicity we shall omit the dependence on ψ in the proof. The definition of
I implies

I(ε,∆) = ε3
∫

R

dµ(x)
∫

R

dµ(u)
∫

∆

dE

((u− E)2 + ε2)((x− E)2 + ε2)
.

Thus
I(ε,∆) ≥

∫

∆
dµ(x)

∫

R

dµ(u)f(x, u, ε), (2.8)

where

f(x, u, ε) = ε3
∫ b

a

dE

((u− E)2 + ε2)((x− E)2 + ε2)
, ∆ = [a, b].

One changes the variable t = (E − x)/ε in the integral over E:

f(x, u, ε) =
∫ B

A

dt

(t2 + 1)((t+ s)2 + 1)
,

where A = (a − x)/ε, B = (b − x)/ε, s = (x − u)/ε. Since one integrates in (2.8) over
x ∈ [a, b], and 0 < ε < 1, one can easily see that

f(x, u, ε) ≥ c/(s2 + 1)

with uniform positive constant. The bound (2.8) yields

I(ε,∆) ≥ c
∫

∆
dµ(x)

∫

R

dµ(u)R((x− y)/ε) = cJ(ε,∆). (2.9)

As a basis of our proofs we shall use the following

Lemma 2.3 Let x ∈ [−2 + ν, 2 − ν] with some ν > 0, ε ∈ [0, 1). The following uniform
bounds hold under condition nε ≤ K for some K > 0.
a) If n < LN , then

||T (n, 0; x+ iε)|| ≤ C(K, ν)LαNN , αN → 0. (2.10)

If n : LN ≤ n < LN+1, then

||T (n, 0; x+ iε)|| ≤ C(K, ν)L
1−η
2η

+αN

N , αN → 0. (2.11)
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Proof. Assume first that Q(n) ≡ 0. Then one can easily see that for any n : Lm ≤ n <
Lm+1 with some m ≥ 1,

T (n, 0; z) = T0(n−Lm, z)A(Lm, z)T0(Lm−Lm−1+1, z)A(Lm−1, z) · · ·A(L1, z)T0(L1−1, z).
(2.12)

Here T0(k, z) = A0(z)
k is the free transfer matrix with

A0(z) =

(
z −1
1 0

)
(2.13)

and

A(Lk, z) =


 z − L

1−η
2η

k −1
1 0


 .

For real x ∈ [−2 + ν, 2 − ν] one can show by direct calculations that ||T0(k, x)|| ≤ C
uniformly in x, k. For complex z = x+ iε one represents A0(z) = A0(x) + iεD with

D =

(
1 0
0 0

)
.

Developing A0(z)
k, one sees that one has still

||T0(k, z)|| = ||A0(z)
k|| ≤ C (2.14)

while kε ≤ K. As to A(Lk, z), it can be bounded by

||A(Lk, z)|| ≤ CL
1−η
2η

k , (2.15)

since x ∈ [−2 + ν, 2 − ν], ε ∈ [0, 1). The statement of the Lemma follows directly from
the bounds (2.12)-(2.15) and the sparseness condition:

L1L2 · · ·Lm ≡ L
νm+1

m+1 , νm → 0.

For more details see the similar proof in [JL]. If one add the finite range perturbation
Q(n), it is clear that the norms ||T (n, 0; z)|| remain bounded by the same expressions
(2.10), (2.11) with different constants. The proof is completed.

In the next statement we shall use notation I(ε,∆) = Iδ1(ε,∆). In all statements of
the paper αN denotes sequences such that limαN = 0 (not necessarily the same).

Theorem 2.4 Assume that ψ is of the second kind (in particular, ψ = δ1). Let ∆ =
[E0 − ν/2, E0 + ν/2], where ν comes from (2.1).
1. Let LN ≤ T < LN+1/4 for some N . The uniform in T bound holds:

Pψ(n ≥ T, T ) ≥ cTL
η−1

η
−αN

N (I(1/T,∆) +
1

T
) ≥ cL

η−1

η
−αN

N . (2.16)

11



2. Let LN/4 ≤ T ≤ 4LN . Then

Pψ(n > LN , T ) ≥ cL
2− 1

η
−αN

N (I(1/T,∆) +
1

T
) ≥ cL

η−1

η
−αN

N . (2.17)

3. Let LN/4 ≤ T ≤ LBN with some B > 1. Then the uniform bound holds:

Pψ(LN/4 ≤ n ≤ LN , T ) ≥ cBL
1−αN
N (I(1/T,∆) +

1

T
) ≥ cBL

1−αN
N T−1. (2.18)

In all bounds (2.16)-(2.18), c > 0 and limN→∞ αN = 0.

Proof. We shall follow the ideas of [DT]. The starting point is the Parseval formula:

〈|ψ(t, n)|2〉(T ) =
ε

π

∫

R

dE|(R(E + iε)ψ)(n)|2, ε = (2T )−1, (2.19)

where R(z) = (H − zI)−1.
a) We begin with ψ = δ1. Let u(n, z) = (R(z)δ1)(n). It is well known [KKL] that

(u(n+ 1, z), u(n, z))T = T (n, 0, z)(F (z),−1)T , n ≥ 0, (2.20)

where T (n, 0, z) is the transfer matrix associated to the equation Hu = zu and F is the

Borel transform of the spectral measure F (z) =
∫
R

dµδ1 (x)

x−z
. Let E ∈ [−2 + δ, 2 − δ] with

some δ ∈ (0, 1), z = E + iε, ε = (2T )−1. Assume first that LN ≤ T ≤ LN+1/4. The
bound (2.11) of Lemma 2.3 and (2.20) imply (since ||T || = ||T−1||) for any LN ≤ n ≤ 2T

|u(n+ 1, z)|2 + |u(n, z)|2

≥ ||T (n, 0, z)||−2(|F (z)|2 + 1) ≥ a(δ)L
η−1

η
−2αN

N ((Im2F (z) + 1), (2.21)

where αN → 0. Summation in (2.21) over n : T ≤ n ≤ 2T and integration over E ∈
[−2 + δ, 2 − δ] in (2.19) yields (2.16) with ∆ = [−2 + δ, 2 − δ]. We have used a simple
bound I(u/2,∆) ≥ 1/8I(u,∆), which directly follows from the definition of integrals I.
If LN/4 ≤ T ≤ 4LN , one considers n : 2LN ≤ n ≤ 3LN to get (2.17). The bound (2.18)
is proved in a similar manner using the bound (2.10) of Lemma 2.3 and summating over
n : LN/4 ≤ n < LN − 1.
b) Assume now that ψ is such that ψ = g(H)δ1, g(x) ∈ C∞

0 (S), where S = [E0 −
ν, E0 + ν] ⊂ [−2 + ν, 2 − ν] for some ν ∈ (0, 1). Assume also that g(x) ≡ 1, x ∈
[E0 − 3ν/4, E0 + 3ν/4]. Consider the decomposition

δ1 = ψ + χ, ψ = g(H)δ1, χ = (1 − g(H))δ1.

