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Abstract

Lehmann, Magidor, and Schlechta developed an approach to
belief revision based on distances between any two valua-
tions. Suppose we are given such a distabcé his defines

an operatoip, called adistance operatgrwhich transforms
any two sets of valuation¥” andW into the setV|p W of

all those elements off” that are closest t&". This opera-

tor |p defines naturally the revision df by « as the set of

all formulas satisfied in/x |p M. (i.e. the set of all those
models ofa that are closest to the models &f). This con-
stitutes adistance-based revision operatotehmannet al.
characterized families of them using a “loop” condition of
arbitrarily big size. An interesting question is whetheisth
loop condition can be replaced by a finite one. Extending
the results of Schlechta, we will provide elements of negati
answer. In fact, we will show that for families of distance
operators, there is no “normal” characterization. Appnued
tively, a characterization is normal iff it contains onlyifen
and universally quantified conditions. Though they are nega
tive, these results have an interest of their own for thep hel
to understand more clearly the limits of what is possible in
this area. In addition, we are quite confident that they can be
used to show that for families of distance-based revisi@n-op
ators, there is no normal characterization either. Foairc#,

the families of Lehmanet al. might well be concerned with
this, which suggests that their big loop condition cannot be
replaced by a finite and universally quantified condition.

Introduction

Belief revision is the study of how an intelligent agent may
replace its current epistemic state by another one which
is non-trivial and incorporates new information. In (Al-
chourrdn, Gardenfors, & Makinson 1985), the well-known
AGM approach was proposed. An epistemic state is mod-
elled there by a deductively closed set of formulasand
new information by a formula. A revision operator is then
a function that transform&” and« into a new set of formu-
las (intuitively, the revised epistemic state).

One of the contributions of the AGM approach is that
it provides well-known postulates that any reasonable revi

to their “soundness”, e.gd. (Katsuno & Mendelzon 1992), and
especially “completeness”, e.g. (Freund & Lehmann [1994),
(Darwiche & Pearl 1994)] (Lehmann 1995), and (Darwiche
& Pearl 1997). In particular, to be accepted, an operator
never needs to put some coherence between the revisions of
two different setsk and K’. As a consequence, some oper-
ators are accepted though they are not well-behaved when it-
erated. In addition, modelling an epistemic state by jugt-a d
ductively closed set of formulas has been rejected by many
researchers, e.gl (Boutilier & Goldszmidt 1p93), (Boatili
1993), [Darwiche & Pearl 19p7)| (Williams 1994), and
(Nayaket al. 1996). In {Lehmann 1995) and (Friedman
& Halpern 1996), it is argued that this modelling is not suf-
ficient in many Al applications.

This provides motivations for another approach, based
on distances between any two valuations, introduced in
(Bchlechta, Lehmann, & Magidor 1996) and investigated
further in {Lehmann, Magidor, & Schlechta 2001). Their
approach is in line with the AGM modelling of an epis-
temic state, but it defines well-behaved iterated revisions
More precisely, suppose we have at our disposal a distance
D between any two valuations. This defines an operator
called adistance operatgrwhich transforms any ordered
pair (V, W) of sets of valuations into the s&t|p1 of all
those elements di that are closest t&" according taD.

This operatotp defines naturally the revision df by «
as the set of all formulas satisfied M |p M, (i.e. the set
of all those models ofi that are closest to the modelsig).
This constitutes alistance-based revision operatawhich
is interesting for its natural aspect and for it is well-beddh
when iterated. This is due to the fact that the revisions of
the differentK’s are all defined by the same distance, which
ensures a strong coherence between them. Note that this is
not the case with other definitions. For instance, with spher
systems|[(Grove 19B8) and epistemic entrenchment relations
(Gardenfors & Makinson 1988), the revision of eakhis
efined by a different structure without any “glue” relating
them.

In (Lehmann, Magidor, & Schlechta 2Q01), several fami-

o

sion operator should satisfy. These postulates have been de jies of distance-based revision operators were charaetri
fended by their authors. But, doubts have been expressed aspy the AGM postulates together with new ones that deal

*Thanks to Karl Schlechta for very valuable discussions.
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with iterated revisions. However, the latter postulates in
clude a “loop” condition of arbitrarily big size. An inter-
esting question is whether it can be replaced by a finite



condition. Elements of negative answer were provided in
(Schlechta 20Q4). Approximatively, Schlechta call noreal
characterization containing only conditions which areténi
universally quantified (like e.g. the AGM postulates), and
simple (i.e. using only elementary operations like elgn,

\). Then, he showed that for families of distance operators,
there is no normal characterization.

Now, there is a strong connexion between the distance op-
erators (which apply to valuations) and the distance-based
revision operators (which apply to formulas). It is quita+e
sonable to think that the work of Schlechta can be continued
to show that for families of distance-based revision opera-
tors, there is no normal characterization either. The fami-
lies investigated in|(Lehmann, Magidor, & Schlechta 2001)
might well be concerned with this, which suggests that the
arbitrarily big loop condition cannot be replaced by a finite
universally quantified, and simple condition.

The contribution of the present paper is to extend the work
of Schlechta in two directions. First, we will use the word
“normal” in a larger sense. Indeed, we will call normal a
characterization containing only conditions which aretéini
and universally quantified, but not necessarily simple (i.e
the conditions can involve complex structures or functjons
etc., we are not limited to elementary operations). Then, we
will show that the families which Schlechta investigatell st
do not admit a normal characterization, in our larger sense.
This is therefore a generalization of his negative resGlx-
ond, we will extend the negative results (always in our spnse
to new families of distance operators, in particular to some
that respect the Hamming distance.

We are quite confident that the present work can be con-
tinued, like the work of Schlechta, to show that for fami-
lies of distance-based revision operators, there is no alorm
characterization either. But, we will cover more familiesla
with a more general definition of a normal characterization.
This is the main motivation. In addition, the impossibility

than the cost/. And, d(v, w) is the cost of the move from

v to w. Natural properties that come to mind are those of
usual distances. Before introducing them, we need standard
notations:

Notation 2 P denotes the power set operator.

