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ZERO-FREE REGIONS OF RADAR AMBIGUITY FUNCTIONS AND

MOMENTS

PHILIPPE JAMING

Abstract. In this article, we give an estimate of the zero-free region around the origin of the
ambiguity function of a signal u in terms of the moments of u. This is done by proving an uncertainty
relation between the first zero of the Fourier transform of a non-negative function and the moments of
the function. As a corollary, we also give an estimate of how much a function needs to be translated
to obtaina function that is orthogonal to the original function.

1. Introduction

Woodward’s time-frequency correlation function or radar ambiguity function [Wo, Wi, AT], as
defined by

A(u)(x, y) =

∫ +∞

−∞
u
(
t +

x

2

)
u
(
t − x

2

)
e−2iπytdt

plays a central role in evaluating the ability of a transmitted radar waveform Re
(
u(t)eiω0t

)
to distin-

guish targets that are separated by range delay x and Doppler frequency y. Ideally, one would like
A(u) to be a Dirac mass at (0, 0), but this desideratum is not achievable because of the “ambiguity

uncertainty principle”, that is the constraint
∫∫

R2

|A(u)(x, y)|2dxdy = A(u)(0, 0)2 =

(∫

R

|u(t)|2dt

)2

.

As A(u) is continuous when u is a signal of finite energy, it follows that A(u) can not vanish in a
neighborhood of (0, 0). Since ideal behavior is not achievable, it becomes important to determine how
closely to the ideal situation one can come.

A major attempt in that direction is due to Price and Hofstetter [PH] who considered the quantity

V (E) =

∫∫

E

|A(u)(x, y)|2dxdy

where E is a measurable subset of R
2. It should however be mentioned that, for their results to be

significant, one has to go outside the class of signals of finite energy as V (E) is supposed to have a
limit V0 when E shrinks to {(0, 0)}. Indeed, when u has finite energy, from the continuity of A(u),
one gets that

V (E) ≤ area(E) sup
(x,y)∈E

|A(u)(x, y)|2 → area({(0, 0)})|A(u)(0, 0)|2 = 0.
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Nevertheless, it is possible to define A(u) when u is a Schwartz distribution and the assumption in
[PH, Section II] is that A(u) ∈ L2

loc(R
2 \ {(0, 0)}).

In this paper, we restrict our attention to signals u of finite energy and we try to determine more
precisely the neighborhood of (0, 0) on which A(u) does not vanish. To do so, we prove a new form
of uncertainty principle, showing that there is an exclusion relation between the function u having
moments and its ambiguity function being 0 near (0, 0). This result is inspired by a recent result
of Luo and Zhang concerning the Fourier transform. They prove that if a real non-negative valued
function is supported in [0, +∞) then there is an uncertainty principle relating its moments and the
first zero its Fourier transform.

It turns out that the ambiguity function, when restricted in a given direction, is always the Fourier
transform of a non-negative function, but the support condition of Luo and Zhang is not valid. We thus
start by removing that condition in their uncertainty principle, which can be done at little expenses
apart from some numerical constants. This then allows to obtain a zero-free region for the ambiguity
function A(u) when u and its Fourier transforms have L2-moments. This region turns out to be a
square when one considers dispersions.

The article is divided in two sections. The first one is devoted to the extension of Luo and Zhang’s
uncertainty principle. In the second section, we recall how the fractional Fourier transform allows
to see the restriction of the ambiguity function in a given direction as a Fourier transform of a non-
negative function. We then apply the results of the first section to obtain zero-free regions of the
ambiguity function.

2. Zero-free regions of the Fourier transform

Notation : For 1 ≤ p < ∞ we define Lp(R) as the space of measurable functions such that

‖f‖p
p :=

∫

R

|f(t)|p dt < +∞.

For u ∈ L1(R) ∩ L2(R) we define the Fourier transform as

Fu(ξ) = û(ξ) =

∫

R

u(t)e−2iπξt dt, ξ ∈ R

and then extend it to L2(R) in the usual way.

Theorem 2.1.

For every q > 0 there exists κq > 0 such that, if u ∈ L1(R) is a non-negative function such that u 6= 0,
then

inf{ξ > 0 : û(±ξ) = 0}q inf
t0∈R

∥∥|t − t0|qu(t)
∥∥

1
≥ κq‖u‖1.

Remark :
— One may take for the constant κ = 1

c(2π)q where c is the smallest constant in Equation (2.1) below.

— A similar result has been proved in [LZ] but with the extra assumption that u be supported in
[0, +∞). The constant κ is then explicitely known and better than the one above.