Let LN ≤ T ≤ LN+1/4. Since

|R(z)ψ(n)|2 ≥ 1/2|R(z)δ1(n)|2 − |R(z)χ(n)|2,

12



integration over ∆ = [E0 − ν/2, E0 + ν/2] and summation over n : T ≤ n ≤ 2T yields
(using the proof of a)):

Pψ(n ≥ T, T ) ≥ cTL
η−1

η
−αN

N (I(1/(2T ),∆)+1/T )−c/T
∫

∆
dE

∑

n≥T

|R(E+iε)χ(n)|2 (2.22)

To bound from above |R(E + iε)χ(n)|, E ∈ ∆, we shall use now the following result
from [GK]:

|(u(H)δm)(n)| ≤ Ck|||u|||k+2(1 + |n−m|2)−k/2, (2.23)

for any integer k > 0, where u is some smooth complex function,

|||u|||k =
k∑

r=0

∫

R

dx|u(r)(x)|(1 + |x|2)(r−1)/2,

and the constants in (2.23) are independent of u and H. Although the result of [GK] is
stated in the continuous case, one can easily see that the result holds in the discrete case
for any self-adjoint operator H.

We shall take uE+iε(x) = χ(x)
x−E−iε

, where χ(x) = 1− g(x), and z = E + iε is considered
as a parameter. Thus, R(E + iε)χ(n) = (uE+iε(H)δ1)(n). The definition of f implies
that χ(x) = 0 for any x ∈ [E0 − 3ν/4, E0 + 3ν/4]. One can easily show that |||uE+iε|||k ≤
C(k, ν) for any k and any E ∈ ∆, ε > 0 with uniform constants. Thus, (2.23) implies
|R(E + iε)χ(n)| ≤ C(k)n−k and

∑

n≥T

|R(E + iε)χ(n)|2 ≤ C(k)T−k. (2.24)

Taking k large enough, we see that (2.22), (2.24) imply the same bound (2.16), since
T ≥ LN and thus the integral in (2.22) is small with respect to the first term. The
bounds (2.17) and (2.18) can be proved in the same manner.
c) Let now ψ be any vector of the second kind. Let g be some function verifying conditions
of the part b), that is, g ∈ C∞

0 (S), S ≡ [E0−ν, E0+ν], g(x) = 1, x ∈ [E0−3ν/4, E0+3ν/4].
One can write

g(x) = l(x)f(x),

where l(x) = 0 if |x − E0| > ν and l(x) = g(x)/f(x), |x − E0| ≤ ν. The facts that
f ∈ C∞(S), g ∈ C∞

0 (S) and |f(x)| ≥ c > 0 on S imply that l ∈ C∞
0 (S). Again, due to

(2.23), the kernel of l(H) is fast decaying in |n−m|, so that for any k > 0,

|R(E + iε)g(H)δ1(n)|2 ≤
∑

m

Ck
1 + |n−m|k |R(E + iε)f(H)δ1(m)|2.

Therefore, for any L > 0,

A(2L, T ) ≡ 1/T
∑

n≥2L

∫

∆
dE|R(E + iε)g(H)δ1(n)|2 ≤

13



1/T
∫

∆
dE

∑

m

hk(m, T )|R(E + iε)f(H)δ1(m)|2,

where

hk(m, T ) =
∑

n≥2L

Ck
1 + |n−m|k .

Let us split the sum over m into two with m < L and m ≥ L. One observes that
hk(m, T ) ≤ CkL

1−k in the first case and one uses trivial bound hk(m, T ) ≤ Ck in the
second case. Thus, we get

A(2L, T ) ≤ CkL
1−k + Ck/T

∫

∆
dE

∑

m≥L

|R(E + iε)f(H)δ1(m)|2, (2.25)

where we used the fact that

ε
∑

m

∫

R

dE|R(E + iε)ψ(m)|2 = π||ψ||2.

Let us assume first that LN ≤ T ≤ LN+1/4. One can easily see from the proofs of the
part b) that the quantity A(2T, T ) is bounded from below by the r.h.s. of (2.16) (only the
constant changes). Taking k > 1/η, using (2.25) and Parseval equality, we get (2.16) for
ψ = f(H)δ1. For (2.17) the proof is similar with L = 2LN . To prove (2.18), one considers

A(T ) ≡ 1/T
∑

LN/2≤n≤3LN/4

∫

∆
dE|R(E + iε)g(H)δ1(n)|2 ≤

1/T
∫

∆
dE

∑

m

hk(m)|R(E + iε)f(H)δ1(m)|2 (2.26)

with hk(m) =
∑
LN/2≤n≤3LN/4 Ck(1 + |n−m|k)−1. Splitting the sum over m in (2.26) into

three with m < LN/4, m > LN and LN/4 ≤ m ≤ LN , one shows that the first two are
bounded from above by CkL

1−k
N and the third by

C/T
∫

∆

∑

LN/4≤m≤LN

|R(E + iε)f(H)δ1(m)|2.

On the other hand, A(T ) is bounded from below by the r.h.s. of (2.18) (the proof is
identical with the one of the part b), only the constants change). Since T ≤ LBN , taking
k large enough we get the bound (2.18) for ψ = f(H)δ1. The proof is completed.

Corollary 2.5 Let ∆ = [−2 + ν, 2 − ν] with some ν > 0. Let ε > 0 and N be such that
LN/4 ≤ T ≡ 1/ε < LN+1/4. The following estimate holds:

J(ε,∆) ≤ CI(ε,∆) ≤ CLαNN

LN + TL
η−1

η

N

(2.27)

with uniform in T constants and limαN = 0. Here the integrals J, I correspond to ψ = δ1.
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Proof. We shall use the bounds of Theorem 2.4 for ψ = δ1. In this case, as it follows from
the part a) of the proof, (2.16), (2.17), (2.18) hold with ∆ = [−2 + ν, 2 − ν]. Moreover,
(2.18) holds for all LN/4 ≤ T ≤ LN+1/4 without restriction. On the other hand, all
the quantities Pψ(n ≥ T, T ), Pψ(n ≥ 2LN , T ), Pψ(LN/4 ≤ n ≤ LN , T ) are bounded from
above by 1. We thus obtain the last inequality in (2.27). The first inequality is that of
Lemma 2.2. The proof is completed.

Corollary 2.6 Let ψ be any vector of the second kind (but f is not necessarily smooth
on ∆ = [E0 − ν, E0 + ν]). Then

Pψ(n ≥ M(T ), T ) ≥ c > 0, for M(T ) = CL−αN
N

(
LN + TL

η−1

η

N

)
, (2.28)

where again LN/4 ≤ T < LN+1/4 and αN → 0.

