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UNCERTAINTY PRINCIPLES FOR RADAR AMBIGUITY FUNCTIONS AND

MOMENTS

PHILIPPE JAMING

Abstract. In this article, we give an estimate of the zero-free region around the origin of the
ambiguity function of a one-dimensional signal u in terms of the moments of u. This is done by
proving an uncertainty relation between the first zero of the Fourier transform of a non-negative
function and the moments of the function. As a corollary, we also give an estimate of how much a
function needs to be translated to obtain a function that is orthogonal to the original function. The
paper is completed with a proof of the local uncertainty principe for the ambiguity function.

1. Introduction

Woodward’s time-frequency correlation function or radar ambiguity function [Wo, Wi, AT], as
defined by

A(u)(x, y) =

∫ +∞

−∞
u
(
t +

x

2

)
u
(
t − x

2

)
e−2iπytdt

plays a central role in evaluating the ability of a transmitted radar waveform Re
(
u(t)eiω0t

)
to distin-

guish targets that are separated by range delay x and Doppler frequency y. Ideally, one would like to
have A(u)(x, y) = δ(0,0)(x, y), the Dirac mass at (0, 0), but this desideratum is not achievable because
of the so-called “ambiguity uncertainty principle”, that is the constraint

∫∫

R2

|A(u)(x, y)|2dxdy = A(u)(0, 0)2 =

(∫

R

|u(t)|2dt

)2

.

As A(u) is continuous when u ∈ L2(R) is a signal of finite energy, it follows that A(u) can not
vanish in a neighborhood of (0, 0) unless u = 0. Further limitations are given by various versions of
the uncertainty principle for the ambiguity function, see e.g. [BDJ, De, Gr, GZ] and the references
therein. These state in particular that if one concentrates A(u) in the x-variable, then one looses
concentration in the y-variable. Since ideal behavior is not achievable, it becomes important to
determine how closely to the ideal situation one can come.

A first attempt in that direction is due to Price and Hofstetter [PH] who considered the quantity

V (E) =

∫∫

E

|A(u)(x, y)|2 dxdy

where E is a measurable subset of R
2. Under the asumption that V (E) → V0 when E shrinks to

{(0, 0)}, they proved that, if A is a convex set symmetric with respect to the origin, then V (A) ≥
V0

4 area(A). It should however be mentioned that, for this result to be significant, one has to go outside
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the class of signals of finite energy. Indeed, when u has finite energy, from the continuity of A(u), one
gets that

V (E) ≤ area(E) sup
(x,y)∈E

|A(u)(x, y)|2 →Eց{(0,0)} area({(0, 0)})|A(u)(0, 0)|2 = 0.

So for u ∈ L2(R), V0 = 0 and the bound in [PH] is trivial. Nevertheless, it is possible to define A(u)
when u is a Schwartz distribution and the results in [PH, Section II] have then to be read under the
implicit assumption that A(u) ∈ L2

loc(R
2 \ {(0, 0)}) in which case V0 may not be 0 and their result is

then meaningfull.
We will here restrict our attention to signals u of finite energy and have some L2-moments.1 In

this context, we strengthen the above remark by giving an upper estimate of V (E). This is done
by a direct computation when E is a large enough ball and by generalizing Faris’ local uncertainty
principle when E is the complementary of a small enough ball. In particular we prove the following :

Theorem A. Let u ∈ L2(R) such tht tu, ξû ∈ L2(R) and let δ > 0. Then

— if ρ ≤
max

(∥∥tu
∥∥

2
,
∥∥tû
∥∥

2

)

65
∥∥u
∥∥

2

δ2 then

∫∫

x2+y2≥ρ2

|A(u)(x, y)|2 dxdy ≥ (1 − δ2)‖u‖4
;

— if R ≥
2
(∥∥tu

∥∥
2
+
∥∥tû
∥∥

2

)

δ
∥∥u
∥∥

2

then

∫∫

x2+y2≤ρ2

|A(u)(x, y)|2 dxdy ≥ (1 − δ2)‖u‖4
.

The second aim of this paper is to determine more precisely the neighborhood of (0, 0) on which
A(u) does not vanish. To do so, we prove a new form of uncertainty principle, showing that there is
an exclusion relation between the function u having moments and its Fourier transform being 0 near
0. More precisely, we prove the following:

Theorem B.