For every sef5, | S| denotes the cardinality of.

N, N*, R, andR™ denote respectively the natural, positive
natural, real, and positive real numbers.

Letr € R. Then,abs(r) denotes the absolute valuerof
Letn,m € N. Then,[n,m] denotes the set of evekyin N
(notinR) such that < k& < m.

Definition 3 SupposeD = (C, <, d) is a pseudo-distance
onaset.

D is symmetridff Vo, w € V, d(v,w) = d(w, v).

D is identity respectindIR) iff

(1) C =TR;

(2) < is the usual strict total order dg;

B)Vv,w eV, d(v,w) =0iff v =w.

D is positiveiff (1), (2), and
(4)Vo,weV,0=dv,w).

D is triangle-inequality respectingTIR) iff (1), (2), and
BG)Vo,w,z € V,d(v,z) = dv,w) + d(w, z).

These properties have not been imposed from start because
natural circumstances could then no longer be modelled. For
instance, non-symmetric pseudo-distances are useful when
moving fromwv to w may be “cheaper” than moving from

w to v. There are also circumstances where staying the
same requires effort and then non-IR pseudo-distances will
be helpful. We can also imagine scenarios where some costs
can be seen as “benefits”, we will then turn to non-positive
pseudo-distances, etc.

In addition, the costs are not required to be necessarily
the real numbers. Indeed, for instance, we could nétb
model an “infinite cost” useful when a move is impossible
or extremely difficult. Provided one accepts the infinitetcos

results of the present paper already help to understand more|N|, we can define naturally “liberal” versions of identity

clearly the limits of what is possible in this area. They have
therefore an interest of their own.

First, we will present the distance-based revision and the
characterizations of Lehmarat al. Second, we will define
formally the normal characterizations. Third, we will show
the impossibility results. And finally, we will conclude.

Background
Pseudo-distances

respect, positivity, and triangle-inequality respect:

Definition 4 SupposeD = (C, <, d) is a pseudo-distance
onaset.

Disliberally IR iff

(1)C=RU{INl};;

(2)Ve,d € Coe<ciff (¢,d eRande < )or(ceR
andc’ = |N|);

B)Vv,w eV, d(v,w) =0iff v =w.

D is liberally positiveiff (1), (2), and

In many circumstances, it is reasonable to assume that an(4) Vv, w € V,0 = d(v,w).

agent can evaluate for any two valuatianandw, how far

is the situation described hy from the situation described
by v, or how difficult or unexpected the transition franto

w is, etc. In [Lehmann, Magidor, & Schlechta 2p01), this is
modelled by pseudo-distances:

Definition 1 LetV be a set.

D is apseudo-distancenV iff D = (C, <, d), whereC' is
a non-empty setx is a strict total order or”, andd is a
function fromy x Vto C.

Intuitively, V is a set of valuations. Each element@fep-
resents a “cost’c < ¢’ means the costis strictly smaller

Disliberally TIR iff (1), (2), and

(5) Vo,w,z € V: if d(v,z),dv,w),d(w,z) € R, then
d(v,z) X d(v,w) + d(w, z);

if d(v,z) = |N|, thend(v, w) = |N| ord(w,z) = |N|.

The Hamming distance between propositional valuations
has been considered i (Dalal 1p88) and investigated fur-
ther by many authors. Respecting this distance is an impor-

tant property. We need before to present the matrices for a
propositional languagg (Urguhart 2001):

Definition 5 Let £L = (A,C) be a propositional language
(A denotes the atoms ariithe connectives), lef be the



set of all well-formed formulas (wffs) of, andV ¢ € C, let Definition 9 LetD = (C, <, d) be a pseudo-distance dh.

n(¢) be the arity ob. D is definability preservingDP) iff

M is amatrixon L iff M = (T, E, f), whereT is a set, VV,W eD,V|pW € D.

E is a non-empty proper subset df and f is a function D is consistency preservin@P) iff

(whose domain i€) such thatv o € C, f, (i.e. f(¢)) is a VV,W e P(V) \ {0}, VIpW # 0.

function from7(*) to T'. _ Now, suppose we are given a pseudo-distafcen V...

v is a M-valuationiff v is a function from* to 7" such Then, the revision of a consistent set of formuldsy a sec-
thatVo € C, YV au,...,an0) € F, v(o(ag,. .. aan(o))) = ond oneA can be defined naturally as the set of all formulas
Jo(v(an), ..., v(an))). satisfied inMr|p Ma:

Intuitively, T is a set of truth values anfl contains all the ~ Definition 10 Letx be an operator fror x C to P(F.).
designated truth values. We say thak is adistance-based revision operatidfrthere

exists a pseudo-distanteonV, such thatV I', A € C,

Definition 6 Let £ = (A,C) be a propositional language, T % A = T(Mr|pMa).

M a matrix onL, V the set of allM-valuations, and® =

(C, =, d) a pseudo-distance an In addition, if D is symmetric, IR, DP etc., then so4s

We use the following notationt v, w € V, The authors of [(Lehmann, Magidor, & Schlechta 3001)
h(v,w) :=={p € A:v(p) # w(p)} rewrote the AGM postulates in their framework as follows.
D isHamming- mequallty respectin$IR) iff Vo, w,z €V, Suppose is an operator fronC x C to P(F.) Then, define

if [2(v, w)| < |h(v,2)], thend(v, w) < d(v,z). the following propertiesy I', ", A, A’ € C,

Recall thath (v, w) may be infinite and thus: should be (x0) if Fe(D) = Fo(IV) andi=c(A) = F(A),

understood as the usual order on the cardinal numbers. thenT' x A =T" x A”;

We turn to crucial operators introduced in (Lehmann, (
Magidor, & Schlechta 2001). They are central in the defini- (
tion of the distance-based revision. They transform any two (

(

*1) TxAeCandl’x A =F.(T xA);
*x2) A CT xA;
sets of valuation$” andW into the set of every element x3) FTUA € C thenl'x A = . (T'UA);

of W such that a global move froi to w is of minimal x4) if TxA)UA’ € C,
cost. Note that concerning this point, (Lehmann, Magidor,  thenI' x (AU A’) =F. (T x A) U AY).