Proof. Since |f(x)| ≥ c > 0, x ∈ ∆ and ∆ ⊂ (−2, 2) ⊂ σ(H), it is clear that µψ(∆) ≥
c2µ(∆) > 0. On the other hand, since f is bounded, by (2.27),

Jψ(ε,∆) ≤ CJ(ε,∆) ≤ C
LαNN

LN + TL
η−1

η

N

. (2.29)

The result now follows from (2.29) and Lemma 2.1. The proof is completed.
Generally speaking, to obtain better lower bound forM(T ), one should better estimate

from above the integrals J(ε,∆). Similarly, to get better lower bounds for probabilities
(Theorem 2.4), one should bound from below the integrals I(ε,∆). These quantities
are both closely related to the correlation dimensions D±(2) [T] of the spectral measure
restricted to ∆. To get good bounds for I, J , one should have a rather good knowledge
of the fine structure of the spectral measure. In the Section 4 we shall use the obtained
upper bound for the outside probabilities to obtain optimal lower bounds for I(ε,∆). The
idea is the following: upper bound on outside probabilities => upper bound on M(T )
such that Pψ(n ≥ M(T ), T ) ≥ c > 0 => lower bound on J => lower bound on I. This
method, however, is specific to the considered model with unbounded sparse potentials.

Consider now applications of the obtained results for probabilities to the time-averaged
moments of the position operator:

〈|X|pψ〉(T ) ≡
∑

n

|n|p〈|ψ(t, n)|2〉(T ), p > 0.

An immediate consequence of Lemma 2.1 and Theorem 2.4 is the following.

Corollary 2.7 Let ψ be of the second kind, p > 0, T : LN/4 ≤ T < LN+1/4 for some N .
The bounds hold:

〈|X|pψ〉(T ) ≥ CJ(ε,∆)−p + C
(
Lp+1−αN
N + T p+1L

η−1

η
−αN

N

)
(I(ε,∆) + 1/T ) (2.30)

≥ C(LN + TL
η−1

η

N )pL−pαN
N + CT pL

η−1

η
−αN

N , (2.31)

where ε = 1/T and αN → 0.
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Proof. One observes that 〈|X|pψ〉(T ) ≥MpPψ(n ≥M,T ) for any M,T . The bound (2.30)
now follows directly from Lemma 2.1, Theorem 2.4 and Lemma 2.2. The bound (2.31)
follows directly from (2.30) and (2.29) (since T ≥ LN , the term with Lp+1

N /T is smaller
than LpN , so we don’t keep it in (2.31)). The proof is completed.

What is interesting is the following observation: even if one has no additional informa-
tion about integrals I, J , one can obtain the bound better than (2.31), optimising (2.30)
as a sum of two related via Lemma 2.2 terms.

Theorem 2.8 Let ψ be of the second kind. Let p > 0, T : LN/4 ≤ T < LN+1/4. The
uniform in T estimate holds:

〈|X|pψ〉(T ) ≥ CL−αN
N

(
LpN + T pL

p
p+1

η−1

η

N

)
, (2.32)

where αN → 0. In particular,

β−
ψ (p) ≥ (p+ 1)

p+ 1/η
, β+

ψ (p) ≥ 1. (2.33)

Proof. The bound (2.30) of Corollary 2.7 and Lemma 2.2 imply

〈|X|pψ〉(T ) ≥ C
(
z−p + L−αN

N (Lp+1
N + T p+1L

η−1

η

N )z
)
,

where z = I(ε,∆). The function f(z) = z−p + Kz, z > 0, is bounded from below by

c(p)K
p

p+1 . The bound (2.32) follows. To prove the second statement, define s = p(1−η)
(p+1)η

.

Considering T : LN/4 ≤ T ≤ L
p+s
p

N and T : LN+1/4 > T ≥ L
p+s
p

N , one can easily see from
(2.32) that in both cases

〈|X|pψ〉(T ) ≥ cL−αN
N T

p2

p+s ≥ cT−αN+ p2

p+s .

The first bound of (2.33) follows. To see that β+(p) ≥ 1 for any p > 0, it is sufficient to
take the sequence TN = LN in (2.32). The proof is completed.
Remark 1. A priori we don’t have upper bounds for the moments. However, if ψ is such
that ballistic upper bound holds, then β+

ψ (p) = 1 for any p.
Remark 2. In somewhat paradoxal manner, one can obtain better lower bounds for the
moments, if one has good upper bounds. This can be done in the following way. Assume
that

〈|X|rψ〉(T ) ≤ hr(T ), r > 0,

with some nontrivial hr(T ) (that is, better than ballistic). Then the bound (2.30) implies
some nontrivial lower bound J ≥ A(r, ε) and upper bound I ≤ B(r, ε). The result of
Lemma 2.2 yields I ≥ CA(r, ε) and J ≤ CB(r, ε). These two bounds (with any values
r = r1 and r = r2 respectively) can be inserted into (2.30). Finally, one can optimise the
obtained bound (for a given p > 0), choosing appropriate values of r1, r2. Most probably,
one should take r1 small and r2 large.
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The methods developed in this section, as it was mentioned in Introduction, can be
applied to more general models. For example, one can prove the following statement. It
can be applied, in particular, to the operators f with bounded sparse potentials considered
in [Z], [GKT] and gives a better result.

Theorem 2.9 Let H be any operator in l2(Z+) such that the corresponding transfer
matrix verifies the condition:

||T (n, 0;E + iε)|| ≤ C(δ)nα, α > 0,

for any E ∈ [−2 + δ, 2 − δ], ε ∈ (0, 1) and n such that nε ≤ K, K > 0. Let ψ be of the
second kind (in particular, ψ = δ1). For any T the bounds hold:

Pψ(n ≥ T, T ) ≥ T 1−2α(I(1/T,∆) + 1/T ) ≥ CT−2α, (2.34)

〈|X|pψ〉(T ) ≥ CI−p(1/T,∆) + T p+1−2αI(1/T,∆) ≥ C(p)T p−2pα/(p+1). (2.35)

Thus,

β−
ψ (p) ≥ 1 − 2α

p+ 1

(this bound is nontrivial only beginning from p > 2α− 1).

Proof. The bound (2.34) is obtained following the proof of Theorem 2.4. The first
inequality in (2.35) follows from the proof of Corollary 2.7, and the second from the proof
of Theorem 2.8.

3 Dynamical upper bounds

In this section we shall establish some upper bounds for the inside and outside prob-
abilities and the moments. It is clear that one cannot consider the same class of initial
states ψ as in the previous section. The problem is that we do not have dynamical con-
trol of the possible pure point spectrum outside (−2, 2). Thus, we shall consider only
ψ = f(H)δ1 such that suppf ⊂ (−2, 2). Moreover, to control the decay at infinity (when
considering outside probabilities), we shall assume that the function f is infinitely smooth
(recall that we call these ψ initial states of the first kind).

We begin with the inside probabilities. Let ψ = f(H)δ1, where f is a bounded Borel
function such that suppf ⊂ ∆ = [−2 + ν, 2 − ν] for some ν > 0. Following the proof of
Lemma 2.1, one can show that for any K,M > 0,

n=K+M∑

n=K

〈|ψ(t, n)|2〉(T ) ≤ C
√
MJ(ε,∆) ≤ C

√√√√√
MLαNN

LN + TL
η−1

η

N

. (3.1)
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In fact, a slightly better result can be obtained using the upper bound for the imaginary
part of the Borel transform of spectral measure. Such a bound represent an independent
interest since it provides an upper bound for the measure of intervals and thus a lower
bound for Hausdorff and packing dimensions of the spectral measure.
Lemma 3.1 Let µ be the spectral measure of the state ψ = δ1 and F (z) its Borel
transform. For any ν ∈ (0, 1) there exists constant C(ν) such that for all x ∈ [−2+ν, 2−ν]
and ε : 4

LN+1
< ε ≤ 4

LN
the bound holds:

1

2ε
µ([x− ε, x+ ε]) ≤ ImF (x+ iε) ≤ C(ν)LαNN

(
εLN + L

η−1

η

N

)−1

, (3.2)

where αN → 0.

