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Homogenization of first order equations

with (u/ε)-periodic Hamiltonians.

Part II: application to dislocations dynamics.

Cyril Imbert∗, Régis Monneau† and Elisabeth Rouy‡

February 16, 2007

Abstract. This paper is concerned with a result of homogenization of a non-local first order Hamilton-Jacobi
equations describing the dislocations dynamics. Our model for the interaction between dislocations involve both
an integro-differential operator and a (local) Hamiltonian depending periodicly on u/ε. The first two authors
studied in a previous work homogenization problems involving such local Hamiltonians. Two main ideas of this
previous work are used: on the one hand, we prove an ergodicity property of this equation by constructing
approximate correctors which are necessarily non periodic in space in general; on the other hand, the proof of
the convergence of the solution uses here a twisted perturbed test function for a higher dimensional problem.
The limit equation is a nonlinear diffusion equation involving a first order Lévy operator; the nonlinearity keeps
memory of the short range interaction, while the Lévy operator keeps memory of long ones. The homogenized
equation is a kind of effective plastic law for densities of dislocations moving in a single slip plane.

Keywords: periodic homogenization, Hamilton-Jacobi equations, integro-differential operators, disloca-
tions dynamics, non-periodic approximate correctors.
Mathematics Subject Classification: 35B10, 35B27, 35F20, 45K05, 47G20, 49L25

1 Introduction

Setting of the problem. In this paper, we study a non-local Hamilton-Jacobi equation describing the
dislocations dynamics. We would like to say what happens when ε→ 0 to the solution of:

{

∂tu
ε =

(

c
(

x
ε

)

+Mε
[

uε(t,·)
ε

])

|∇uε| + h
(

uε

ε ,∇uε
)

in R
+ × R

N ,

uε(0, x) = u0(x) on R
N

(1)

where Mε is a 0 order non-local operator M ε defined by

Mε [U ] (x) = −U(x) +

∫

RN

dz J(z)U(x+ εz)

where J ∈ C∞(RN ) is an even nonnegative function that satisfies
∫

RN dz J(z) = 1 and:

there exists R0 > 0 and a function g > 0 s.t. for |z| ≥ R0 : J(z) =
1

|z|N+1
g

(

z

|z|

)

. (2)

Throughout the paper, we assume:
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• c(x) is Lipschitz continuous and 1-periodic;

• h(u, p) is bounded Lipschitz continuous w.r.t. (u, p), is 1-periodic w.r.t. u and h(u, p)/|p| is bounded;

• u0 ∈ W 2,∞(RN ).

The aim is to prove a homogenization result i.e. to prove that the limit u0 of uε as ε → 0 exists and
is the (unique) solution of a homogenized equation of the form:

{

∂tu
0 = H

0
(. . . ,∇u0) in R

+ × R
N ,

u0(0, x) = u0(x) on R
N

with u0 ∈ W 2,∞(RN ). Our aim is two-folded: to determine the so-called effective Hamiltonian H and to
prove the convergence of uε towards u0.

Main results. As usual in periodic homogenization, the limit (or effective) equation is determined by a
cell problem, and more precisely by the long time behaviour of the solution of an evolution equation related
to this cell problem. And as usual, this problem is determined by a formal computation, by an ansatz.
In [28], we described the successive tries of ansatz we did to find the proper cell equation for our local
homogenization problem and analogous calculi can be done here. It turns out that the proper evolution
equation is, for any p ∈ R

N and L ∈ R:







∂τw = H(L, y, p · y + w, p+ ∇w, [w]) in R
+ × R

N ,
where H(L, y, p · y + w, p+ ∇w, [w]) = (c(y) + L+M [w(τ, ·)])|p + ∇w| + h(p · y + w, p+ ∇w)
w(0, y) = 0 on R

N
(3)

where M [ · ] is the non-local operator M ε[ · ] introduced above with ε = 1.

Theorem 1 (Ergodicity). For any L ∈ R and p ∈ R
N , there exists a unique λ ∈ R such that the continuous

viscosity solution of (3) satisfies: w(τ,y)
τ converges towards λ as τ → +∞, locally uniformly in y. The real

number λ is denoted by H
0
(L, p).

A superscript 0 appears in the effective Hamiltonian. The reason is that we will have to study the

ergodicity of a family of Hamiltonians in order to prove the convergence (H
0
(L, p) = H(L, p, 0) with the

notations of Section 4 — see below).
We now can give the precise form of the effective equation:

{

∂tu
0 = H

0 (I1[u
0(t, ·)],∇u0

)

in R
+ × R

N ,
u0(0, x) = u0(x) on R

N (4)

where I1 is a Lévy operator of order 1 defined for any function U ∈ C2
b (RN ) by:

I1[U ](x) =
∫

|z|≤r(U(x + z) − U(x) −∇xU(x) · z) 1
|z|N+1 g

(

z
|z|

)

dz

+
∫

|z|≥r
(U(x+ z) − U(x)) 1

|z|N+1 g
(

z
|z|

)

dz.

for any r > 0. Because J is even and satisfies (2), M can be seen like a regularized version of I1: the

singularity of the unbounded measure µ(dz) = g
(

z
|z|

)

1
|z|N+1 dz is removed. We will see in the proofs that

this Lévy operator I1 only keeps the memory of the long range behaviour of the operator M ε. On the
contrary the effective HamiltonianH will keep the memory of the short range behaviour ofM ε. Qualitative
properties of the effective Hamiltonian will be given in [27] and numerical simulation will be presented in
[21].