For every q > 0 there exists κq > 0 such that, if u ∈ L1(R) is a non-negative function, u 6= 0, then

inf{ξ > 0 : û(±ξ) = 0}q inf
t0∈R

∥∥|t − t0|qu(t)
∥∥

1
≥ κq‖u‖1.

This result is inspired by a recent result of Luo and Zhang [LZ]. They prove that if a real non-
negative function is supported in [0, +∞) then there is an uncertainty principle of the above form
relating its moments and the first zero its Fourier transform.

It turns out that the ambiguity function, when restricted in a given direction, is always the Fourier
transform of a non-negative function, but the support condition of Luo and Zhang is not valid. We thus
start by removing that condition in their uncertainty principle, which can be done at little expenses
apart from some numerical constants. This then allows to obtain a zero-free region for the ambiguity
function A(u) when u and its Fourier transforms have L2-moments. This region turns out to be a
rectangle when one considers dispersions:

Theorem C.

Let u ∈ L2(R) be such that tu(t) ∈ L2(R) and ξû(ξ) ∈ L2(R). Then the ambiguity function A(u) of

u has no zero in the convex hull of the four points
(
±

√
2‖u‖2

2π infa∈R

∥∥|t − a|u(t)
∥∥

2

, 0

)
and

(
0,±

√
2‖u‖2

2π infω∈R

∥∥|ξ − ω|û(t)
∥∥

2

)
.

The article is divided in two sections. The first one is devoted to the extension of Luo and Zhang’s
uncertainty principle. In the second section, after some preliminaries on the fractional Fourier trans-
form and on the ambiguity function, we give a proof of Theorem C. The section is completed with

1Recall that this is part of the narrow-band asumption of the model in which the radar measures A(u), see e.g. [AT].
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the adaptation of the local uncertainty principle to ambiguity function, in particular with the proo of
Theorem A.

Notation : In this paper d ≥ 1 is an integer. For 1 ≤ p < ∞ we define Lp(Rd) as the space of
measurable functions such that

‖f‖p
p :=

∫

Rd

|f(t)|p dt < +∞.

For u ∈ L1(Rd) ∩ L2(Rd) we define the Fourier transform as

Fu(ξ) = û(ξ) =

∫

Rd

u(t)e−2iπξt dt, ξ ∈ R

and then extend it to L2(Rd) in the usual way.

2. Zero-free regions of the Fourier transform

In this section, we restrict our attention to dimension d = 1.

Theorem 2.1.

For every q > 0 there exists κq > 0 such that, if u ∈ L1(R) is a non-negative function, u 6= 0, then

inf{ξ > 0 : û(±ξ) = 0}q inf
t0∈R

∥∥|t − t0|qu(t)
∥∥

1
≥ κq‖u‖1.

Remark :
— One may take for the constant κ = 1

c(2π)q where c is the smallest constant in Equation (2.2) below.

— A similar result has been proved in [LZ] but with the extra assumption that u be supported in
[0, +∞). The constant κ is then explicitely known and better than the one above.

— It is enough to prove that if u, |t|qu ∈ L1 and u ≥ 0, then for |ξ| <

(
κq

‖u‖1∥∥|t|qu
∥∥

1

)1/q

, û(ξ) 6= 0.

Once this is done, we can apply the result to the translate u(t − t0) of u.
— Assume the theorem has been proved for a given q and let q′ > q. Let u ≥ 0 be in L1 and such

that |t|q′

u ∈ L1 . From Hölder’s inequality, we get that
∥∥|t|qu

∥∥
1
≤
∥∥|t|q′

u
∥∥

q

q′

1

∥∥u
∥∥1− q

q
′

1
and |t|qu ∈ L1.

It further follows that
(

κq′

‖u‖1∥∥|t|q′u
∥∥

1

)1/q′

≤
(

κ
q/q′

q′

‖u‖1∥∥|t|qu
∥∥

1

)1/q

and we obtain the theorem for q′ if we set κq′ = κ
q′/q
q . In particular κq ≥ κq

1 for q ≥ 1.

— Taking u = 1 on [−a, a] and u = 0 elsewhere gives the bound κq ≤ 1

(q + 1)2q
.

We will give two proofs of this result. The first one gives an explicit constant and works easily in
all dimensions, but is restricted to q ≥ 1.