Proof. It is well known that

ImF (z) = Imz||R(z)δ1||2 = Imz
∞∑

n=1

|u(n, z)|2,

where F (z) is the Borel transform of µ. The first inequality in (2.21) implies

ImF (z) ≥ cImz(Im2F (z) + 1)
∞∑

n=1

||T (n, 0, z)||−2. (3.3)

Let x ∈ [−2 + ν, 2 − ν], ε ∈ (4/LN+1, 4/LN ], z = x + iε. We can summate over n : 1 ≤
n < LN and over n : LN ≤ n ≤ K/ε with suitable K (K = 8 for 1/(2LN) ≤ ε ≤ 4/LN
and K = 1 for ε < 1/(2LN), for example) using the upper bounds for ||T || of Lemma 2.3.
Thus, we obtain from (3.3):

ImF (z) ≥ C(ν)εIm2F (z)L−2αN
N (LN + ε−1L

η−1

η

N ).

Since ImF (x+ iε) ≥ 1/(2ε)µ([x− ε, x+ ε]), the result follows.
Remark. The proof is rather simple because we have from the very beginning the upper
bound for ||T (n, 0, z)|| for complex z. In most applications, however, one has such bounds
only for real z, and one should proceed in a more complicated way using the Jitomirskaya-
Last method [JL].

As a first direct consequence of this result, one can obtain the already known upper
bounds (2.27) on I(ε,∆), J(ε,∆). Indeed, for ∆ = [−2 + ν, 2 − ν],

J(ε,∆) =
∫

∆
dµ(x)b(x, T ),

where

b(x, T ) = εImF (x + iε) ≤ C(ν)εLαNN

(
εLN + L

η−1

η

N

)−1

(3.4)

due to (3.2). The bound for J(ε,∆) follows. Next,

I(ε,∆) = ε
∫

∆
dEIm2F (E + iε) =

∫

∆
dEb(E, T )ImF (x+ iε)
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The bound (3.4) and ∫

R

dEImF (x+ iε) = µ(R) = 1

imply the bound for I(ε,∆).
Before stating the next corollary, let us recall the definition of the lower and upper

Hausdorff dimension of Borel measure:

dim∗(µ) = inf{dim(S) | µ(S) > 0},

dim∗(µ) = inf{dim(S) | µ(S) = µ(R)},
where dim(S) denotes Hausdorff dimension of the set S. Thus, the measure gives zero
weight to any set S with dim(S) < dim∗(µ) and for any ε > 0 is supported by some
set S with dim(S) < dim∗(µ) + ε. The measure is of exact Hausdorff dimension if
dim∗(µ) = dim∗(µ). It is known (see [T] for the referencies) that

dim∗(µ) = µ− essinfγ−(x) = sup{α | γ−(x) ≥ α µ− a.s.}, (3.5)

dim∗(µ) = µ− esssupγ−(x) = inf{α | γ−(x) ≤ α µ− a.s.}. (3.6)

Here γ−(x) is the lower local exponent of µ:

γ−(x) = lim inf
ε→0

logµ([x− ε, x+ ε])

logε
.

For the packing dimension similar formulae hold (see [T] for details).

Corollary 3.2 1. For any δ ∈ (0, 1), ν > 0 the spectral measure µ of the state ψ = δ1 is
uniformly η− δ-Hölder continuous on [−2 + ν, 2− ν]. In particular, for µ′, the restriction
of µ on (−2, 2), dim∗(µ

′) ≥ η.
2. The packing dimension of µ is 1.

Proof. Let ε ∈ (4/LN+1, 4/LN ] for some N . One can easily see that

εLN + L
η−1

η

N ≥ ε1−η.

Therefore, Lemma 3.1 implies

µ([x− ε, x+ ε]) ≤ C(δ)εηLαNN ≤ C1(δ)ε
η−αN

for any x ∈ [−2 + ν, 2− ν]. Since limαN = 0, the uniform η− δ-continuity of µ restricted
to [−2+ ν, 2− ν] follows. As a particular consequence, γ−(x) ≥ η for all x ∈ (−2, 2). The
equality (3.5) implies dim∗(µ

′) ≥ η.
Taking εN = 1/LN , we obtain from Lemma 3.1 that

µ([x− εN , x+ εN ]) ≤ C(δ)ε1−αN
N .

19



Therefore, for the upper local exponents of the measure we have

γ+(x) ≡ limsupε→0

logµ([x− ε, x+ ε])

logε
≥ 1.

The fact that dimP (µ) = 1 follows [T]. The proof is completed.
Remark. These results are not new. The fact that dim∗(µ

′) ≥ η is proved in [JL] and
dimP (µ) = 1 in [CM]. Our proof, however, is more simple. Moreover, the upper bound
(3.2) contains more information.

Lemma 3.3 Let ψ = f(H)δ1, where f is bounded Borel function such that suppf ⊂
∆ = [−2 + ν, 2 − ν] for some ν > 0. Let T : LN/4 ≤ T < LN+1/4 for some N .
1. For any n the bound holds:

〈|ψ(t, n)|2〉(T ) ≤ C
LαNN

LN + TL
η−1

η

N

. (3.7)

2. Define M(T ) = L−δ
N (LN + TL

η−1

η

N ) with some δ > 0. Then

Pψ(n ≤M(T ), T ) ≤ CL
−δ/2
N

for T large enough and thus

Pψ(n ≥M(T ), T ) ≥ ||ψ||2 − CL
−δ/2
N .

3. For the time-averaged return probability the bound holds:

1

T

∫ ∞

0
dt exp(−t/T )|〈ψ(t), ψ〉|2 ≤ C

LαNN

LN + TL
η−1

η

N

. (3.8)

Proof. Using spectral Theorem in a standard way (see [T], for example), one first shows
that

2〈|ψ(t, n)|2〉(T ) =
∫

R

∫

R

dµψ(x)dµψ(y)uψ(n, x)uψ(n, y)R(T (x− y)) ≤

2
∫

R

dµψ(x)|uψ(n, x)|2bψ(x, T ), (3.9)

where
bψ(x, T ) =

∫

R

dµψ(u)R(T (x− u)) = εImFµψ(x + iε), ε = 1/T.

Since f is bounded and suppf ⊂ ∆, we get
∫

R

dµψ(x)|uψ(n, x)|2bψ(x, T ) ≤ C
∫

∆
dµψ(x)b(x, T )|uψ(n, x)|2.