The second main result of this paper is the following convergence result.
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Theorem 2 (Convergence). The bounded continuous viscosity solution uε of (1) converges locally uni-
formly in (t, x) towards the bounded viscosity solution u0 of (4).

In order to prove the convergence of uε towards u0, we try to construct a so-called corrector, that is a
bounded solution of the cell problem which, in our case, has the following form:

λ+ ∂τv = (c(y) + L+M [v(τ, ·)])|p+ ∇v| + h(λτ + p · y + v, p+ ∇v) in R
+ × R

N .

Let us recall that, formally, v(τ, y) = w(τ, y) − λτ where w satisfies (3). In the proof of convergence, it
turns out that we need to consider regular correctors but we are not able to construct them. However, we
can construct regular sub- and supercorrectors (i.e. Lipschitz continuous sub and supersolution of the cell
problem) and it is enough to conclude. Moreover, Theorem 1 is a by-product of this construction. Let us
also point out that, at the contrary of the classical case, i.e. Hamiltonians of the form H(y, p), the (sub
and super) correctors here are not periodic w.r.t. y in general. Moreover (true) correctors are necessarily
time-dependent. Let us also mention that we construct sub- and supercorrectors as approximate correctors
of approximate cell problems.

A specific technical difficulty of our problem is to deal with the case λ = p = 0. In order to overcome
it, we consider cell problems in a higher dimensional space. Another technical point leads us to solve a
family of cell problems, indexed by a real number β.

Comments. This non-local equation (1) is related to the local equation:

{

∂tu
ε = F

(

uε

ε ,
x
ε ,∇uε

)

in [0,+∞) × R
N ,

uε(0, x) = u0(x) on R
N

that the first two authors studied in [28] under the assumption that F is coercive in p = ∇uε. As pointed
out in [8], this assumption appears in all the papers dealing with homogenization of first-order Hamilton-
Jacobi equations. First of all, Lions, Papanicolaou and Varadhan [34] completely solve the problem for F
that are independent of u and coercive in p. After this seminal paper, this assumption appears in [29] for
more general periodic situations, in [1, 25] for initial-boundary value problems, in [3] for equations with
different structure, in [2] for deterministic control problems in L∞, in [30] for almost periodic Hamiltonians
and for instance in [40] in a stochastic framework. The literature about homogenization of Hamilton-Jacobi
equations is highly developed and it is difficult to give an exhaustive list of references. The interested reader
is refered to [17, 18, 19, 37, 10, 11, 9, 4, 5, 12, 35] and references therein for further information.

Inspired in particular by some ideas from [28], Barles [8] managed to get nice homogenization results
for noncoercive Hamiltonians and gave, among other things, simpler proofs of the main results of [28] in a
restricted case where it is possible to imbed the problem in dimension N + 1 for a geometric equation.

In the present paper, the coercivity is somehow replaced with the nonlocal term. Indeed, coercivity
together with a perturbation by a non-local operator (in order to get the strong maximum principle and
apply the sliding method) are used in [28] in order to get estimates on space oscillations of the correctors.
This is obtained here thanks to M ε

[

uε

ε

]

|∇uε| (see page 25 and Eq. (55)).

Possible extensions. In order to avoid unnecessary technicality, we chose to focus on a particular
equation related to dislocation dynamics. With some trivial changes, it is for instance possible to treat
the case of Frank-Read source considering the homogenization of the following equation

∂tu
ε =

(

c
(x

ε

)

+Mε

[

uε(t, ·)
ε

])

|∇uε − f
(x

ε

)

| + h

(

uε

ε
,∇uε

)

where curl f 6= 0 represents a source term (physically in dimension N = 2).
Using again the coercivity of the operator M ε, it should be possible to deal with the homogenization of

∂tu
ε =

(

c
(x

ε

)

+Mε

[

uε(t, ·)
ε

])

|∇uε| + h

(

uε

ε
,∇uε

)

+ εFMCM(∇uε, D2uε)
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where FMCM is a mean curvature term.

Organization of the article. The paper is organized as follows. In Section 2.1, we give more details about
the mathematical models yielding to the study of (1). In Section 3, we prove various comparison principles
and existence results. Section 4 is dedicated to the proof of the convergence (Theorem 2) by assuming the
existence of Lipschitz continuous sub- and supercorrectors (Proposition 5). Section 5 is the core of the
paper; we construct approximate cell problems in the spirit of [28] and we construct the Lipschitz continuous
supercorrectors as exact correctors of the approximate cell problems (Proposition 6). In Section 6, we prove
the ergodicity of the problem (Theorem 1) and give some properties of the homogenized Hamiltonian such
as its continuity (Proposition 4). Eventually, Section 2.2 is devoted to mechanical interpretation of the
homogenization results obtained in this paper.