First proof of Theorem 2.1. From elementary calculus, we get that |û(ξ)−û(0)| ≤ |ξ| supη∈[0,ξ] |∇û(η)|
so that

(2.1) |û(ξ)| ≥ û(0) − |ξ| sup
η∈[0,ξ]

|∇û(η)|.
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But ∇û(η) = ∇
∫

R

u(t)e−2iπtη dt = −2iπ

∫

R

tu(t)e−2iπtη dt as long as

∫

R

|t|u(t) dt < ∞. It follows

that sup
η∈[0,ξ]

|∇û(η)| ≤ 2π

∫

R

|t|u(t) dt. On the other hand û(0) =

∫

R

u(t) dt so that (2.1) gives

|û(ξ)| ≥
∫

R

u(t) dt − 2π|ξ|
∫

R

|t|u(t) dt > 0

as long as |ξ| <
1

2π

‖u‖1∥∥ |t|u
∥∥

1

. From the above remarks, we get the desired result with κq = 1
(2π)q . �

Second proof of Theorem 2.1. The proof is very similar to that of Luo and Zhang. The idea is that

Re eix = cosx ≥ 1 − x2/2 for all x. Thus Re û ≥
∫

R

(
1− (2πtξ)2/2

)
u(t) dt. It follows that if û(ξ) = 0,

then Re û(ξ) = 0 thus

ξ2
∥∥t2u(t)

∥∥
1
≥ 1

2π2
‖u(t)‖1.

The constant 1
2π2 can be improved when u is supported in [0, +∞) using a refined version of the

inequality cosx ≥ 1−x2/2 (see [LZ, Proposition 1.2]) and can further be extended by replacing
∥∥t2u

∥∥
by other moments ‖tqu‖. Our substitute to [LZ, Proposition 1.2] is the following :

Fact. For every q > 0, there exists a, c such that, for all x ∈ R,

(2.2) a cosx ≥ 1 − c|x|q.

It then follows that, if ξ is such that û(ξ) = 0, then

0 = aRe û(ξ) =

∫
u(t)a cos 2πtξ dt ≥

∫
u(t)

(
1 − c(2π|ξ|)q|t|q

)
dt

= ‖u‖1 − c(2π|ξ|)q‖ |t|qu ‖1.

Now, as û is continuous, we may take ξ = ±τ , and get that

|τ |q
∥∥ |t|qu

∥∥
1
≥ 1

c(2π)q

∥∥u
∥∥

1

as claimed. �

Proof of (2.2). The fact is trivial as long as one does not look for best constants. The simplest way

is to take a = 2 and c such that 1 − c
∣∣π
3

∣∣q = −2 i.e. c = 3
(

3
π

)q
. In this case, for 0 ≤ |x| ≤ π

3
,

1 − c|x|q ≤ 1 ≤ 2 cosx and for |x| > π
3 , 1 − c|x|q ≤ −2 ≤ 2 cosx. �

Remark :

— One can slightly refine this argument, taking a = 1 + η, xη = arccos
1

1 + η
and c such that

1 − c|xη|q = −(1 + η) that is c =
2 + η(

arccos(1 + η)−1
)q . Then for x < xη, 1 − c|x|q ≤ 1 ≤ (1 + η) cos x

and for x ≥ xη, 1 − c|x|q ≤ −(1 + η) ≤ (1 + η) cosx. One may then minimize over η > 0 and some
values are given in the following table :

q 3 4 5 6
a 3.26 3.94 4.61 5.27
c 2.134 1.656 1.241 0.908
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— The constant c may be slightly improved by a further refinement. It is of course enough to
establish the inequality for 0 ≤ x ≤ π. Now that we know that for each η > 0, there exists a constant
c such that 1 − c|x|q ≤ (1 + η) cos x for all x, it is enough to take the biggest such constant cη. The
curves y = 1− cη|x|q and y = (1 + η) cos x then have a contact point at which they are tangent. Thus
there exists xη such that (1 + η) cosxη = 1 − cηxq

η and (1 + η) sin xη = cηqxq−1
η . This implies that

cosxη +
1

q
xη sinxη =

1

1 + η
. It is then enough to show that this equation has a unique solution xη in

[0, π] which then gives cη =
(1 + η) sin xη

qxq−1
η

.