The bound (3.2) and ∫

R

dµψ(x)|uψ(n, x)|2 ≤ 1
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yield (3.7). The second statement of Lemma directly follows. For the return probabilities
the result follows from the bound

Jψ(ε,R) ≤ CJ(ε,∆)

and the established upper bound for J(ε,∆) (Corollary 2.5). The proof is completed.
The situation is more difficult with the upper bounds for outside probabilities. We

shall consider the initial state ψ of the form ψ = f(H)δ1, where f ∈ C∞
0 ([−2 + ν, 2 − ν])

with some ν ∈ (0, 1/2). For smooth f it is well known that the function ψ(n) decays at
infinity faster than any inverse power and moreover, for the moments of the time-averaged
position operator, the ballistic upper bound holds:

〈|X|pψ〉(T ) ≤ C(p)T p, p > 0. (3.10)

The following statement holds (where we use some ideas of [CM] in the proof).

Theorem 3.4 Consider ψ of the first kind. Let T be such that LN/4 ≤ T ≤ L
1/η
N for

some N .
1. For any p ≥ 0 the following bound holds

∑

n≥2LN

np〈|ψ(t, n)|2〉(T ) ≤ C(p)T p+1L
−1/η
N (3.11)

In particular,
Pψ(n ≥ 2LN , T ) ≤ CTL

−1/η
N (3.12)

and
〈|X|pψ〉(T ) ≤ CLpN + CT p+1L

−1/η
N . (3.13)

2. Let T : LN/4 ≤ L1−δ
N+1 with some δ > 0. For M > 2LN and any A > 0 the uniform

bound holds:

Pψ(2LN ≤ n ≤M,T ) ≤ C
M

T + L
1/η
N

+
CA
LAN

. (3.14)

Proof. First of all, observe that the ballistic upper bound (3.10) implies

〈|ψ(t, n)|2〉(T ) ≤ C(r)T rn−r

for any r > 0. Therefore, taking r large enough, we obtain

∑

n≥T 2

np〈|ψ(t, n)|2〉(T ) ≤ C(r, p)T 2p+2−r ≤ C(p, A)T−A

for any A > 0. Thus, to prove (3.11), it is sufficient to consider the sum over n : 2LN ≤
n ≤ T 2. We use again the Parseval formula:

〈|ψ(t, n)|2〉(T ) =
ε

π

∫

R

dE|(R(E + iε)f(H)δ1)(n)|2, ε =
1

2T
. (3.15)
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Define ∆ = [−2 + ν/2, 2 − ν/2], where f ∈ C∞
0 ([−2 + ν, 2 − ν]). We shall denote by

a1(n, T ) the integral over R \ ∆ in (3.15), and by a2(n, T ) the integral over ∆. Since
f(x) = 0, |x| ≥ 2 − ν, one can show, as in the proof of the part b) of Theorem 2.4
(bounds (2.22)-(2.24)), that

|R(E + iε)f(H)δ1(n)| ≤ C(k, ν)

E(1 + |n|2)k/2

for any integer k > 0 and all E ∈ R \ ∆ with uniform in n,E, ε constants. Therefore,

a1(n, T ) ≤ C(k, ν)

T
(1 + |n|2)−k (3.16)

for any k > 0. In particular, taking k large enough, we obtain

∑

n≥2LN

npa1(n, T ) ≤ C(p, A)L−A
N (3.17)

for any A > 0.
Consider now the term a2(n, T ). Since R(z)f(H) = f(H)R(z), one can write it as

follows:
a2(n, T ) =

ε

π

∫

∆
dE|(f(H)R(E + iε)δ1)(n)|2. (3.18)

Since f ∈ C∞
0 ([−2, 2]), it follows again from results of [GK] that for any χ ∈ l2(N)

|(f(H)χ)(n)|2 ≤ C(k)
∑

m

(1 + |n−m|2)−k|χ(m)|2

Inserting this bound in (3.18) yields after integration:

a2(n, T ) ≤ C(k)ε
∑

m

(1 + |n−m|2)−k
∫

∆
dE|(R(E + iε)δ1)(m)|2 (3.19)

for any k > 0. Denote by a21(n, T ) the sum in (3.19) over m : m ≤ LN , by a22(n, T ) the
sum over m : LN < m ≤ T 2 + LN and by a23(n, T ) the sum over m : m > T 2 + LN . It
is clear that for any A > 0,

∑

2LN≤n≤T 2

np(a21(n, T ) + a23(n, T )) ≤ C(p, A)L−A
N ε

∑

m

∫

∆
|(R(E + iε)δ1)(m)|2. (3.20)

The fact that
ε

π

∑

m

∫

R

dE|(R(E + iε)δ1)(m)|2 = ||δ1||2 = 1

and (3.20) yield

∑

2LN≤n≤T 2

np(a21(n, T ) + a23(n, T )) ≤ C(p, A)L−A
N . (3.21)
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The summation over n in the expression of a22(n, T ) yields

∑

2LN≤n≤T 2

npa22(n, T ) ≤ Cε
∑

LN<m≤T 2+LN

mp
∫

∆
dE|(R(E + iε)δ1)(m)|2. (3.22)

To bound from above the r.h.s. of (3.22), we shall introduce in l2(N) operator

HN = H0 + VN , VN(n) = F (n ≤ LN)V (n)

with compactly supported potential and thus absolutely continuous spectrum on (−2, 2).
We denote by R(z) and RN(z) the resolvents of H and HN respectively. One can see that
for N large enough (so that Q(n) disappear),

(H −HN)φ(n) =
∞∑

k=N+1

δLk(n)V (Lk)φ(Lk). (3.23)

The resolvent equation implies that for any complex z = E + iε,

||R(z)δ1 − RN (z)δ1|| ≤
1

ε
||(H −HN)RN (z)δ1||. (3.24)

To bound from above the r.h.s. of (3.22) and the r.h.s. of (3.24), we need to control
g(n) = RN (z)δ1(n) for n > LN . In fact, a rather explicit expression can be obtained.
Since (HN − z)g = δ1 and VN(n) = 0 for n > LN ,

g(n− 1) + g(n+ 1) − zg(n) = 0, n > LN .

Thus,
(g(n+ 1), g(n))T = T0(n− LN , z)(g(LN + 1), g(LN))T , n ≥ LN , (3.25)

where T0(m, z) = A0(z)
m is the free transfer matrix with A0(z) given by (2.13). Since

E ∈ ∆ = [−2 + ν/2, 2 − ν/2], the matrix A0(z) has two complex eigenvalues

λ1,2 =
1

2
(z ±

√
z2 − 4)

with corresponding eigenvectors ei = (λi, 1)T , i = 1, 2. It follows from (3.25) that

(g(n+ 1), g(n))T = C1λ
n−LN
1 e1 + C2λ

n−LN
2 e2, n ≥ LN ,

with some complex C1, C2. Since Imz = ε > 0, one of the two eigenvalues, say, λ1, is
such that |λ1| < 1 and then |λ2| > 1. On the other hand, since g = RN (z)δ1, it should be
square integrable in n. Therefore, C2 = 0 and

(g(n+ 1), g(n))T = Cλn−LN1 (λ1, 1)T .