& Schlechta 2001) has its roots in (Katsuno & Mendelzon  Then, it can be checked that every positive, IR, CP and DP

1992) and especially ir} (Lewis 1973). distance-based revision operatosatisfies(x0)-(x4), i.e
Definition 7 SupposeD = (C, <, d) is a pseudo-distance the AGM postulates. More importantly,satisfies also cer-

tain properties that deal with iterated revisions. Thisas n
surprising as the revisions of the differé@ti are all defined
by a unique pseudo-distance, which ensures a strong coher-
ence between them. For examplesatisfies two following
{fweWw:JeV,V' e V,vu' € W,d(v,w) < dv',w')}. propertiesV I', A, {a}, {5} € C,

o if y e (T'x{a})xAandy € (T x{B})*x A,
Distance-based revision operators theny € (T x {a V }) x A;

The ontological commitments endorsed in (Lehmann, Magi- ® if v € (I'x {aV }) x A,

dor, & Schlechta 2001) are close to the AGM ones: aclassi- theny € (I'x{a})xAory e (T'x{3}) x A.

cal propositional language is considered and both epistemi These properties are not entailed by the AGM postulates,
states and new information are modelled by consistent sets a counter-example can be found in (Lehmann, Magidor, &
of formulas (not necessarily deductively closed). Schlechta 2001). But, they seem intuitively justified. In-
deed, take three sequences of revisions that differ only at
some step in which the new information dsin the first
sequenceg in the second, and Vv 3 in the third. Now,
supposey is concluded after both the first and the second
sequences. Then, it should intuitively be the case thiat
concluded after the third sequence too. Similar arguments
can be given for the second property. Now, to characterize
the full distance-based revision more is needed. This is dis
cussed in the next section.

on asef/.
We denote byip the binary operator orP()) such that
VV,W CV,we haveV |pW =

Notation 8 We denote byL. some classical propositional
language and by, V., ., and F. respectively the clas-
sical consequence relation, valuations, satisfacticatio,
and wffs of C.. LetI’, A C F. andV C V., then:
FvA:={aVp:aecl,feA};

Fo(T):={aeF.: T+, a};
Mr={veV.:Vaecl,vl.al
T(V):={aeF.:VCM,};

C:= {Fg-}—(,'_((r) 7&-7:(,}1

D:={VCcV.:3lCF,V = Mr}. Characterizations

In this classical framework, two new properties for pseudo- The authors of{(Lehmann, Magidor, & Schlechta 3001) pro-
distances can be defined. They convey natural meanings.vided characterizations for families of distance-basef re
Their importance has been put in evidence in (Lehmann, sion operators. They proceed in two steps. First, they de-
Magidor, & Schlechta 2001). fined the distance operators, in a very general framework:




Definition 11 Let V be a setV,W,X C P(V), and| an
operator fromV x W to X.

| is adistance operatoiff there exists a pseudo-distanfe
onVsuchthat Ve VYW € W, V|IW =V |pW.

In addition, if D is symmetric, HIR, DP, etc., then so|is

Then, they characterized families of such distance operato
(with the least possible assumptions ab®tW, and X).
This is the essence of their work. Here is an example:

Proposition 12 (Lehmann, Magidor, & Schlechta 2001)
Suppose’ is a non-empty sely C P(V) (suchthat) ¢ V
andvV,WW € V,wehavel UW € Vandif VN W # 0§,
thenV N W € V too), and| an operator fronV x Vto'V.
Then,| is a symmetric distance operator ¥ffk € N* and

VVo,Vi,..., V& € V, we havely|V; C V4 and
M|(VouV2)) NV # 0,

.(i/.k](kal UV)) N Vit #0,
then(Vo|(Vi U VL)) N VL # 0.

In a second step only, they applied these results to char-
acterize families of distance-based revision operatoms. F
instance, they applied PropositiE‘I 12 to get Proposn 13
below. We should say immediately that they chose a clas-
sical framework to define the distance-based revision. But,
if we choose now another framework, there are quite good
chances that Propositi 12 can be still applied, thanksto i
algebraic nature.

Proposition 13 (Lehmann, Magidor, & Schlechta 2001)
Let = be an operator fro x C to P(F.).

Then,x is a symmetric CP DP distance-based revision oper-
ator iff x satisfieg(x0), (x1), (x2), and

Vke N+,VFO,F1,...,F]¢ e C,

FO U (Fl * (FQ V FQ))
Fl U (FQ * (Fl \Y Fg))

e C,
(xloop) if €C,
i1 U, * (Tk—1 VTy)) € C,

thenl'; U Ty x (I'y VI'y)) € C.

Normal characterizations

Let V be a set® a set of binary operators dR()), and|

a binary operator of?()). Approximatively, in (Schlechta
2004), a characterization @ is called normal iff it con-
tains only conditions which are universally quantified, lgpp

| only a finite number of times, and use only elementary op-
erations (like e.gJ, N, \), see Section 1.6.2.1 of (Schlechta
2004) for details. Here is an example of such a condition:

(C1) YV,W € UCPW), VI(VUW)|W) = 0.

Now, we introduce a new, more general, definition with
an aim of providing more general impossibility results. Ap-
proximatively, in the present paper, a characterizatio® of
will be called normal iff it contains only conditions which
are universally quantified and applgnly a finite number of
times. Then, the conditions can involve complex structures
or functions, etc., we are not limited to elementary opera-
tions. More formally:

Definition 14 Supposé’ is a set and) a set of binary op-
erators orP (V).

C is anormal characterizatiorof O iff C = (n, ®) where
n € Nt and® is a relation orP(V)3" such that for every
binary operatot on P(V), we have € O iff
VYV, Vo, Wh, ..., W, CV,

Vi, Vo, Wh, W VA WA, L VR W) € @,

Note that® is a relation in the purely set-theoretic sense.
Now, suppose there is no normal characterizatiafi. oflere
are examples (i.e(C1), (C2), and(C3) below) that will
give the reader a good idea which conditions cannot charac-
terize@. This will therefore make clearer the range of our
impossibility results (PropositiolS a@ 16 below).