Indeed, set ϕ(x) = cosx+
x sin x

q
then ϕ(0) = 1 ≥ 1

1 + η
and ϕ(π) = −1 so that ϕ(x) = 1

1+η has at

least one solution in [0, π]. Moreover ϕ′(x) = − sinx +
1

q

(
x cos(x) + sin(x)

)
. Elementary calculus and

the study of the comparative behaviour of sinx and
1

q

(
x cos(x) + sin(x)

)
shows that, if q ≥ 2 then ϕ

is strictly decreasing over [0, π] and if q < 2, there exists x1 such that ϕ is increasing over [0, x1] and
strictly decreasing over [x1, π]. In both cases, this implies that ϕ(x) = 1/(1+ η) has a unique solution
xη in [0, π].

To obtain the optimal constant is then difficult as one has to minimize cη over η but this is not
explicitely known. It should be noted that η → 0 may not be optimal. For instance, a computer plot
will convince the reader that

1.02 cosx ≥ 1 − 0.52x3/2 , 1.1 cosx ≥ 1 − 0.42x2.

Notation

For q > 0, we write

∆q(u) = inf
t0∈Rd

∥∥|t − t0|qf
∥∥2

2
.

To conclude this section, let us give a first application of this result. We ask whether a translate
fa(t) = f(t − a) of f can be orthogonal to f . But

0 =

∫

R

f(t)f(t − a) dt =

∫

R

|f̂(ξ)|2e2iaξ dξ = F [|f̂ |2](−a).

Similarily, if the modulation f (ω)(t) = e2iπωtf(t) of f is orthogonal to f then F [|f |2](ω) = 0 From
Theorem 2.1, we get the following:

Corollary 2.2.

Let q > 0 and κq be the constant of Theorem 2.1. Let f ∈ L2(R).

— Assume that (1 + |ξ|)q/2f̂ ∈ L2. Then for f and its translate fa to be orthogonal, it is necessary

that |a|q∆q/2(f̂) ≥ κq‖f‖2
2.

— Assume that (1 + |t|)q/2f ∈ L2. Then for f and its modulation f (ω) to be orthogonal, it is

necessary that |ω|q∆q/2(f) ≥ κq‖f‖2
2.

3. Ambiguity functions and moments

3.1. Preliminaries on the fractional Fourier transform.

Here again, we restrict our attention to dimension d = 1. For α ∈ R \ πZ, let cα =
exp i

2

(
α − π

2

)
√
| sinα|

be

a square root of 1 − i cotα. For f ∈ L1(R) and α /∈ πZ, define

Fαf(ξ) = cαe−iπξ2 cot α

∫

R

f(t)e−iπt2 cot αe−2iπtξ/ sin αdt = cαe−iπξ2 cotαF [f(t)e−iπt2 cot α](ξ/ sinα)
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while for k ∈ Z, F2kπf = f and F(2k+1)πf(ξ) = f(−ξ). This transformation has the following
properties :

(1)

∫

R

Fαf(ξ)Fαg(ξ)dξ =

∫

R

f(t)g(t)dt which allows to extend Fα from L1(R) ∩ L2(R) to L2(R)

as a unitary operator on L2(R);
(2) FαFβ = Fα+β ;
(3) if fa,ω(t) = e−2iπωtf(t − a) then

Fαfa,0(ξ) = Fαf(ξ + a cosα)e−iπa2 cos α sin α−2iπaξ sin α;

and
Fαf0,ω(ξ) = Fαf(ξ + ω sin α)eiπω2 cos α sin α+2iπωξ cos α;

(4) if f ∈ L2 is such that tf ∈ L2 then

Fα[tf ](ξ) = ξFαf(ξ) cosα + i[Fαf ]′(ξ) sin α.

3.2. Preliminaries on the ambiguity function.

Let d ≥ 1 be an integer. Let us recall that the ambiguity function of u, v ∈ L2(Rd) is defined by

A(u, v)(x, y) =

∫

Rd

u
(
t +

x

2

)
v
(
t − x

2

)
e−2iπ〈t,y〉dt.