Finally, we obtain that

g(n) ≡ (RN(z)δ1)(n) = λn−LN1 g(LN) (3.26)
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for any n ≥ LN . One can see from the expression of λ1 that

exp(−c1ε) ≤ |λ1| ≤ exp(−cε) (3.27)

with uniform c1, c > 0 for all E ∈ ∆, ε ∈ (0, 1).
Let us return to the resolvent R(z). Using the trivial bound |g(LN)| ≤ 1/ε, one gets

from (3.23)-(3.24) and (3.26)-(3.27):

||R(z)δ1 − RN(z)δ1||2 ≤ ε−4
∞∑

k=N+1

V 2(Lk) exp(−2cε(Lk − LN ). (3.28)

Since T = 1
2ε

≤ L1−δ
N+1 in all three statements of the Theorem, V (Lk) = L

(1−η)/2η
k , and Lk

is a very fast growing sequence, it is easy to check that

||R(z)δ1 −RN (z)δ1||2 ≤ C exp(−1/εα) (3.29)

with some α > 0 for all E ∈ ∆, ε ∈ [Lδ−1
N+1, 4L

−1
N ]. Thus, the bounds (3.22) and (3.29)

imply

∑

2LN≤n≤T 2

npa22(n, T ) ≤ C/ε2p exp(−1/εα)+Cε
∑

LN≤m≤T 2+LN

mp
∫

∆
dE|RN(E+ iε)δ1(m)|2.

(3.30)
It follows from (3.26)-(3.27) and ε ≤ 2/LN that

∑

LN≤m≤T 2+LN

mp|RN(E + iε)δ1(m)|2 ≤ Cε−p−1|RN(E + iε)δ1(LN )|2. (3.31)

To bound RN (E + iε)δ1(LN), one can use the result of Lemma 4 in [CM]. For the sake
of completeness we shall give here a simple and slightly different proof. Namely, we shall
show that

|(RN(E + iε)δ1)(LN )|2 ≤ C(∆)
1

1 + εL
1/η
N

ImFN(E + iε), (3.32)

where E ∈ ∆ and FN denotes the Borel transform of the spectral measure associated to
the state δ1 and operator HN . First, it follows from (3.26)-(3.27) that

1

ε
ImFN(E + iε) = ||RN(E + iε)δ1||2 ≥

∑

m>LN

|g(m)|2 ≥ C

ε
|g(LN)|2.

Therefore,
|g(LN)|2 ≤ CImFN (E + iε). (3.33)

Let LN−1 < n < LN+1. The definition of g = RN (z)δ1 implies

g(n+ 1) + g(n− 1) − zg(n) = 0, n 6= LN , (3.34)

g(LN + 1) + g(LN − 1) + (V (LN ) − z)g(LN ) = 0. (3.35)
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It is clear that for n > LN ,

(g(n+ 1), g(n))T = T0(n− LN , z)(g(LN + 1), g(LN))T , (3.36)

and for n < LN − 1

(g(n+ 1), g(n))T = T0(n− LN + 1, z)(g(LN), g(LN − 1))T , (3.37)

where T0(m, z) is the free transfer matrix. Since z = E+ iε, E ∈ ∆, its norm is uniformly
bounded for |m| ≤ K/ε. Using the fact that ||T−1|| = ||T || and ε ≤ 2/LN , we thus get
that for 2LN > n > LN ,

|g(n+ 1)|2 + |g(n)|2 ≥ c(|g(LN + 1)|2 + |g(LN)|2).

with uniform c > 0. Summating this bound, one obtains

cLN (|g(LN + 1)|2 + |g(LN)|2) ≤ 2||g||2 = 2/εImFN(E + iε). (3.38)

Similarly, summation over LN/2 < n < LN yields (since LN > 2LN−1):

c/2LN(|g(LN)|2 + |g(LN − 1)|2) ≤ 2/εImFN (E + iε). (3.39)

Thus, (3.38)-(3.39) yield

|g(LN − 1)|2 + |g(LN + 1)|2 ≤ C

εLN
ImFN (E + iε). (3.40)

It follows from (3.35) that

|V (LN ) − z|2|g(LN)|2 ≤ C

εLN
ImFN (E + iε).

Since |z| ≤ 3 and V (LN ) = L
(1−η)/2η
N , we obtain

|g(LN)|2 ≤ C(∆)ε−1L
−1/η
N ImFN(E + iε). (3.41)

The bound (3.32) follows from (3.33) and (3.41).
We can finish now the proof of the first part of the Theorem.
It follows from (3.30),(3.31) and (3.32) that

∑

2LN≤n≤T 2

npa22(n, T ) ≤ C/ε2p exp(−1/εα)+

Cε−p−1L
−1/η
N

∫

∆
dEImFN(E + iε) ≤ Cε−p−1L

−1/η
N , (3.42)

since ε ≤ 2L−1
N and

∫

∆
dEImFN(E + iε) ≤

∫

R

dEImFN(E + iε) = πµN(R) = π.
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The bound (3.11) of Theorem follows from Parseval equality, (3.17), (3.21) (one takes
A = 1/η) and (3.42). Taking p = 0, we obtain the bound for outside probabilities. Since

〈|X|pψ〈(T ) ≤ (2LN)p||ψ||2 +
∑

n≥2LN

np〈|ψ(t, n)|2〉(T ),

the upper bound for the moments follows.
The proof of the second statement is similar. One defines a1(n, T ) and a2(n, T ) in the

same manner. The bound (3.17) yields

∑

2LN≤n≤M

a1(n, T ) ≤ CAL
−A
N .

Next, one denotes as a21(n, T ), a22(n, T ) and a23(n, T ) the sums in (3.19) over m ≤
LN , m : LN < m < 2M and m : m ≥ 2M respectively. The bound (3.21) yields

∑

2LN≤n≤M

a21(n, T ) ≤ CAL
−A
N .

Similarly, one shows that ∑

2LN≤n≤M

a23(n, T ) ≤ CAL
−A
N .

Thus, it is sufficient to bound from above the r.h.s. of

∑

2LN≤n≤M

a22(n, T ) ≤ Cε
∑

LN<m<2M

∫

∆
dE|(R(E + iε)δ1)(m)|2.

The same consideration as in the proof of the part 1 yields

∑

2LN≤n≤M

a22(n, T ) ≤ C exp(−1/εα) + Cε
∑

LN<m<2M

∫

∆
dE|(RN(E + iε)δ1)(m)|2, (3.43)

where
(RN(E + iε)δ1)(m) = g(LN)λm−LN

1 , m ≥ LN . (3.44)

The bounds (3.32) and (3.44) imply

ε
∑

LN<m<2M

|(RN(E + iε)δ1)(m)|2 ≤ C
Mε

1 + εL
1/η
N

ImFN(E + iε).

Inserting this bound in (3.43), we obtain

∑

2LN≤n≤M

a22(n, T ) ≤ C
Mε

1 + εL
1/η
N

.