Notation. The ball of radius r centered at x is classically denoted Br(x). When x is the origin, Br(0) is
simply denoted Br. The cylinder (t − τ, t + τ) × Br(x) is denoted Qτ,r(t, x). The indicator function of a
subset A ⊂ B is denoted 1A: it equals 1 on A and 0 on B \A.

bxc and dxe denote respectively the floor and ceil integer parts of a real number x.
It is convenient to introduce the unbounded measure on R

N defined on R
N \ {0} by:

µ(dz) =
1

|z|N+1
g

(

z

|z|

)

dz

and such that µ({0}) = 0. For the reader’s convenience, we recall here the three integro-differential
operators appearing in this work:

Mε [U ] (x) =

∫

RN

(U(x + εz)− U(x))J(z) dz

M [U ] (x) =

∫

RN

(U(x+ z) − U(x))J(z) dz,

I1[U ](x) =

∫

|z|≤r

(U(x+ z) − U(x) −∇xU(x) · z) 1

|z|N+1
g

(

z

|z|

)

dz

+

∫

|z|≥r

(U(x+ z) − U(x))
1

|z|N+1
g

(

z

|z|

)

dz.

To finish with, G,G∗ > 0 are positive numbers such that |h(u, p)| ≤ G, |h(u, p)| ≤ G∗|p|.

2 Physical application to dislocations dynamics

2.1 Motivation

Dislocations are line defects in crystals. Their typical length is of the order of 10−6m and their thickness
of the order of 10−9m. When the material is submitted to shear stress, these lines can move in the
crystallographic planes and their complicated dynamics is one of the main explanation of the plastic
behaviour of metals.

In the last decade the physics of dislocations have enjoyed a new boom, essentially based on new
possibilities of simulations on ever more powerful computers. In the same time new tentatives have been
done to build physical theories describing the collective behaviour of disocations. In particular models for
the dynamics of dislocations densities have been proposed (see for instance Groma, Balogh [22], Groma,
Czikor, Zaiser [23], Sethna et al. [39], Kratochvil [31], Kröner [16], etc.).

In the present paper we are interested in describing the effective dynamics for a collection of dislocations
lines with the same Burgers’s vector and all contained in a single slip plane {x3 = 0} of coordinates
x = (x1, x2), and moving in a periodic medium (see Fig. 1). At the end of this derivation, we will see that
the dynamics of dislocations is described by equation (1) in dimension N = 2.
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Motion

Figure 1: Dislocations in a slip plane

Several obstacles to the motion of dislocations lines can exist in real life: precipitates, inclusions, other
pinned dislocations or other moving dislocations, etc. We will describe all these obstacles by a given and
periodic field

c1(x) (5)

that we assume for simplicity not to depend on time. Another natural force exists: this is the Peach-Koehler
force acting on a dislocation j. This force is the sum of the interactions with the other dislocations k for
k 6= j, and of the self-force created by the dislocation j itself (see Fig. 2 for a schematic representation of
the interactions; to be closer to reality we should draw a spring between each pair of dislocations).

Dislocations

Motion

Potential

Figure 2: Schematic representation of a 1D model for dislocations related with springs

The level set approach for describing dislocation dynamics consists in considering a function v such
that the dislocation k ∈ Z is basically described by the level set {v = k}. Let us first assume that v is
smooth.

As explained in [7], the Peach-Koehler force at the point x created by a dislocation j is well-described
by the expression

c0 ? 1{v>j}

5



where 1{v>j} is the caracteristic function of the set {v > j} which is equal to 1 or 0. In a general setting,
the kernel c0 can change sign. In the special case where the dislocations have the same Burgers vector
and move in the same slip plane, a monotone formulation (see Alvarez et al. [6, 7], Da Lio et al. [15]) is
physically acceptable. Indeed, the kernel can be chosen as

c0 = J − δ0

where J is nonnegative. The negative part of the kernel is somehow concentrated at the origin as a Dirac
mass. Moreover, we assume that J satisfies

∫

R2 J = 1 and the symmetry J(−z) = J(z). The kernel J can
be computed from physical quantities (like the elastic coefficients of the crystal, the Burgers vector of the
dislocation line, the slip plane of the dislocation, the Peierls-Nabarro parameter, etc.). Here δ0 is a Dirac
mass where we set formally

(

δ0 ? 1{v>j}
)

(x) :=











1 if v(x) > j
1

2
if v(x) = j

0 if v(x) < j

We remark in particular that the Peach-Koehler force is discontinuous on the dislocation line in this
modeling.

Let us now assume that for integers N1, N2 ≥ 0, we have −N1 − 1/2 < v < N2 + 1/2. Then the Peach-
Koehler force at the point x on the dislocation j (i.e. v(x) = j) created by dislocations for k = −N1, ..., N2

is given by the sum

(

(J − δ0) ?

N2
∑

k=−N1

1{v>k}

)

(x) =

(

J ?

(

dv − v(x)e − 1

2

))

(x)

where d e is the ceil integer part. In the general case, this Peach-Koehler force can be rewritten on the
dislocations lines as

−v + J ? E(v) (6)

where E is a kind of integer part (up to an additive constant 1/2) defined by

E(v) = k + 1/2 if v ∈ (k, k + 1] with k ∈ Z.

Defining the normal velocity to dislocations lines as the sum of the periodic field (5) and the Peach-Koehler
force (6), we see that the dislocations line {v = j} for integer j, is formally a solution of the following level
set equation:

vt = (c1 − v + J ? E(v)) |∇v|. (7)

In this paper we do not study the homogenization of equation (7) whose mathematical framework is not
convenient because the “integer part” E is discontinuous (let us mention that a “Slepcev” formulation
of this equation could be introduced to stabilize the integer part, and such an analysis will be done in a
future work).