Closely related transforms are the short-time Fourier transform also known as the windowed Fourier
transform, defined by Svu(x, y) = e−iπ〈x,y〉A(u, v)(x, y) and the Wigner transform

W (u, v)(η, ξ) =

∫

Rd

u

(
ξ +

t

2

)
v

(
ξ − t

2

)
e2iπ〈t,η〉dt

which is the inverse Fourier transform of A(u, v) in R
2d. Further

W (u, v)(η, ξ) = 2dA(u, v̌)(2ξ, 2η)

where v̌(t) = v(−t).
We will now list the properties that we need. they are all well-known e.g. [Al, AT, Wi]:

(1) A(u, v), W (u, v) ∈ L2(R2) with ‖A(u, v)‖L2(R2) = ‖W (u, v)‖L2(R2) = ‖u‖2‖v‖2 and are con-
tinuous;

(2) if we denote A(u) = A(u, u) then A(u)(0, 0) = ‖u‖2
2 where it is maximal;

(3) for a, ω ∈ R
d let ua,ω(t) = e2iπ〈ω,t〉u(t − a), then

A(ua,ω, vb,η)(x, y) = eiπ
(
(ω+η)x+(a+b)(y−ω+η)

)
A(u, v)(x − a + b, y − ω + η);

(4) in dimension d = 1, A(Fαu,Fαv)(x, y) = A(u, v)(x cos α + y sin α, x sin α − y cosα);
(5) W (û, v̂)(η, ξ) = W (u, v)(ξ,−η).

Property 4 was proved in [Wi] when the fractional Fourier transform is defined in terms of Hermite
polynomials and in [Al] with the above definition of the fractional Fourier transform.

3.3. Zero free region around the origin of A(u) in dimension d = 1.
In this section, we restrict our attention to the one-dimensional situation. Noticing that A(u) is
a Fourier transform and in particular that A(u)(0, y) = F [|u|2](y), we get from Property 4 of the
ambiguity function that

A(u)(y sin α,−y cosα) = F [|Fαu|2](y).

Definition.

Let us define, for θ ∈]0, π[

τθ = inf{t > 0 : A(u)(t cos θ, t sin θ) = 0 or A(u)(−t cos θ,−t sin θ) = 0}.
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Let q > 0 and κq be given by Theorem 2.1. Applying this theorem, we obtain

(3.3) τq
θ inf

t0∈R

∥∥|t − t0|q|Fθ−π/2u|2
∥∥

1
≥ κq

∥∥|Fθ−π/2u|2
∥∥

1
= κq‖u‖2

2.

Let us now show that in the specific case q = 2 a more precise result can be obtained: if u ∈ L2 is
such that tu ∈ L2 and tû ∈ L2 then from Property 4 of the fractional Fourier transform

‖tFαu‖2 = ‖tu(t) cos(−α) − iu′ sin α‖2 ≤ ‖tu(t)‖2| cosα| + ‖u′‖2| sin α|
= ‖tu(t)‖2| cosα| + ‖ξû(ξ)‖2| sin α|.

In particular, the ambiguity function A(u) of u has no zero in the region
{

(t sin α,−t cosα) : 0 < α < π, |t| ≤
√

2‖u‖2

2π
(
‖tu(t)‖2| cosα| + ‖ξû(ξ)‖2| sinα|

)
}

.

This region is a rombus with endpoints
(
±

√
2‖u‖2

2π
∥∥tu(t)

∥∥
2

, 0

)
and

(
0,±

√
2‖u‖2

2π
∥∥ξû(t)

∥∥
2

)
.

Further, changing u(t) into u(t−a)eiωt leaves the modulus of A(u) unchanged, and so are the zero-free
regions of A(u). We have thus proved

Theorem 3.1.

Let u ∈ L2(R) be such that tu(t) ∈ L2(R) and ξû(ξ) ∈ L2(R). Then the ambiguity function A(u) of u
has no zero in the convex hull of the four points

(
±

√
2‖u‖2

2π∆1(u)1/2
, 0

)
and

(
0,±

√
2‖u‖2

2π∆1(û)1/2

)
.

The area of that rombus is
1
π‖u‖

2
2

∆1(u)1/2∆1(û)1/2
≤ 4

according to Heisenberg’s uncertainty principle.

Note also that the numerical constant
√

2
2π can be improved to 0.248 using the inequality 1.1 cosx ≥

1 − 0.41x2 instead of cosx ≥ 1 − x2/2.