To begin,(C1) cannot characteriz®. Indeed, suppose it
does,i.e] € Oiff VV,W € U, V|(VUW)|W) = 0.
Then, taker = 4 and® such that

Vi, .. Vo, Wh, .. Wi, X1, ..., Xy) € Diff
‘/17‘/2 €U7
V3=V1UVs,
W3 = Vs, entail X, = 0.
‘/zl:‘/l;
Wy = X3

Then,(4, ®) is a normal characterization 61. We give the
easy proof of this, so that the reader can check that a con-
venient relation® can be found immediately for all simple
conditions like(C1).

Proof Direction: “—".

Suppose € O.

ThenVV, W € U, V|((VUW)|W) = (.

LetVy,...,Vy, Wy, ..., W,y C V. We show:

(Vl,...,V4,W1,...,W4,‘/1|W1,...,V4|W4) € .

Supposd/lv‘/Q S U, ‘Z-?) = Vl U‘/2l W3 = ‘/21 V4 = ‘/11

andW, = V3| Ws.

Then, as/;, V2 € U, we getV;|((V1 U V2)|Va) = 0.

But, Vi|((V1 U V2)[Va) = Vi[(V5|W3) = Vi|W.
Direction: “—".

Suppose&/ Vi, ..., Vy, Wy, ..., W, CV,

(Vl,...,V4,W1,...,W4,‘/1|W1,...,V4|W4) € .

We show| € O. LetV, IV € U.

TakeV, =V, Vo =W, Vs =11 UV, W3 =15, V4 =V,

W, = V3|W5. Take any values foil’; andWs.

Then,V; € U, V, ceU, Va=ViuW, W;=VW,V,=1V,

andW, = V3|Ws.

But, (‘/1,...,V4,W1,...,W4,‘/1|W1,...,V4|W4) cd

Therefore, by definition ob, V,|W, = 0.

But, Va|Wy = Vi[(Vi U V2) V) = VI(VuW)[W). |

At this point, we excluded all those conditions which are ex-
cluded by (the nonexistence of a normal characterization of
O in the sense of) Schlecha, i.e. all conditions I{K&l).

But actually, more complex conditions are also excluded.
For instance, letf be any function fromP (V) to P(V).
Then, the following condition:

(C2) YV, W € U, f(V)|(VUW)|W) = 0.

cannot characteriz®. Indeed, suppose it characteriz@s
Then, taker = 4 and® such that
(Vl,...,V4,W1,...,W4,X1,...,X4) c O iff



V17 ‘/2 € Ua
Va=V1UVs,
W3 = Vs,

V4 - f(‘/l)7
Wy = X3
Then,(4, ®) is a normal characterization 6f. We leave the

easy proof of this to the reader. On the other hdd®) is
not excluded by Schlechta, ff cannot be constructed from

entail X, = 0.

elementary operations. But, even if there exists such a con-
struction, showing that it is indeed the case might well be a

difficult problem.

We can even go further combining universal (not existen-

tial) quantifiers and functions lik¢. For instance, suppose
G is a set of functions fror® (V) to P (V) and consider the
following condition:

(C3) Ve VV,WeU, f(V)|((VUW)W) = 0.

Then, (C3) cannot characterizé. Indeed, supposg’3)
characterize®. Then, takex = 4 and® such that

Vi, Vi, Wh, o Wy, Xy, Xy) € D iff
‘/I)X/QEU7
‘/E%:Vlu‘/?a

Vfegifd W=V, thenX, = 0.
Vi = f(W),
W4:X37

Then, (4, @) is a normal characterization @. The easy
proof is left to the reader. On the other had:3) is not
excluded by Schlechta.

Finally, a good example of a condition which is not ex-

cluded (neither by us nor by Schlechta) is of course the ar-

bitrary big loop conditior(|loop).

Impossibility results

We provide our first impossibility result. It generalizes
Proposition 4.2.11 of| (Schlechta 2004). Our proof will be
based on a slight adaptation of a particular pseudo-distanc

invented by Schlechta (called “Hamster Wheel”).

Proposition 15 Let V be an infinite set\ the set of all
symmetric IR positive TIR distance operators frgh))?
to P(V), andO a set of distance operators froR())? to
P (V) such that\V" C O.

Then, there does not exist a normal characterizatiad.of

Proof Suppose the contrary, i.e. suppose thene is N*
and a relatiop onP(V)3" such that

(0) for every binary operatdronP(V), we have € O iff

YVi,...,. Vo, We,...,W,, CV,
Voo, Vo, Wh, oo W, Vi [W, L VG [W,) € .
As V is infinite, there are distincty, ..., vy, wi,..., W,

inV, withm = n + 3.

LetX = {v1,...,Um,W1,..., W}

Let D be the pseudo-distance drsuch thaD = (R, <, d),
where< is the usual order oR andd is the function defined
as follows. Letv, w € V. Consider the cases that follow:
Case 1w = w.

Case 2w # w.

Case 2.1{v,w} Z X.

Case 2.2{v,w} C X.

Case 2.2.1{v,w} C {v1,...,Um}.

Case 2.2.2{v,w} C {wi,..., wm}.

Case 2.2.334,j € [1,m], {v,w} = {v;,w;}.
Case 2.2.3.1i = j.

Case 2.2.3.2ubs(i — j) € {1,m — 1}.

Case 2.2.3.3t < abs(i — j) <m — 1.

Then,

if Case 1 holds;

if Case 2.1 holds;

if Case 2.2.1 holds;

if Case 2.2.2 holds;

if Case 2.2.3.1 holds;
if Case 2.2.3.2 holds;
if Case 2.2.3.3 holds.

d(v,w) =

N = === O
> ==

—
[\

Note thatD is essentially, but not exactly, the Hamster
4). The main difference is Case 2.1,
which was not treated by Schlechta. The reader can find a

Wheel of [Schlechta 20p

picture of D in Figure 1.