First, we replace the discontinuous “integer part” E in (7), by an approximation which is a smooth
function Eδ which satisfies

Eδ(· + 1) = Eδ(·) + 1, 0 < δ ≤ E′
δ ≤ 1/δ

and
Eδ(j) = j and Eδ(j + 1/2) = j + 1/2 for j ∈ Z (8)

and we see that u = Eδ(v) satisfies

ut = (c1 − u+ J ? u) |∇u| + h(u,∇u) (9)

with
h(u,∇u) =

(

u−E−1
δ (u)

)

|∇u|. (10)
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Equation (9)-(10) is still not well-posed in the framework of viscosity solutions because, like for Burgers’
equation, it can create discontinuous solutions in finite time. We want to avoid this kind of mathematical
difficulty which is artificial in the present modeling. We keep in mind that in order to describe well the
dynamics, our model has to satisfy the following two properties:

• the function u has to be close to a half integer k + 1/2 on a region between two dislocations lines
{u = k} and {u = k + 1}, and to have a small transition layer around any dislocation line;

• the function h has to be close to expression (10) outside the transition layer, i.e. for small gradients
of u, and the contribution of h to the right hand side of (9) has to be neglectible inside the transition
layer, i.e. for large gradient of u.

This is the reason why the second thing we do in order to satisfy these assumptions and to get a good
mathematical model, is to change the expression of the function h to get a bounded function with bounded
derivatives. The boundedness of the derivative of h with respect to u insures mathematically that the
maximum principle is applicable (see Theorem 3). We set, for instance, for µ > 0 large enough:

h(u, p) = µ
(

1− e−|p|/µ
)

(

u−E−1
δ (u)

)

. (11)

Conclusion. Finally the model that we study in this paper is Equation (9), with the function h given
by (11) or even for more general h which are smooth enough, bounded with bounded derivatives and 1-
periodic in u. To simplify the presentation, we will also assume that h(u, p)/|p| is bounded, an assumption
which is essentially technical.

Remark 1. We can remark that u − E−1
δ (u) is a bistable nonlinearity on the interval (−1/2, 1/2) like in

[24].

Remark 2. We can also have in mind a “Phase Field” derivation of the model studied in the present paper.
In a Phase Field approach, the dislocations are already represented by the transitions of a continuous
function u. The associated energy is typically like

E(u) =

∫

R2

1

2
|∇ 1

2u|2 +W (u) + c1u

where ∇ 1
2u is a fractional derivative of u, and W is a 1-periodic potential. The dynamics of u is given by

ut = −E′(u) |∇u|

i.e.
ut = (c1 + Lu)|∇u| + h(u,∇u)

with L = ∇ 1
2 · ∇ 1

2u is a nonlocal operator and

h(u,∇u) = −W ′(u)|∇u|.

In the model that we study in the present paper, the non-local term Lu is approximated by −u+ J ? u,
and to prevent some shocks like in Burgers equation, the term h(u,∇u) is approximated by a function
globally Lipschitz in (u,∇u).

2.2 Mechanical interpretation of the homogenization

Let us briefly explain the meaning of the homogenization result. The homogenized equation (4) can be
interpreted as a (generalized) plastic law, i.e. a relationship between the plastic strain velocity and the
stress. In the homogenized equation (4),

• u0 is a plastic strain,

7



• ∂tu
0 is the plastic strain velocity,

• ∇u0 is the dislocations density and

• I1[u
0] is the internal stress created by the density of dislocations contained in a slip plane.

From a mechanical point of view, a shear stress is created in the three dimensional space by the density of
dislocations. The trace of the shear stress on the slip plane is precisely given by I1[u0] (see [7] for similar
computations for a single dislocation line). Another way to justify the fact that the operator I1 is a kind
of half Laplacian is to remark that the physical model permits to see it as the Dirichlet-Neumann operator
associated with the elasticity equation in a half space, that is more or less the Laplace equation.

Let us be more precise now. Let (e1, e2, e3) denote an orthonormal basis and (x1, x2, x3) the corre-
sponding coordinates. We consider dislocations lines contained in the plane {x3 = 0}, with a Burgers
vector b that is also contained in this plane.

From a mechanical point of view (see for instance [32]), we have the following table of equivalence
between our homogenized model and classical models in mechanics for elasto-visco-plasticity of crystals
where Λ is the tensor of constant elastic coefficients.

Crystal elasto-visco-plasticity Homogenized model

resolved plastic strain γ(x1, x2)δ0(x3) u0(x1, x2)δ0(x3)
Nye tensor of
dislocations densities

α = b⊗
(

∇⊥γ
)

δ0(x3) α = b⊗
(

∇⊥u0
)

δ0(x3)

exterior applied stress σext

microscopic resolved
shear stress

c1 −
∫

(0,1)2
c1

resolved exterior
applied stress

σext : e0
∫

(0,1)2
c1

displacement v = (v1, v2, v3)

strain e := e(v) − e0γδ0(x3)

with e(v) :=
1

2

(

∇v + t∇v
)

and e0 :=
1

2
(e3 ⊗ b+ b⊗ e3)

total elastic energy E :=

∫

R3

1

2
(Λ : e) : e+ σext : e E :=

∫

R2

−1

2
u0I1[u

0] −
(

∫

(0,1)2
c1

)

u0

macroscopic stress σ := Λ : e+ σext

resolved macroscopic
shear stress

τ := σ : e0 τ := I1[u
0] +

∫

(0,1)2
c1

plastic law
∂γ

∂t
= f(τ)

∂u0

∂t
= H

0

(

I1[u
0] +

∫

(0,1)2
c1,∇u0

)

energy decay
d

dt
E =

∫

R2

−τf(τ) ≤ 0
d

dt
E =

∫

R2

−τH0 (
τ,∇u0

)

≤ 0

where H
0

has been computed for the velocity c1 −
∫

(0,1)2
c1 with zero mean value.