The bound (3.14) follows.
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4 Improved lower bounds

The result of Theorem 3.4 allows us to have total control of the integrals I, J (up to
factor like LαNN ).
Corollary 4.1 Let ∆ be nonempty interval such that ∆ ⊂ [−2+ν, 2−ν] for some ν > 0.
There exist positive constants uniform in ε such that for all ε : 4L−1

N+1 < ε ≤ 4L−1
N ,

Cε

εLN + L
η−1

η

N

≤ J(ε,∆) ≤ CI(ε,∆) ≤ CLαNN ε

εLN + L
η−1

η

N

, (4.1)

where αN → 0.

Proof. Pick a slightly smaller interval ∆′ ⊂ ∆. Let f be a function from C∞
0 (∆) such

that 0 ≤ f(x) ≤ 1 and f(x) = 1 on ∆′. Define ψ = f(H)δ1. The result of Lemma 2.1
applied to interval ∆′ yields

Pψ(n ≥M1(T ), T ) ≥ D1c1 > 0, (4.2)

where c1 = µψ(∆′) = µ(∆′) > 0, and

M1(T ) = c21/(16Jψ(ε,∆
′)), ε = 1/T. (4.3)

On the other hand, Theorem 3.4 implies

Pψ(n ≥ 2LN , T ) ≤ D2TL
−1/η
N , T ≤ L

1/η
N . (4.4)

If T ≤ D1c1
2D2

L
1/η
N ≡ γL

1/η
N , then (4.2), (4.4) imply Pψ(n ≥ 2LN , T ) < Pψ(n ≥ M1(T ), T )

and thus M1(T ) < 2LN . It follows from (4.3) that

C

LN
≤ Jψ(ε,∆

′) ≤ Jψ(ε,R) (4.5)

for ε ∈ [ε0, 4L
−1
N ], where ε0 = (γ)−1L

−1/η
N . Recall the equality

Jψ(ε,R) = ε
∫ ∞

0
dt exp(−εt)|〈ψ(t), ψ〉|2. (4.6)

The crucial observation is that Jψ(ε,R)/ε is decreasing in ε. Therefore, it follows from
(4.5)-(4.6) that

Jψ(ε,R) ≥ ε/ε0Jψ(ε0,R) ≥ CεL
1−η
η

N (4.7)

for all ε ≤ ε0. The bounds (4.5), (4.7) imply that

Jψ(ε,R) ≥ Cε

εLN + L
η−1

η

N
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for all ε ∈ (4L−1
N+1, 4L

−1
N ] with suitable constant. Since 0 ≤ f(x) ≤ 1 and f(x) = 0 for x

outside of ∆, the definition of Jψ, J implies

Jψ(ε,R) ≤
∫

∆
dµ(x)

∫

∆
dµ(y)R((x− y)/ε) ≤ J(ε,∆).

Thus, we get

J(ε,∆) ≥
∫

∆
dµ(x)

∫

∆
dµ(y)R((x− y)/ε) ≥ Cε

εLN + L
η−1

η

N

. (4.8)

The first inequality in (4.1) follows. The second and the third inequalities follow from
Lemma 2.2 and Corollary 2.5.

As a direct consequence of this result, one gets lower bound for the time-averaged
return probabilities Jψ(1/T,R). In fact, if the measure µψ has a nontrivial point part:
µψ({E0}) = γ > 0 for some E0, then clearly Jψ(ε,R) ≥ γ2 > 0 for any ε. The situation
is more interesting if the measure is continuous, in our case if suppµψ ⊂ (−2, 2).

Theorem 4.2 Assume that ψ = f(H)δ1, where f is a bounded Borel function
a) supported on [−2 + ν, 2 − ν] for some ν > 0
b) such that |f(x)| ≥ c > 0 on some interval ∆ ⊂ [−2 + ν, 2 − ν]. Then

Cε

εLN + L
η−1

η

N

≤ Jψ(1/T,R) ≤ CεLαNN

εLN + L
η−1

η

N

, ε = 1/T,

for T : LN/4 ≤ T < LN+1/4. If only the condition b) is fulfilled, then only the lower
bound for Jψ(ε,R) holds.

Proof. The upper bound is proved in Lemma 3.3. Since

Jψ(ε,R) ≥ c4
∫

∆
dµ(x)

∫

∆
dµ(y)R((x− y)/ε),

the second inequality in (4.8) yields lower bound. The proof is completed.
One observes that the integral

TJψ(1/T,R) =
∫ ∞

0
dt exp(−t/T )|〈ψ(t), ψ〉|2

grows linearly for T : LN ≤ T ≤ L
1/η
N and remains stable for T : L

1/η
N < T < LN+1 (up

to factors like CLαNN ). Since the main contribution to the integral comes from interval
[0, T ], one can conjecture that the return probability Rψ(t) = |〈ψ(t), ψ〉|2 = |µ̂ψ(t)|2 is

essentially constant of order L−1
N if t ∈ [LN , L

1/η
N ], and is small (decaying at least as 1/t)

if t ∈ [L
1/η+δ
N , LN+1].

The obtained lower bounds for I(ε,∆) imply also improved lower bounds for proba-
bilities and moments.
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Theorem 4.3 Let ψ be of the second kind. Then
1. For T : LN ≤ T ≤ L

1/η
N :

Pψ(n ≥ T, T ) ≥ CTL
−1/η−αN
N

and for T : L
1/η
N ≤ T < LN+1/4,

Pψ(n ≥ T, T ) ≥ CL−αN
N .

2. For T : LN/4 ≤ T ≤ L
1/η
N ,

Pψ(LN/4 ≤ n ≤ LN , T ) ≥ CL−αN
N .

As a consequence, for T : LN/4 ≤ T ≤ L
1/η
N ,

〈|X|pψ〉(T ) ≥ C(LpN + T p+1L
−1/η
N )LαNN ,

and for T : L
1/η
N ≤ T < LN+1/4,

〈|X|pψ〉(T ) ≥ CT pL−αN
N .

The results for probabilities follow directly from Theorem 2.4 and Corollary 4.1. The
bound 〈|X|pψ〉(T ) ≥ MpPψ(n ≥ M,T ) for any M yields the result for the moments. The
proof is completed.

The result of the Theorem tells, in particular, that for T ≥ L
1/η
N , some (not too small)

part of the wavepacket has gone through the barrier and moves ballistically:

Pψ(n ≥ T, T ) ≥ CL−αN
N ≥ CT−αN , αN → 0. (4.9)

On the other hand, Corollary 1.6 implies that for T ≥ L
1/η+δ
N with some δ > 0,

Pψ(n > LN , T ) ≥ Pψ(n ≥ TL
η−1

η
−αN

N , T ) ≥ c > 0.

Thus, some essential (and not small) part of the wavepacket is on the right of LN . This
part will continue to move ballistically up to the next barrier located at n = LN+1.
Therefore, one can expect the bound like

Pψ(n ≥ T, T ) ≥ c1 > 0

for T > L
1/η+δ
N , which is better than just (4.9). The following statement confirm this

conjecture. Slightly modifying the proof, we show also that

Pψ(n ≤ 2LN , T ) ≥ c2 > 0

for T ≤ τL
1/η
N with τ > 0 small enough. This is better than Pψ(n ≤ 2LN , T ) ≥ CL−αN

N ,
which follows from Theorem 4.3.
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Theorem 4.4 The following statements hold:
1. Assume that ψ is of the second kind. For any δ > 0 there exist τ > 0, c1 > 0 such that
for T : L

1/η+δ
N ≤ T < L1−δ

N+1 with N large enough,

Pψ(n ≥ τT, T ) ≥ c1 > 0.