3.4. The local uncertainty principle.

In this section, we switch back to the higher dimensional situation d ≥ 1.
The first result we will prove may be well-known, but we do not know an reference for it. Let

µ(u) =
1

‖u‖2

∫

Rd

t|u(t)|2 dt. Writing hx(t) = u
(
t +

x

2

)
v
(
t − x

2

)
we get as for [BDJ, Lemma 5.2]:

∫

R2d

|x|2|A(u)(x, y)|2 dxdy =

∫

Rd

|x|2
∫

R

|ĥx(y))|2 dy dx =

∫

Rd

|x|2
∫

R

|ĥx(t))|2 dt dx

=

∫

R2d

|r − µ(u) + µ(v) − s|2|u(r)|2|v(s)|2 dr ds

=
∥∥|r − µ(u)|u

∥∥2

2

∥∥v
∥∥2

2
+
∥∥u
∥∥2

2

∥∥|r − µ(v)|v
∥∥2

2

= ∆1(u)
∥∥v
∥∥2

2
+
∥∥u
∥∥2

2
∆1(v).
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Using Property 4 of the ambiguity function, we get that
∫

R2

|x|2|A(u)(x, y)|2 dxdy = ∆1(û)
∥∥v
∥∥2

2
+
∥∥u
∥∥2

2
∆1(v̂).

It follows that∫∫

x2+y2≥R2

|A(u)(x, y)|2 dxdy ≤ 1

R2

∫∫

R2

(|x|2 + |y|2)|A(u)(x, y)|2 dxdy

≤ 1

R2

((
∆1(u) + ∆1(û)

)
‖v‖2

2 + ‖u‖2
2

(
∆1(v) + ∆1(v̂)

))
.

As ‖A(u)‖2
2 = ‖u‖2

2‖v‖
2
2 we get the following :

Proposition 3.2.

Let u, v ∈ L2(Rd) and let 0 < δ < 1. Then for

R ≥ max

(
(∆1(u) + ∆1(û)

)1/2

‖u‖ ,
(∆1(v) + ∆1(v̂)

)1/2

‖v‖

) √
2

δ
,

then ∫∫

x2+y2≤R2

|A(u, v)(x, y)|2 dx dy ≥ (1 − δ2)‖u‖2
2‖v‖

2
2.

We will now prove a similar result about the L2-mass of the ambiguity function outside small sets

thanks to the local uncertainty principle. Let us recall that Faris [Fa] and Price [Pr1] proved that for
0 < α < d/2, E ⊂ R

d of finite measure and f ∈ L2(Rd),

(3.4)

∫

E

|f̂(ξ)|2 dξ ≤ Kα,d|E|2α/d‖|x|αf‖2
2,

where

Kα,d =
(d + 2α)2

(2α)4α/d
(d − 2α)2α/d−2.

On the other hand Price [Pr2] proved that for α > d/2, E ⊂ R
d of finite measure and f ∈ L2(Rd),

(3.5)

∫

E

|f̂(ξ)|2 dξ ≤ Cα,d|E|‖|x|αf‖d/α
2 ‖f‖2−d/α

2 ,

where

Cα,d =
πd/2

(
2α
d − 1

)d/2α

αΓ(d/2)
(
1 − d

2α

)Γ

(
d

2α

)
Γ

(
1 − d

2α

)

and this constant is optimal.

Corollary 3.3.

Let u, v ∈ L2(Rd) and E ⊂ R
2d be a set of finite measure. Then for α < d,

(3.6)

∫

E

|A(u, v)(x, y)|2 dx dy ≤ 22αKα,2d|E|α/d
((

∆α(u) + ∆α(û)
)∥∥v
∥∥2

2
+
∥∥u
∥∥2

2

(
∆α(v) + ∆α(v̂)

))

while for α > d,
∫

E

|A(u, v)(x, y)|2 dx dy ≤ 22dCα,2d|E|
((

∆α(u) + ∆α(û)
)∥∥v
∥∥2

2
+
∥∥u
∥∥2

2

(
∆α(v) + ∆α(v̂)

))2d/α

×
(∥∥u

∥∥
2

∥∥v
∥∥

2

)2−2d/α

(3.7)
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Proof. Using Property 3 of the ambiguity function, it is enough to prove (3.6)-(3.7) with
∥∥|x|α·

∥∥
replacing ∆α(·). Indeed, once this is done, it is enough to apply it to ua,ω , vb,η and Ea,b,ω,η =
E + (a − b, ω − η).