The fact that τH
0 (
τ,∇u0

)

≥ 0 is a consequence of the monotonicity of H
0

in its first argument and from
(28) when h ≡ 0.

Identifying the function g. We recall that

I1[u
0](x) =

∫

R2

dz
g(z/|z|)
|z|N+1

(

u0(x+ z) − u0(x) − z · ∇u0(x) 1B1
(z)
)

8



where the function g is related to the behaviour of the function J at large scales:

J(z) = g(z/|z|)/|z|N+1 for |z| > R0

with N = 2 in our case. Moreover the function g(z) = 1
|z|g(z/|z|) is given by (see Alvarez et al. [7], Da

Lio et al. [15])

g(z)
z

|z|
⊥
⊗ z

|z|
⊥

= D2G(z)

where







z⊥ = (−z2, z1)
G(ξ1, ξ2) = − 1

(2π)2

∫

R
B∗(ξ1, ξ2, ξ3) dξ3 with

B∗(ξ) = B(ξ/|ξ|) and B(ξ) = t(ξ · Λ : e0)(ξ · Λ · ξ)−1(ξ · Λ : e0) − e0 : Λ : e0.

In the special case of isotropic elasticity, we have

Λijkl = λδijδkl + µ (δikδjl + δilδjk)

and for b = |b|e1, we get

G(z) =
µb2

4π|z|
(

z2
2 + γz2

1

)

, g(z) =
µb2

4π|z|3
{

z2
1(2γ − 1) + z2

2(2 − γ)
}

with γ = 1
1−ν where ν = λ

2(λ+µ) ∈ (−1, 1/2) is the Poisson ratio.

Two classical plastic laws. Let us now recall two classical plastic laws usually used in mechanics. The
“Orowan law” (see Sedlacek [36, p. 3739]) is

f(τ) = τθ

with θ the density of mobile dislocations. The “Norton law with threshold” (see Francois, Pineau, Zaoui
[20]) is (for C,m > 0)

f(τ) = Csign(τ)((|τ | − τc)
+)m

for τ not too large (in fact, here m > 1 because this kind of law already contains the Frank-read process
of creation of dislocations). We can compare these laws with our homogenized law:

f(τ) = H
0
(τ,∇u0)

where ∇u0 is a kind of generalized dislocations density.

Conclusion. The main features of the homogenization process is that

H
0
(τ, p) ' τ |p| for τ large enough

but for small τ , we recover a threshold phenomenon which is due to the microstructure. The consequence
is that at large scales the stress is computed as in mechanics, but the only effect of the microstructure is
to introduce some nonlinearities in the plastic law with some threshold effects. Finally in this framework
the dislocations density (∇u0) is simply a derivative of the plastic strain u0.

3 Results about viscosity solutions for non-local equations

In this paper, we have to deal with Hamilton-Jacobi equations involving integral operators. The classical
notion of viscosity solution can be adapted. It is clear how to do it for (1) and as far as (4) is concerned,
the reader is referred to [38] for instance. In this Section, we state (and prove if necessary) comparison
principles and existence results for such equations that will be used later in the proofs.
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Let us first recall the definition of relaxed lower semi-continuous (lsc for short) and upper semi-
continuous (usc for short) limits of a family of functions uε which is locally bounded uniformly w.r.t.
ε:

lim sup∗uε(t, x) = lim sup
ε→0,s→t,y→x

uε(s, y) and lim inf∗u
ε(t, x) = lim inf

ε→0,s→t,y→x
uε(s, y).

If the family contains only one element, we recognize the usc envelope and the lsc envelope of a locally
bounded function u:

u∗(t, x) = lim sup
s→t,y→x

u(s, y) and u∗(t, x) = lim inf
s→t,y→x

u(s, y).

Let us recall that we define viscosity solutions of (1) similarly as in [28], where for instance a usc
function uε is said to be a viscosity subsolution if the corresponding viscosity inequality is satisfied by the

test function, keeping the function uε in the evaluation of the “regular” nonlocal term M ε
[

uε(t,·)
ε

]

.

3.1 Viscosity solutions for (4)

We first recall the definition of a viscosity solutions for (4). The difficulty is that the measure µ is singular
at the origin and the function must be at least C1,1 with respect to x in order that I1[u(t, ·)](x) makes
sense. We refer the reader to [38] for instance. Let us introduce first the following definition of viscosity
solution associated to a cut-off radius r:

Definition 1 (r-viscosity solution). Let us fix r > 0. A usc (resp. lsc) function u : R
+ × R

N → R is a
r-viscosity subsolution (resp. supersolution) of (4) if for any (t, x), t > 0, any τ ∈ (0, t), and any test
function φ ∈ C2(R+ × R

N ) such that u − φ attains a maximum (resp. minimum) at the point (t, x) on
Qτ,r(t, x), then we have

∂tφ(t, x) −H
0
(Lr,∇xφ(t, x)) ≤ 0 (resp. ≥ 0)

where Lr =
∫

Br
(φ(t, x + z) − φ(t, x) −∇φ(t, x) · z)dµ(z) +

∫

RN\Br
(u(t, x+ z) − u(t, x))dµ(z).