U1, A1
i 1.1
fug i
W 1.2
N s _ L4

\‘ E 2

Figure 1: A slight adaptation of Hamster Wheel.

Let | be the binary operator oR(V) such thaty V., W C V,
{wm} if V:{vm,vl},W:{wm,wl};
VW = {

{vm} WV =A{wp, w1}, W ={vm, 01 };
V|pW otherwise.

The difference betweerand|p is strong enough so that:
(1) |is not a distance operator.

The proof will be given later. Thus,Z O. Thus, by(0):

(2) Vi, ..., Vo, Wh,... ., W,y CV,
Vi Vi, W, o Wi, VWA, L VW) € @,

In addition, we tookn sufficiently big so that:
(3) 37 € [1,m — 1] such that
Vie [17 n]a {V;, Wz} # {{'Uw U7-+1}7 {w7'7 w7'+1}}-



We will give the proof later.
Let|” be the binary operator dR(V) such thatV V. W C V,

V|/W { {wTJrl} if V= {UTaUTJrl}; W = {wherrl};

{oraa} BV ={wr, wepa}, W = {vr, 041}
V|W  otherwise.

The difference betweefhand| is “invisible” for ®.

More formally,Vi € [1,n], V;|'W,; = V;|W;.

The proof of this is obvious b§3).

Therefore, by(2), we get:

Vi s Vi, Way o W, VAW, Vi /W) & @.
Thus, by(0), we obtain:
4) "¢ 0.

Proof of (1.2). We have {v,,v1}|s{wm, w1} =
{vm, viH{wm, w1} ={wn}.

Thereforew; & {vm,v1}s{wm,w1}. Thus:

Jv € {vm,v1}, Jw € {wp, w1}, glv,w) < g(vy,wy).
Case 1g(vm, wm) < g(vi,w1). We are done.

Case 29(vm, w1) < g(vi, wr).

We have{ vy, } s {wnm, w} = (v }p{wm, w1} = {ws}.
Thereforew; € {vm }s{wm, w1}

ThUS,g(Um, ’LUm) =< g(Umawl)'

Thus, by transitivity of<, (v, wm) < g(vi,wr).

Case 3y (v1, wm) < g(vy,wy).

Then,{vi }|s{wm, w1} = {wn}.

However, {v}|s{wm, w1} = {v1}lp{wm,wi} = {wi},
which is impossible.

But, at the same time, there is a convenient pseudo-distanceCase 4 (v1, w1) < g(vi,w1).

that representB. Indeed, letD’ be the pseudo-distance on
V such thatD’ = (R, <,d'), whered' is the function such
thatV v, w € V,

y 13 if 3 € [r+1,m],{v,w}={vi,w};
d'(v,w) = {d(v,w) otherwise.

Then, we will show:

®) "= |p.

But, D’ is obviously symmetric, IR, and positive.

In addition,D’ is TIR, becaus®’ is IR and

Vo,we VW, d(vw)=00rl1<d(v,w) <2.

Thus,|’ is a symmetric IR positive TIR distance operator.
Consequently € N and thus

6) |' € O.
So, we get a final contradiction kfy) and(6).

Proof of (1). Suppose the contrary, i.e. suppose there
is a pseudo-distancg = (C, <, g) onV such that = |s.

Then, we will show:

(11) Vie [me1]!g(vi7wi):g(viJrlvwiJrl)‘

On the other hand, we will show:

(1.2)  g(vm, wm) < g(v1,wr).

But, by (1.1) and(1.2), we get an obvious contradiction.

Proof of (1.1). Suppose € [1,m — 1]. Then:
{Uiavi+1}|${wi7wi+1} = {Uiavi+1}|D{wi7wi+1} =
{wi, wiv1}.

Case 1y (vi, wi) < g(Vit1, Wit1).

We have{v;}|s{w;, wit1} = {vi}[p{ws, wis1} = {wi}.
ThUS,wH_l Q/ {Ui}|3{wi,wi+1}.

Thereforeg(vi, w;) < g(vi, wit1)-

Thus,w;+1 & {vi, viy1}s{w:, wit1}, which is impossible.
Case 2,g(vit1, wit1) < g(vi, w;).

We have{v;1}s{wi,wit1} = {viy1}p{wi, wip1} =
{wit1}.

Thereforew; ¢ {vi+1}|5{wi,wi+1}.
Consequentlyy(vi+1, wit1) < g(vit1, w;).

Thus,w; & {v;, vi+1}|s{wi, w1}, which is impossible.
Case 3:g(vi,w;) A g(vit1,wir1) andg(viy1, wip1) A
g(viv wz)

Then, as< is total, g(v;, w;) = g(vit1, Wit1)-

Impossible by irreflexivity of<.

Proof of (3). For alls € [1, m — 1], define:

I = {Z € [Ln] : {VHW%} = {{UvaSJrl}a {wsawSJrl}}}'
Suppose the opposite of what we want to show, i.e. suppose
Vsell,m—1], I, #0.

ASv1, ..., U, w1, ..., wy aredistincty s, ¢t € [1,m — 1],

if s £ t,thenl, N1, = 0.

Thereforemm — 1 < | U...U 1]

On the other hand/ s € [1,m — 1], I, C [1,n].

ThUS,lIl u...u Im—1| <n.

Thus,m — 1 < n, which is impossible ag, = n + 3.

Proof of (5). LetV, W C V.

Case 1V = {vp, vp41} andW = {w,, w,41}.
Then,V|’W = {wr+1} = V|D/W.

Case 2V = {wy, wry1} andW = {v,, vp41}.
Then,V|’W = {’UrrJrl} =V|pW.

Case 3V = {vp,v1 } andW = {w,,, w1 }.
Then,VI'W = VW = {wy,} =V|pW.

Case 4V = {wp,, w1} andW = {v,, v1}.
Then,VI'W = V|W = {v,,} = V|pW.

Case 5{V, W} ¢

{{{or, 01} {wr, w1} {{om, 01}, {win, w11},
Then,V|'W = V|W = V|pW.