If ψ is of the first kind, for any θ > 0 one can choose τ so that

Pψ(n ≥ τT, T ) ≥ ||ψ||2 − θ.

In both cases, for such T ,

〈|X|pψ〉(T ) ≥ C(p)T p, p > 0.

2. Let ψ be of the second kind. There exists τ > 0 small enough such that

Pψ(n ≤ 2LN , T ) ≥ c2 > 0

for all T : LN/4 ≤ T ≤ τL
1/η
N . If ψ is of the first kind, then better bound holds:

Pψ(n ≤ 2LN , T ) ≥ ||ψ||2 − CTL
−1/η
N . (4.10)

Proof. Recall that ψ = f(H)δ1, where f is a bounded Borel function, f ∈ C∞(S),
S = [E0 − ν, E0 + ν] ⊂ [−2 + ν, 2 − ν] and |f(x)| ≥ c > 0 on S. Let h be some function
such that 0 ≤ h(x) ≤ 1, h ∈ C∞

0 ([E0 − γ, E0 + γ]) and h(x) = 1, x ∈ [E0 − θ, E0 + θ],
where 0 < θ < γ < ν. Define g(x) = f(x)h(x). It is clear that g ∈ C∞

0 ([E0 − γ, E0 + γ]).
Let

ρ = g(H)δ1, χ = ψ − ρ = (f(H) − g(H))δ1.

As |f(x)| ≥ c > 0 on S,

α ≡ ||ρ||2 ≥ c2µ([E0 − θ, E0 + θ]) > 0.

Since
〈ρ, χ〉 =

∫
dµ(x)|f(x)|2h(x)(1 − h(x))

and f bounded, choosing the parameter γ in the definition of h close enough to θ, one
can ensure that

|〈ρ, χ〉 ≤ ||ρ||2/4 = α/4. (4.11)

Let ρ(t) = exp(−itH)ρ, χ(t) = exp(−itH)χ and ψ(t) = exp(−itH)ψ. For any n ∈ N,

|ψ(t, n)|2 = |ρ(t, n)|2 + |χ(t, n)|2 + 2Re(ρ(t, n)χ(t, n)).

Let M > 0. Summation over n ≤M and time-averaging yield for any T > 0:

∑

n≤M

〈|ψ(t, n)|2〉(T ) ≤
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||χ||2 +
∑

n≤M

〈|ρ(t, n)|2〉(T ) + 2||χ||

∑

n≤M

〈|ρ(t, n)|2〉(T )




1/2

. (4.12)

We have used the fact that ||χ(t)|| = ||χ|| and the Cauchy-Schwarz inequality. The
condition (4.11) implies that ||χ||2 ≤ ||ψ||2 − α/2. Therefore, (4.12) yields

Pψ(n ≤M,T ) ≤ ||ψ||2 − α/2 + Pρ(n ≤M,T ) + C(Pρ(n ≤M,T ))1/2 (4.13)

Thus, if Pρ(n ≤ M,T ) ≤ η, where η is small enough (depending on α), then Pψ(n ≥
M,T ) ≥ α/4 > 0.

Let M > 2LN . To bound from above Pρ(n ≤M,T ), we shall write

Pρ(n ≤M,T ) = Pρ(n ≤ 2LN , T ) + Pρ(2LN < n ≤M,T )

Recall that ρ = g(H)ψ, where g ∈ C∞
0 ([E0 − γ, E0 + γ]) and

[E0 − γ, E0 + γ] ⊂ [E0 − ν, E0 + ν] ⊂ [−2 + ν, 2 − ν].

Therefore, all upper bounds of the previous section hold for ρ. Since T ≥ L
1/η+δ
N , the

bound (3.7) of Lemma 3.3 yields

Pρ(n ≤ 2LN ) ≤ CLαN−δ
N ≤ CL

−δ/2
N (4.14)

for N large enough. On the other hand, the bound (3.14) of Theorem 3.4 implies

Pρ(2LN ≤ n ≤M,T ) ≤ C
M

T
+ CAL

−A
N (4.15)

for any A > 0. The bounds (4.14)-(4.15) yield

Pρ(n ≤M,T ) ≤ C
M

T
+ βN , βN → 0.

It is clear that taking M = τT with τ > 0 small enough, for N large enough we get
Pρ(n ≤M,T ) ≤ η and thus Pψ(n ≥M,T ) ≤ α/4 > 0.

In the case of ψ of the first kind the proof is more simple. One can directly estimate
Pψ(n ≤ 2LN , T ) and Pψ(2LN ≤ n ≤ M,T ) as in (4.14), (4.15). Taking τ small enough,
one obtains for T large enough that Pψ(n ≤ τT, T ) ≤ θ. For the moments the bound
directly follows.

To prove the second part of the Theorem, one shows the bound similar to (4.13):

Pψ(n ≥M,T ) ≤ ||ψ||2 − α/2 + Pρ(n ≥M,T ) + C(Pρ(n ≥M,T ))1/2.

Taking M = 2LN and using the bound (3.12) of Theorem 3.4 for the state ρ, we get

Pρ(n ≥ 2LN , T ) ≤ CTL
−1/η
N .

One sees that for LN/4 ≤ T ≤ τL
1/η
N with τ small enough,

Pρ(n ≥ 2LN , T ) + C(Pρ(n ≥ 2LN , T ))1/2 ≤ α/4.

Thus, Pψ(n ≤ 2LN , T ) ≥ α/4 > 0. In the case of ψ of the first kind, the bound (4.10)
follows directly from the bound (3.12) of Theorem 3.4. The proof is completed.
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Corollary 4.5 Let ψ be of the first kind.
1. The equalities hold:

β−
ψ (p) =

p+ 1

p+ 1/η
, β+

ψ (p) = 1.

2. The measure µψ and the restriction of µδ1 to (−2, 2), have exact Hausdorff dimension
η.

Proof. The first statement is proved using the bounds for the moments of Theorem 2.8
and Theorem 3.4 and considering LN ≤ T ≤ LαN and LαN ≤ T < LN+1 with suitable α as
in the proof of Theorem 2.8. The bound dim∗(µψ) ≥ η was proved by Jitomirskaya and
Last (see also Corollary 3.2 for a more simple proof). On the other hand, one has the well
known inequality β−

ψ (p) ≥ dim∗(µψ) for all p > 0 (which follows from the results of [L]).

Since β−
ψ (p) = p+1

p+1/η
, letting p → 0 we obtain the upper bound dim∗(µψ) ≤ η. Thus, µψ

has exact Hausdorff dimension η. Since it is true for any f of the first kind, it is true for
the restriction of µδ1 to (−2, 2). The proof is completed.
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