A continuous function is a r-viscosity solution of (4) if it is a r-viscosity sub- and a supersolution of
the equation.

It is classical that the maximum can be supposed to be global (i.e. attained on R
+ × R

N and not
only on the cylinder) and this will be used several times. We also have the following property (see [38] for
instance):

Proposition 1 (Equivalence of the definitions). Let r > 0 and r′ > 0. A continuous (resp. usc, lsc)
function u is a r-viscosity solution (resp. subsolution, supersolution) of (4) if and only if it is a r′-viscosity
solution (resp. subsolution, supersolution) of (4).

Because of this proposition, if we do not need to emphasize the positive r we use, we simply call them
viscosity solutions (resp. subsolutions, supersolutions). In order to prove a comparison result for (4), we
need to be able to consider semiconcave test functions for semiconvex subsolutions.

Proposition 2. Consider a bounded semiconvex subsolution u of (4) and a continuous function φ, semi-
concave w.r.t. (t, x). Then at a local strict maximum point (t, x) of u−φ, we can ensure that I1[u(t, ·)](x)
is finite when ∇u(t, x) 6= 0, and then

∂tφ(t, x) ≤ H
0
(I1[u(t, ·)](x),∇u(t, x)).

Remark 3. Recall that a semiconvex function (in our case, the function u) is differentiable at a maximum
point.
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Proof. First, we notice that u and φ are differentiable at (t, x) because of their regularity. If ∇u(t, x) =
∇φ(t, x) = 0, there is nothing to prove. Hence, we now assume that ∇u(t, x) 6= 0.

Let us consider a cylinder Qτ,r(t, x) where u − φ attains a strict maximum and let us approximate
M = sup(s,y)∈Qτ,r(t,x){u(s, y)− φ(s, y)} = u(t, x) − φ(t, x) by M δ = sup(s,y)∈Qτ,r(t,x){u(s, y)− φδ(s, y)} =

u(tδ, xδ) − φδ(tδ, xδ) where φδ is the sup-convolution of φ and 1
2δ | · |2:

φδ(t, x) = sup
y∈RN ,s∈R

{φ(s, y) − 1

2δ
|x− y|2 − 1

2δ
(t− s)2}.

We know that φδ is C1,1 w.r.t. (t, x) (see for instance [33]) and (tδ, xδ) → (t, x) as δ → 0. Moreover, we
can control independently of δ the constant of semiconcavity of φδ (this is used later in the proof). Now,
φδ is a proper test function for u and we therefore have:

∂tφ
δ(tδ , xδ) ≤ H

0
(Kρ,δ

r + Lρ,δ
r ,∇φδ(tδ, xδ)) (12)

where

Kρ,δ
r =

∫

Bρ

{φδ(tδ , xδ + z) − φδ(tδ , xδ) −∇φδ(tδ , xδ) · z}µ(dz),

Lρ,δ
r =

∫

Br\Bρ

{u(tδ, xδ + z) − u(tδ, xδ)}µ(dz) +

∫

RN\Br

{u(tδ, xδ + z) − u(tδ, xδ)}µ(dz)

=

∫

Br\Bρ

{u(tδ, xδ + z) − u(tδ, xδ) − pδ · z}µ(dz) +

∫

RN\Br

{u(tδ, xδ + z) − u(tδ, xδ)}µ(dz)

where pδ = ∇u(tδ , xδ) = ∇φδ(tδ , xδ). If (sδ, yδ) is a point such that: φδ(tδ , xδ) = φ(sδ , yδ)− 1
2δ |xδ − yδ|2 −

1
2δ (sδ − tδ)

2, we know that:

(∂tφ
δ ,∇φδ)(tδ , xδ) = (∂tφ,∇φ)(sδ , yδ) and |(sδ , yδ) − (tδ , xδ)| = o(

√
δ).

In particular, because φ is semiconcave and differentiable at (t, x), ∇φδ(tδ , xδ) → ∇φ(t, x) = ∇u(t, x).
Using the semiconvexity of u, the definition of M δ and the semiconcavity of φδ, we conclude that there
exists C > 0 (independent of δ and ρ) such that:

−C|z|2 ≤ u(tδ, xδ + z) − u(tδ, xδ) − pδ · z ≤ φδ(tδ , xδ + z) − φδ(tδ , xδ) − pδ · z ≤ C|z|2.

The dominated convergence theorem asserts that Kρ,δ
r +Lρ,δ

r has a limit as ρ→ 0 and δ → 0 successively,
and this limit equals L0,0

r = I1[u(t, ·)](x). Hence (12) yields the desired result.

3.2 Comparison principles

In this section, we state and prove comparison principles we will need later. The first theorem is a
comparison principle for (1). Let us mention that, as usual in the viscosity solution theory, the fact that
the derivative with respect to u of the function h(u, p) is bounded uniformly in the gradient p is important.

Theorem 3. Consider a bounded usc subsolution u1 and a bounded lsc supersolution u2 of (1). If
u1(0, x) ≤ u0(x) ≤ u2(0, x) with u0 ∈ W 1,∞, then u1 ≤ u2 on (0,+∞) × R

N .