Case 5.1V =0orW = 0.

Then,V|DW =0= V|D/W.

Case 5.2V NW # (.

Then,V|DW =VnNnW= V|’D/W.

Case 5.3V £ 0, W # 0, andV NV = (.

Case 5.3.1V ¢ X.

Then,V|DW =W = V|D/W.

Case 5.3.2V C X.

Case 5.3.2.1W ¢« X.

Then,V|DW =W \ X = V|D/W.

Case 5.3.2.20WW C X.

Case 5.3.22.1W & {v1,...,vptandV & {ws,...,wm}.
Then,V|DW =W = V|D/W.

Case 5.3.2.2./ C {v1,...vntandW & {wq, ... wy}.
Then,V|DW =Wn {’Ul, . ,’Um} = V|'D/W.
Case 5.3.2.2.37 C {v1,...vp} andW C {wy,...
Case 5.3.2.2.3.Hv; € V,3w; € W,

1 <abs(i—j) <m—1.

Then,V|pW =

W }-



{w; e W:3v; €V, 1<abs(i—j)<m—1} =VipW
Case 5.3.2.23.2v;, € V,Vw; € W,

abs(i —j) € {0,1,m — 1}.

Case 5.3.2.2.3.2.1V UW| > 5.

Asm >4,3v, € V,Jw; e W, 1 <abs(i —j) <m—1,
which is impossible.

Case 5.3.2.2.3.2.2V UW| € {2,3,4}.
Case5.3.22.3221kc[l,m]:v, € Viup e W =10
Then,V|DW =W = V|D/W.

Case 5.3.2.2.3.2.2.2 € [1,m] such that
{kell,m]:v, € Vu, € W} ={i}.

Then,V|DW = {wl} = V|D/W.

Case 5.3.2.2.3.2.2.34, j € [1,m] such that < j and
{ke[l,m]:v, €Vandw, € W} ={i,j}.

Then,V = {Ui,vj} andW = {wi,wj}.

Case 5.3.2.2.3.2.23t<iorj <r.

Then,V|DW = {wi,wj} = V|D/W

Case 5.3.2.2.3.2.2.3.2<5 r < j.

We haveabs(i — j) € {1,m — 1}. Thus(V, W) €
{({Ura U7'+1}7 {w7'7 w7'+1}>1 <{U1; Um}; {wh wm}>}a
which is impossible.

Case 5.3.2.2.3.22.4k € [1,m] : vy € V,w € W}| > 3.
Then,|V UW| > 6, which is impossible.

Case 5.3.2.2.4/ C {wy,...wy} andW & {v1,... vy}
Then,V|DW =Wn {wl, ceey wm} = V|D/W

Case 5.3.2.2.57 C {wy,...wn} andW C {v1,...vm}.
Similar to Case 5.3.2.2.3. |}

(RU{|NJ}, <, d), where< andd are defined as follows.
Lete,d € RU{|N|}. Then,c < ¢ iff (¢,¢/ € Randc < ¢)
or (c € Randd = |N|).

Letv,w € V and consider the cases which follow:
Case 1v = w.

Case 2w # w.

Case 2.1{v,w} Z X.

Case 2.1.1th(v,
Case 2.1.2}h(v,
Case 2.2{v, w}
Case 2.2.1{v,w} C { S Um
Case222{vw C {un W}

Case 2.2.3314,5 € [1, ] {11 w} = {vi, w;}.
Case 2.2.3.2i = j.

Case 2.2.3.2ubs(i — j) € {1,m — 1}.
Case2.2.3.3t < abs(i —j) <m —1.

=1
|22.
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Then,
0 if Case 1 holds;
1.4 if Case 2.1.1 holds;
|h(v,w)| if Case 2.1.2 holds;
d(v, w) = 2.1 !f Case 2.2.1 holds;
’ 2.1 if Case 2.2.2 holds;
2.4 if Case 2.2.3.1 holds;
2.5 if Case 2.2.3.2 holds;
2.2 if Case 2.2.3.3 holds.

Note thatD is an adaptation of the Hamster Wheel of
(Bchlechta 2004). The reader can find a pictureDoin
Figure 2.

We extend the negative results to the “liberal” and Ham-
ming properties. The proof will be based on an adaptation
of the Hamster Wheel. Note that the Hamming distance is
a realistic distance which has been investigated by many re-
searchers. This strengthen the importance of Propogifion 1

below in the sense that not only abstract but also concrete Ul, w1 L4or |h(v w)]

cases do not admit a normal characterization.

Proposition 16 Let £ = (A4, C) be a propositional language
with A infinite and countableM a matrix onZ, V the set of
all M-valuations ' the set of all symmetric, HIR, liberally
IR, liberally positive, and liberally TIR distance opereto
fromP(V)? to P(V), andO a set of distance operators from
P(V)? to P(V) such thatV' C O.

Then, there does not exist a normal characterizatiad.of

Proof Suppose the contrary, i.e. suppose there:areN™
and a relatior onP(V)3" such that

(0) for every binary operatgronP(V), we have € O iff

YV, .oV, Wi, ..., W, CV,
(Vl,...,Vn,Wl,...,Wn,V1|W1,...,Vn|Wn) cd
As A is infinite, there are distingty, ..., pm, q1,.. ., ¢m iN

A, withm =n + 3.

Let's poseM = (T, D, f).

As D # (andT \ D # 0, there are distind}, 1 € T

Now, Vi € [1,m], letv; be theM-valuation that assignk
to p; and0 to each other atom oAl.

Similarly, Vi € [1,m], let w; be the M-valuation that as-
signsl1 to ¢; and0 to each other atom oA.

LetX ={v1,...,0m, W1 ..., Wy}

Note thatv v, w € X, with v # w, we haveh(v, w)| = 2.
Finally, let D be the pseudo-distance dhsuch thatD =
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Figure 2: An adaptation of Hamster Wheel.

Let | be the binary operator dR(V) defined as follows.
LetV, W C V and consider the cases that follow:
Case 1¥v € V,Vw € W, {v,w} C X or3 < |h(v,w)|.
Case 1.1V N X = {vy,v1} andW N X = {wy,, wy }.