Proof of Theorem 2.1. The proof is very similar to that of Luo and Zhang. The idea is that near 0,
eix ∼ cosx ∼ 1 − x2/2 and that for x big enough 1 − x2/2 ≪ cosx. Indeed Re eix = cosx ≥ 1 − x2/2

for all x. Thus Re û ≥
∫

R

(
1 − (2πtξ)2/2

)
u(t) dt. It follows that if û(ξ) = 0, then Re û = 0 thus

ξ2
∥∥t2u(t)

∥∥
1
≥ 1

2π2
‖u(t)‖1.
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The constant 1
2π2 can be improved when u is supported in [0, +∞) using a refined version of the

inequality cosx ≥ 1−x2/2 (see [LZ, Proposition 1.2]) and can further be extended by replacing
∥∥t2u

∥∥
by other moments ‖tqu‖. Our substitute to [LZ, Proposition 1.2] is the following :

Fact. for every q > 0, there exists a, c such that, for all x ∈ R,

(2.1) a cosx ≥ 1 − c|x|q .

It then follows that, if ξ is such that û(ξ) = 0, then

0 = aRe û(ξ) =

∫
u(t)a cos 2πtξ dt ≥

∫
u(t)

(
1 − c(2π|ξ|)q|t|q

)
dt

= ‖u‖1 − c(2π|ξ|)q‖ |t|qu ‖1.

Now, as û is continuous, we may take ξ = ±τ , and get that

|τ |q
∥∥ |t|qu

∥∥
1
≥ 1

c(2π)q

∥∥u
∥∥

1

and applying this to the translate ut0(t) = u(t − t0) we get the desired result. �

Proof of (2.1). The fact is trivial as long as one does not look for best constants. Indeed, one may

take a = 2 and c such that 1 − c
∣∣π
3

∣∣q = −2 i.e. c = 3
(

3
π

)q
. In this case, for 0 ≤ |x| ≤ π

3
,

1 − c|x|q ≤ 1 ≤ 2 cosx and for |x| > π
3 , 1 − c|x|q ≤ −2 ≤ 2 cosx. A slightly more refined argument,

taking a = 1 + η, x0 = arccos(1 + η)−1 gives c =
2 + η(

arccos(1 + η)−1
)q . One may then minimize over

η > 0 and some values are given in the following table :

q 3 4 5 6
a 3.26 3.94 4.61 5.27
c 2.134 1.656 1.241 0.908

The constant c may be slightly improved by a more refined argument. More precisely, at the point x0

above, 1− c|x|q and a cosx are still far apart. Optimizing between all parameters is however difficult.
We would like to mention that, even for q = 2, the estimate cosx ≥ 1 − x2/2 is not best possible for
our needs. Indeed, choosing a = 1, which is the smallest possible value for a when q ≤ 2, may not
lead to the best choice of c. For instance, a computer plot will convince the reader that

1.02 cosx ≥ 1 − 0.52x3/2 , 1.1 cosx ≥ 1 − 0.42x2.

However, for q ≤ 1, a = 1 allows for the best constant c since 1− cxq is then concave on ]0, +∞). The
best constant c can then be computed as follows : the equation cosx = 1− cxq has to have a solution
x0 in [π/2, π] for which sinx0 = cq|x0|q−1. It then follows that x0 is the unique solution in [π/2, π] of

cosx +
1

q
x sin x = 1 and then c =

sinx0

qxq−1
0

.

This equation has a solution since for x = π/2, cosx + 1
q x sin x = π

2q > 1 and for x = π, cosx +
1
q x sin x = −1 < 1 and ϕ(x) = cosx + 1

q x sin x is continuous. The solution is unique since ϕ′(x) =(
1
q − 1

)
sin x+ 1

q x cosx is made of 2 pieces ϕ1(x) =
(

1
q − 1

)
sinx and ϕ2(x) = 1

q x cosx. The first one,

ϕ1 is non-negative and decreasing on [π/2, π] while the second one is negative decreasing on [π/2, π].
As ϕ′(π/2) ≥ 0 and ϕ′(π) ≤ 0, there exists x1 such that ϕ′(x1) = 0 and ϕ′(x) > 0 for π/2 < x < x1

while ϕ′(x) < 0 for x1 < x < π. It follows that the solution of ϕ(x) = 0 in [x1, π] is unique.
Finally note also that for q ∼ 0, c ∼ 2 and for q ∼ 1, c ∼ 0.73. �
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To conclude this section, let us give a first application of this result. We ask whether a translate
fa(t) = f(t − a) of f can be orthogonal to f . But

0 =

∫

R

f(t)f(t − a) dt =

∫

R

|f̂(ξ)|2e2iaξ dξ = F [|f̂ |2](−a).

Similarily, if the modulation f (ω)(t) = e2iπωtf(t) of f is orthogonal to f then F [|f |2](ω) = 0 From
Theorem 2.1, we get the following:

Corollary 2.2.

Let q > 0 and κq be the constant of Theorem 2.1. Let f ∈ L2(R).

— Assume that (1 + |ξ|)q/2f̂ ∈ L2. Then for f and its translate fa to be orthogonal, it is necessary

that

|a|q inf
t0∈R

‖ |t − t0|q/2f̂(t)‖2
2 ≥ κq‖f‖2

2.

— Assume that (1+ |t|)q/2f ∈ L2. Then for f and its modulation f (ω) to be orthogonal, it is necessary

that

|ω|q inf
t0∈R

‖ |t− t0|q/2f(t)‖2
2 ≥ κq‖f‖2

2.