Remark 4. We will use later a comparison principle for a higher dimensional problem, precisely for (20),
in the class of functions f(t, x, xN+1) such that for any (t, x, xN+1) ∈ (0, T ) × R

N × R:

|f(t, x, xN+1)| ≤ C(T )(1 + |xN+1|).

Such a comparison principle can also be proved.
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Remark 5. We will use later comparison principles for two other equations very similar to (1) (see (50)
and (65)). The reader can check that these results can be easily adapted from classical techniques.

Remark 6. Let us finally point out that when passing from (50) to (51), the nonlocal operator is modified
and the solution U is a function that is the sum of a linear function and of a bounded one (and the
linear part is a priori known). In such a context and with such a modification of the nonlocal operator, a
comparison principle also holds true.

The third comparison principle is stated on a bounded domain Q. Because we deal with a nonlocal
equation, we need to be able to compare the sub- and the supersolution everywhere outside Q.

Theorem 4 (Comparison principle on bounded domains for (1)). Consider a bounded usc function u :
Q → R and a bounded lsc function v : Q → R that are respectively a sub- and supersolution of (1) on a
bounded open domain Q ⊂ R

+ × R
N . If u ≤ v outside Q, then u ≤ v on Q.

The main result of this section is a comparison result for (4). We will use Proposition 2 to prove it.

Theorem 5. Consider a bounded usc subsolution u and a bounded lsc supersolution v of (4). If u(0, x) ≤
u0(x) ≤ v(0, x) with u0 ∈W 1,∞, then u ≤ v on (0,+∞) × R

N .

Remark 7. Remark 4 is also valid when passing from (4) to (32).

Proof. Consider M = supt∈[0,T [,x∈RN{u(t, x) − v(t, x)}, suppose that M > 0 and let us exhibit a contra-
diction. First, we approximate the previous supremum by M ε = supt∈[0,T [,x∈RN{uε(t, x)− vε(t, x)} where
uε (resp. vε) is the sup-convolution (resp. inf-convolution) of u (resp. v) in the space variable x. It is
well-known that uε (resp. vε) is a semi-convex subsolution (resp. semi-concave supersolution) of (4); in
particular, this means that uε(t, ·) + 1

2ε | · |2 is convex (resp. vε(t, ·) − 1
2ε | · |2 is concave) and we have, at a

point (t, x) of differentiability of uε and vε,

uε(t, x+ z) − uε(t, x) −∇uε(t, x) · z ≥ − 1

2ε
|z|2 for any z ∈ R

N , (13)

vε(t, x+ z) − vε(t, x) −∇vε(t, x) · z ≤ 1

2ε
|z|2 for any z ∈ R

N . (14)

Now consider M ε
α,η,ν = supt,s∈[0,T [,x∈RN{uε(t, x)−vε(s, x)−αϕ(x)− (t−s)2

2ν − η
T−t} where ϕ is a C2 function

with bounded first and second derivatives, such that there exists C such that |ϕ(x)| ≤ C(1 +
√

|x|) and
ϕ(x) → +∞ as |x| → ∞. The supremum is attained at (t, s, x). Choosing the parameters small enough,
we can ensure that M ε

α,η,ν ≥ M/2 > 0. Classical results about penalization (see [14] for instance) show

that (t−s)2

ν → 0 as ν → 0.
Suppose that there are sequences νn → 0, αn → 0, ηn → 0, εm → 0 such that t = 0 or s = 0. Then by

letting first n tend to +∞, we obtain:

0 < M ≤M εm ≤ sup
x∈RN

{uεm(0, x) − vεm(0, x)} ≤ sup
x∈RN

{(u0)
εm(x) − (u0)εm(x)} → 0 as m→ +∞

which is a contradiction. Therefore, we can assume that t, s > 0, and with B = B1(0) we have

(

t− s

ν
+

η

(T − t)2
,∇uε(t, x)

)

∈ D1,+uε(t, x),

(

t− s

ν
,∇vε(s, x)

)

∈ D1,−vε(t, x), ∇uε(t, x) − α∇ϕ(x) = ∇vε(s, x) =: pε,

uε(t, x+ z) − uε(t, x) −∇uε(t, x) · z1B(z)
≤ vε(s, x+ z) − vε(s, x) − pε · z1B(z) − α[φ(x + z) − φ(x) −∇φ(x) · z1B(z)].

(15)
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Apply Proposition 2 and get the following viscosity inequalities:

t− s

ν
+

η

(T − t)2
≤ H

0
(
∫

[uε(t, x+ z) − uε(t, x) −∇uε(t, x) · z1(z)]µ(dz), pε + α∇ϕ(x)

)

≤ H
0
(
∫

[vε(s, x+ z) − vε(s, x) − pε · z1(z)]µ(dz) − αI1[ϕ](x), pε + α∇ϕ(x)

)

,

t− s

ν
≥ H

0
(
∫

[vε(s, x+ z) − vε(s, x) −∇vε(s, x) · z1(z)]µ(dz), pε

)

.

Substracting these two inequalities yield

η

T 2
≤ H

0
(Iε − αI1[ϕ](x), pε + α∇ϕ(x)) −H

0
(Iε, pε) (16)

with Iε :=
∫

[vε(s, x+ z) − vε(s, x) −∇vε(s, x) · z1(z)]µ(dz) = I1
ε + I2

ε and

I1
ε =

∫

|z|≤1

[vε(s, x+ z) − vε(s, x) −∇vε(s, x) · z]µ(dz)

I2
ε =

∫

|z|≥1

[vε(s, x+ z) − vε(s, x)]µ(dz).