Case 1.2V N X = {wy,, w1 } andW N X = {vy,,v1}.
Case 1.3{VNX,WnX} # {{vm,v1}, {wm,w1}}.
Case23v e V,3we W, {v,w} € X and|h(v,w)| < 3.
Then,

{wm}
VIW = { {vm}
VipW

if Case 1.1 holds;
if Case 1.2 holds;
if Case 1.3 or Case 2 holds.

The difference betwedrand|p is sufficiently strong so that

| is not a distance operator. The proof is verbatim the same

as for(1) in the proof of Propositioh 15.
Consequently, ¢ O, thus, by(0), we get that

(1) Iy, Vo, W, ..., W, CV,

iy s Vi, Wi, oo W VAW, . Vi [Wh) & .
Moreover, we choss: sufficiently big so that:
(2) Irell,m—1],Vie[l,n],

{Vi N X, W; N X} # {{or, vra}, {wr, wps1 )}
The proof is verbatim the same as @) in the proof of
Propositior] 15, except th&t andW; are replaced by; N X
andW; N X.
Let |’ be the binary operator oR()V) defined as follows.
LetV, W C V and consider the cases that follow:
Case 1vv € V,Vw € W, {v,w} C X or3 < |h(v, w)|.
Case 1.1V N X = {vy,vp41} andW N X = {wy, wy41}.
Case 1.2V N X = {w,, wp41} andW N X = {v,, v,41}.
Case 1.3{VNnX, WnNX} # {{vr,vr41}, {wr, wrs1}}.
Case23v e V,3we W, {v,w} € X and|h(v,w)| < 3.
Then,

{wTJrl}
VI'W = { {vre1}
V|iw

if Case 1.1 holds;
if Case 1.2 holds;
if Case 1.3 or Case 2 holds.

The difference betweehand| is “invisible” for ®.
More formally,V i € [1,n], V;|'W; = V;|W;.

The proof is obvious by2). Thus, by(1), we get:
Vi Vi, Way o W, VAW, Vi /W) & @,
Therefore, by(0), we get:

3) I'¢0.

But, in parallel, there is a convenient pseudo-distance tha

represents’. Indeed, letD’ be the pseudo-distance dh
such thath’! = (R U {|N|}, <, d'), whered’ is the function
such that/ v,w € V,

y _f23 if 3 e [r+1,m],{v,w} ={v,w};
d'(v,w) = {d(v,w) otherwise.

Note thatv v, w € V, we have:

|h(v, w)| € Niff d(v,w) € Riff d'(v,w) € R.
Thus,|h(v, w)| = INJiff d(v,w) = |NJiff d’'(v,w) = |N|.
Note again that/ v,w € V, with |h(v, w)| € N, we have:
|h(v,w)| < d'(v,w) < d(v,w) < |h(v,w)| + 0.5.

We will show:

ORI

But, D’ is symmetric, liberally IR, and liberally positive.
In addition, we will show:

(5) D'isHIR;

(6) D'is liberally TIR.

So,|" is a symmetric, liberally IR, liberally positive, libergll
TIR, and HIR distance operator.
Therefore|' € N and thus:

(1) '€ 0.
Finally, (3) and(7) entail a contradiction.

Proof of (4). LetV, W C V.

Case 1¥v € V,Vw € W, {v,w} C X or3 < |h(v,w)|.
Case 1.1V N X = {v, vp1} @andW N X = {w;, w41}
Then,V|’W = {w7.+1} = V|D/W.

Case 1.2V N X = {w,, w,1} andW N X = {v,, v,41}.
Then,V|'W = {v,41} = V| W.

Case 1.3V N X = {vy,v1} andW N X = {wy,, w; }.
Then,V|’W = {U}m} = V|D/W.

Case 1.4V N X = {wp, w1 } andW N X = {v,,,v1}.
Then,VI'W = {v,,} = V|p W.

Case 1.5{VNX,WnX}¢

{{{’Um, 1)1}, {wmv wl}}* {{vTv UTJrl}v {wTv wT+1}}}'
Then,VI'W =V|W =V |pW.

Case 1.5.1VNW # 0.

Then,VpW =V W =V|pW.

Case 1.5.2VNW = 0.

Case 1521V NX =0orwnX =0.

ThenVov e V,Ywe W,d (v,w) = d(v,w).
ThereforeV|pW = Vi]p W.

Case 1.52.2V N X # PandW N X # 0.

Then, we will show:

(4.1) V|pW =V N X|pW N X;
4.2) VipW =VnX|pWnX.
But, we haved/ N X|pWNX =V N X|pWnNX.

The proof of this is verbatim the same as for Case 5.3.2.2,

in the proof of(5), in the proof of Propositiofi 15, except
thatV andW are replaced by N X andWW N X.
Case23v e V,3we W, {v,w} € X and|h(v,w)| < 2.
Then,V|I'W =V|W = V|pW.

Case 2.1V NW # ().

Then,VipW =V NnW =V|pW.
Case 2.2V NW = 0.

Case 2.2.13v e V, 3w € W, |h(v,w
Then,VpW = {w € W : Jv €V,
VipW.

Case2.2.2vv' e V,Vu' € W, |h(v,w)| > 2.
Then,V|pW =

{weW:3v e V{vw} € X and|h(v,w)| = 2} =
VipW.

)| = 1.
h(v,w)] =1} =

Proof of (4.1). Direction: “C".

Letw € V|pW.

Then3Jv e V,Vv' € V,Vw' € W,d(v,w) < d(v,w).
Case 1{v,w} C X.

Thenw e VN X|pW NX.

Case 2{v,w} Z X.

We haved v e VN X and3w e WN X.

In addition,d(v’, w') € R andd(v’, w') < 2.5.

Case 2.1{A(v,w)| = |N|.

Then,d(v,w) = |N|.



Therefored(v’, w') < d(v,w), which is impossible.

Case 2.2{h(v,w)| € N.

Then,d(v,w) € Rand3 < |h(v,w)| < d(v,w).