Now recall that |a + b|t ≤ 2t(|a|t + |b|t). We will use the following computation which further

generalizes [BDJ, Lemma 5.2]: Let gx(t) = u
(
x + t

2

)
v
(
x − t

2

)
. Then

∫∫

R2d

|x|2α|W (u, v)(x, y)|2 dxdy =

∫

Rd

|x|2α

∫

Rd

|ĝx(y)|2 dy dx =

∫

Rd

|x|2α

∫

Rd

|gx(t)|2 dt dx

=

∫∫

R2d

|x|2α

∣∣∣∣∣u
(

x +
t

2

)
v

(
x − t

2

)∣∣∣∣∣

2

dt dx

= 2−2α

∫

Rd

∫

Rd

|r + s|2α|u(r)|2|v(s)|2 dr ds

≤
∥∥|r|αu

∥∥2

2

∥∥v
∥∥2

2
+
∥∥u
∥∥2

2

∥∥|s|αv
∥∥2

2
(3.8)

Simarily, using the symetry W (û, v̂)(x, y) = W (u, v)(−y, x) and Parseval’s identity, we get

(3.9)

∫∫

R2d

|y|2α|W (u, v)(x, y)|2 dxdy ≤
∥∥|r|αû

∥∥2

2

∥∥v
∥∥2

2
+
∥∥u
∥∥2

2

∥∥|s|αv̂
∥∥2

2

Now if α < d, from Faris’ Inequality (3.4),
∫∫

E

|A(u, v)|2 dxdy = Kα,2d|E|α/d
∥∥|(x, y)|αW (u, v)

∥∥2

L2(R2d)
.

But |(x, y)|2α = (|x|2 + |y|2)α ≤ 2α(|x|2α + |y|2α). Thus

∥∥|(x, y)|αW (u, v)
∥∥2

L2(R2d)
=

∫∫

R2d

|(x, y)|2α|w(u, v)(x, y)|2 dxdy

≤ 22α

(∫∫

R2d

|x|2α|W (u, v)(x, y)|2 dxdy

+

∫∫

R2d

|y|2α|W (u, v)(x, y)|2 dxdy

)

and (3.8)-(3.9) allows to conclude.
On the other hand, for α > d, Price’s Inequality (3.4) gives

∫∫

E

|A(u, v)|2 dxdy = Cα,2d|E|
∥∥|(x, y)|αW (u, v)

∥∥2d/α

L2(R2d)
‖W (u, v)‖2−2d/α

L2(R2d)
.

Now ‖W (u, v)‖2−2d/α

L2(R2d)
= (‖u‖2‖v‖2)

2−2d/α and the other term has been estimated above. �

Example.

For d = 1, α = 1/2 (thus Kα,2d = 9) and u = v, we first get from Cauchy-Scwarz that ∆1/2(u) ≤
∆1(u)1/2‖u‖2 so that
∫∫

E

|A(u)(x, y)|2 dxdy ≤ 18|E|1/2
((

∆1(u) + ∆1(û)
)1/2‖u‖2‖v‖

2
2 +

(
∆1(v) + ∆1(v̂)

)1/2‖u‖2
2‖v‖2

)

so that if ρ ≤ max

((
∆1(u) + ∆1(û)

)1/2

‖u‖2

,

(
∆1(v) + ∆1(v̂)

)1/2

‖v‖2

)
δ2

36
√

π
then

∫∫

x2+y2≥ρ2

|A(u, v)(x, y)|2 dxdy ≥ (1 − δ2)‖u‖2
2‖v‖

2
2.
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[GZ] K. Gröchenig & G. Zimmermann Hardy’s theorem and the short-time Fourier transform of Schwartz functions.

J. London Math. Soc. (2) 63 (2001), 205–214.
[LZ] S. Luo & Z. Zhang, Estimating the first zero of a characteristic function. C. R. Acad. Sci. Paris, Ser. I 338 (2004)

203–206.
[Pr1] J. F. Price Inequalities and local uncertainty principles. J. Math. Phys. 24 (1983) 1711–1714.
[Pr2] J. F. Price Sharp local uncertainty inequalities. Studia Math. 85 (1986) 37–45.
[PH] R. Price & E. M. Hofstetter Bounds on the volume and height distribution of the ambiguity function. IEEE

Trans. Info. Theory (1965), 207–214.
[Wi] C. H. Wilcox The synthesis problem for radar ambiguity functions. MRC Tech. Summary Report 157 (1960),

republished in Radar and Sonar part I (eds. R. Blahut, W. Miller and C. Wilcox), I.M.A. vol in Math. and its
Appl. 32, 229–260, Springer, New York, 1991.

[Wo] P. M. Woodward Probability and Information Theory with Applications to RADAR Pergamon, 1953.
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