3. Zero-free regions of the ambiguity function

3.1. Fractional Fourier transforms.

For α ∈ R \ πZ, let cα =
exp i

2

(
α − π

4

)
√

| sinα|
be a square root of 1 − i cotα. For f ∈ L1(R) and α /∈ πZ,

define

Fαf(ξ) = cαe−iπξ2 cot α

∫

R

f(t)e−iπt2 cot αe−2iπtξ/ sin αdt = cαe−iπξ2 cot αF [f(t)e−iπt2 cot α](ξ/ sin α)

while for k ∈ Z, F2kπf = f and F(2k+1)πf(ξ) = f(−ξ). This transformation has the following
properties :

(1)

∫

R

Fαf(ξ)Fαg(ξ)dξ =

∫

R

f(t)g(t)dt which allows to extend Fα from L1(R) ∩ L2(R) to L2(R)

as a unitary operator on L2(R);
(2) FαFβ = Fα+β ;
(3) if fa(t) = f(t − a) then

Fαfa(ξ) = Fαf(ξ + a cosα)e−iπa2 cos α sin α−2iπaξ sin α;

(4) if fω(t) = e−2iπωtf(t) then

Fαfω(ξ) = Fαf(ξ + ω sin α)eiπω2 cos α sin α+2iπωξ sin α;

(5) if f ∈ L2 is such that tf ∈ L2 then

Fα[tf ](ξ) = ξFαf(ξ) cosα + i[Fαf ]′(ξ) sin α.

Let us recall that the ambiguity function of u ∈ L2(R) is defined by

A(u)(x, y) =

∫

R

u
(
t +

x

2

)
u
(
t − x

2

)
e−2iπtydt.

The following properties are well known [Al, AT, Wi] :

(1) A(u) ∈ L2(R2) with ‖A(u)‖L2(R2) = ‖u‖2
2 and is continuous;

(2) A(u)(0, 0) = ‖u‖2
2 where it is maximal;

(3) A(u)(−x,−y) = A(u)(x, y);
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(4) A(Fαu)(x, y) = A(u)(x cos α − y sin α, x sin α + y cosα).

The second property was proved in [Wi] when the fractional Fourier transform is defined in terms
of Hermite polynomials and in [Al] with the above definition of the fractional Fourier transform.

3.2. Zero free regions.

Noticing that A(u) is a Fourier transform and in particular that A(u)(0, y) = F [|u|2](y), we get from
Property 4 of the ambiguity function that

A(u)(−y sin α, y cosα) = F [|Fαu|2](y).

Definition.

Let us define, for θ ∈]0, π[

τθ = inf{t > 0 : A(u)(t cos θ, t sin θ) = 0 or A(u)(−t cos θ,−t sin θ) = 0}.

Let q > 0 and κq be given by Theorem 2.1. Applying this theorem, we obtain

(3.2) τq
θ inf

t0∈R

∥∥|t − t0|q|Fθ−π/2u|2
∥∥

1
≥ κq

∥∥|Fθ−π/2u|2
∥∥

1
= κq‖u‖2

2.

Let us now show that in the specific case, a more precise result can be obtained: if u ∈ L2 is such
that tu ∈ L2 and tû ∈ L2 then from Property 5 of the fractional Fourier transform

‖tFαu‖2 = ‖tu(t) cos(−α) − iu′ sin α‖2 ≤ ‖tu(t)‖2| cosα| + ‖u′‖2| sin α|
= ‖tu(t)‖2| cosα| + ‖ξû(ξ)‖2| sin α|.

In particular, the ambiguity function A(u) of u has no zero in the region
{

(t sin α,−t cosα) : 0 < α < π, |t| ≤
√

2‖u‖2

2π
(
‖tu(t)‖2| cosα| + ‖ξû(ξ)‖2| sinα|

)
}

.

This region is a rombus with endpoints
(
±

√
2‖u‖2

2π
∥∥tu(t)

∥∥
2

, 0

)
and

(
0,±

√
2‖u‖2

2π
∥∥ξû(t)

∥∥
2

)
.

Further, changing u(t) into u(t−a)eiωt leaves the modulus of A(u) unchanged, and so are the zero-free
regions of A(u). We have thus proved

Theorem 3.1.

Let u ∈ L2(R) be such that tu(t) ∈ L2(R) and ξû(ξ) ∈ L2(R). Then the ambiguity function A(u) of u
has no zero in the convex hull of the four points

(
±

√
2‖u‖2

2π infa∈R

∥∥|t − a|u(t)
∥∥

2

, 0

)
and

(
0,±

√
2‖u‖2

2π infω∈R

∥∥|ξ − ω|û(t)
∥∥

2

)
.

The area of that rombus is

1
π‖u‖

2
2

infa∈R

∥∥|t − a|u(t)
∥∥

2
infω∈R

∥∥|ξ − ω|û(t)
∥∥

2

≤ 4

according to Heisenberg’s uncertainty principle.

Note also that the numerical constant
√

2
2π can be improved to 0.248 using the inequality 1.1 cosx ≥

1 − 0.41x2 instead of cosx ≥ 1 − x2/2.
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