Therefored(v', w') < d(v,w).

Thus,d(v', w’) < d(v,w), which is impossible.
Direction: “D".

Letw e VN X|pW N X.

Then,dv € V N X such that

Vo' eVNX,Vw e WnX,dwv,w) <d,w).

Letv' e V,w' € W.

Case 1:{v',w'} C X.

Then,d(v,w) < d(v',w’).

Case 2{v',w'} Z X.

Asv,w € X, we haved(v, w) € R andd(v, w) < 2.5.

Case 2.1jh(v',w")| = |N]|.

Then,d(v’,w") = |N|. Thus,d(v,w) < d(v',w’).

Case 2.2{h(v',w’)| € N.

Then,d(v',w’) € Rand3 < |h(v',w')| < d(v',w').

Therefored(v, w) < d(v',w").

Thus,d(v, w) < d(v',w").

Consequently, in all cased(v, w) = d(v', w').

Thus,w € V|pW.

Proof of (4.2). Verbatim the proof of(4.1), except

that|p andd are replaced byp, andd’.

Proof of (5). Letv, w,z € V with |h(v, w)| < |h(v, z)|.

Case 1jh(v,z)| = |N|.

Then,|h(v,w)| € N.

Thus,d' (v, w) € R andd’ (v, ) = |N|.
Therefored’' (v, w) < d (v, z).

Case 2]h(v,z)| € N.

Then,|h(v,w)| € N.

Therefore,d' (v,z) € R, d'(v,w) € R, andd' (v, w
|h(v,w)| + 0.5 < |h(v,w)| + 1 < |h(v,z)| < d'(v, ).
Thus,d’ (v, w) < d' (v, z).

Proof of (6). Letv, w,x € V.

Note thath(v, ) C h(v,w) U h(w, x).
Therefore|h(v, z)| < |h(v,w) U h(w, z)].
Case 1d'(v,z) = |N|.

Then,|h(v, z)| = |N].

Now, supposé’ (v, w) € R andd’ (w, z) € R.
Then,|h(v, w)], |h(w,x)| € N.

Thus,|h(v,w) U h(w,z)| € N.
Therefore|h(v, z)| € N, which is impossible.
Thus,d' (v, w) = |N| ord'(w,z) = |N]|.
Case 2d' (v, x),d' (v,w),d (w,z) € R.
Case 2.1{h(v,w)| = 0 or |h(w, z)| = 0. Trivial.
Case 2.2{h(v,w)| > 1 and|h(w,z)| > 1.

Case 2.2.1th(v,w)| > 2 or |h(w, x)| > 2.

Case 2.2.1.1h(v, z)| € {0,1,2}.

Then, d'(v,z) < |h(v,z)] + 0.5 < 25 < 3
(v, w)] + [h(w,2)| < d (v, w) +d'(w, z).

Case 2.2.1.2h(v, z)| > 3.

Then, d'(v,z) = |h(v,2z)|] < |h(v,w)| + |h(w,z)|
d' (v,w) + d'(w, x).

Case 2.2.2th(v,w)| = 1 and|h(w, z)| = 1.

Case 2.2.2.1h(v,z)| € {0,1,2}.

Then d’(v, ) < |h(v,x)| +05 <25 < 14414 =

\/

>] ( &)|+|h(w,x)|,impossib|e. i

Conclusion

We laid the focus on the question to know whetb€bop)

can be replaced by a finite condition in Propositioh 13. Ob-
viously, the presence dfloop) is due to the presence of
(|loop). So, to solve the problem one might attack its source,
i.e. try to replacg|loop) by a finite condition in Proposi-
tion|12. But, we showed in the present paper that for families
of distance operators, there is no normal characterization
The symmetric family is concerned with this and therefore
([loop) cannot be replaced by a finite and universally quan-
tified condition.

Now, we can go further. Indeed, there is a strong connex-
ion between the distance operators and the distance-based
revision operators. Lehmaret al. used this connexion to
get their results on the latter from their results on the f&rm
Itis reasonable to think that the same thing can be done with
our negative results, i.e this paper can certainly be caatn
in future work to show that for families of distance-based
revision operators, there is no normal characterizatien ei
ther. For instance, the family which is symmetric, CP, and
DP might well be concerned with this, which suggests that
(xloop) cannot be replaced by a finite and universally quan-
tified condition.

In addition, this direction for future work can still be fol-
lowed if we define the distance-based revision in a non-
classical framework. Indeed, as Lehmaginal. did, we
worked in a general framework. For instance, if we de-
fine the revision in theFOUR framework —FOUR is a
well-known paraconsistent logic frorf (Belnap 1977b) and
(Belnap 197 )7|a) — then we can probably use the results of
(Lehmann, Magidor, & Schlechta 2001) and our results re-
spectively to show characterizations of revision opegator
and show that they cannot be really improved.

Moreover, most of the approaches to belief revision treat
in a trivial way inconsistent sets of beliefs (if they areatesd
at all). However, people may be rational despite inconsis-
tent beliefs (there may be overwhelming evidence for both
something and its contrary). There are also inconsistencie
in principle impossible to eliminate like the “Paradox oéth
Preface” 5). The latter says that a conscien-
tious author has reasons to believe that everything written
his book is true. But, because of human imperfection, he is
sure that his book contains errors, and thus that something
must be false. Consequently, he has (in the absolute sense)
both reasons to believe that everything is true and that some
thing is false. So, principles of rational belief revisiomsh
work on inconsistent sets of beliefs. Standard approachest
belief revision (e.g. AGM) all fail to do this as they are bdse
on classical logic. Paraconsistent logics (like eROUR)
could be the bases of more adequate approaches.

Another advantage of such approaches is that they will
not be forced to eliminate a contradiction even when there is
no good way to do it. Contradictions could be tolerated until




new information eventually comes to justify one or another
way of elimination.

Finally, such approaches will benefit from an extended
field of application which includes multi-agent systems
where the agents can have individually inconsistent elief
Furthermore, it is easy to see that these perspectives for be
lief revision can be transposed to belief merging.
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