Let us estimate these two integrals by using (13), (14) and (15):

−C
(

1

ε
+ α

)

≤ − 1

2ε

∫

B1

dz

|z|N−1
− α

∫

B1

[ϕ(x+ z)d− ϕ(x−∇ϕ(x) · z]µ(dz) ≤ I1
ε

I1
ε ≤ 1

2ε

∫

B1

dz

|z|N−1
≤ C

ε

−2‖v‖∞
∫

RN\B1

µ(dz) ≤ Iε
2 ≤ 2‖v‖∞

∫

RN\B1

µ(dz).

We now use the classical estimate about inf-convolutions: |pε| ≤
√

2‖v‖∞√
ε

. We therefore see that the right

hand side of (16) tends to zero as α → 0 for fixed ε. We then get the desired contradiction: η
T 2 ≤ 0.

3.3 Existence results

Theorem 6. Consider u0 ∈ W 2,∞(RN ) and c ∈ W 1,∞(RN ). For ε > 0, there exists a (unique) bounded
continous viscosity solution uε of (1) satisfying uε(0, x) = u0(x). Moreover, uε is locally bounded in (t, x),
uniformly in ε and: lim sup∗uε(0, x) = lim inf∗uε(0, x) = u0(x).

Proof. From the classical theory of viscosity solutions, we know that it suffices to construct barriers in
order to apply Perron’s method. To do so, we prove that there exists a constant C > 0 (independent of ε)
such that u+(t, x) = u0(x)+Ct (resp. u−(t, x) = u0(x)−Ct) is a supersolution (resp. subsolution) of (1).
By the comparison principle for (1), this implies that for any ε > 0, u− ≤ uε ≤ u+. It is therefore possible
to construct by Perron’s method a bounded viscosity solution of (1). It suffices to adapt [26, Theorem 3].
It also implies that lim sup∗uε(0, x) = lim inf∗uε(0, x) = u0(x).

Let us now determine C. First, we prove that for any C > 0,

∣

∣

∣

∣

Mε

[

u0(·) + Ct

ε

]
∣

∣

∣

∣

≤ C1

where C1 depends only on R0, N, ‖u0‖2,∞ (in particular it does not depend on C or ε). To see this, we
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write,

Mε

[

u0(·) + Ct

ε

]

=

∫

BR0

J(z)

(

u0(x+ εz)

ε
− u0(x)

ε

)

dz (17)

+

∫

B1/ε\BR0

J(z)

(

u0(x+ εz)

ε
− u0(x)

ε

)

dz (18)

+

∫

RN\B1/ε

J(z)

(

u0(x+ εz)

ε
− u0(x)

ε

)

dz (19)

and we estimate each term. The first one, (17), is treated as follows:

∣

∣

∣

∣

∣

∫

BR0

J(z)

(

u0(x+ εz)

ε
− u0(x)

ε

)

dz

∣

∣

∣

∣

∣

≤ ‖∇u0‖∞
∫

BR0

J(z)|z|dz ≤ R0‖∇u0‖∞.

Next we estimate (18):

∣

∣

∣

∣

∣

∫

R0≤|z|≤1/ε

J(z)

(

u0(x+ εz)

ε
− u0(x)

ε

)

dz

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

εR0≤|y|≤1

(u0(x + y) − u0(x)) µ(dy)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

εR0≤|y|≤1

[u0(x+ y) − u0(x) −∇u0(x) · y]µ(dy)

∣

∣

∣

∣

∣

≤ ‖D2u0‖∞
∫

B1

|y|2
2
µ(dy).

Eventually, we estimate (19):

∣

∣

∣

∣

∣

∫

|z|≥1/ε

J(z)

(

u0(x+ εz)

ε
− u0(x)

ε

)

dz

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

|y|≥1

(u0(x + y) − u0(x))µ(dy)

∣

∣

∣

∣

∣

≤ 2‖u0‖∞
∫

RN\B1

µ(dy).

Then define C1 = R0‖∇u0‖∞ + ‖D2u0‖∞
∫

B1

|y|2
2 µ(dy) + 2‖u0‖∞

∫

RN\B1
µ(dy). Plugging u0 + Ct into

(1), we see that it is a supersolution if C ≥ (‖c‖∞ + C1)‖∇u0‖∞ + G. It also ensures that u0 − Ct is a
subsolution of (1).

Proposition 3. The homogenized equation (4) has a unique bounded continuous viscosity solution u0.

Proof. Adapting the argument of [26] (already adapted from the classical argument), we can construct a
solution by Perron’s method if we construct “good” barriers. But since u0 is W 2,∞, the two functions
u±(t, x) = u0(x) ± Ct are respectively a super and a subsolution for

C ≥ sup{H0
(L, p) : |L| ≤ DN‖u0‖2,∞, |p| ≤ ‖∇u0‖∞}

with DN only depending on the dimension. Moreover we have (u+)∗(0, x) = (u−)∗(0, x) = u0(x).

4 The proof of convergence

This section is devoted to the proof of Theorem 2. As announced in Introduction, the proof is essentially
the same as the one for local equations [28]: imbed the problem in a higher dimensional one, argue by
contradiction, consider a twisted perturbed test function and combine the relaxed semi-limit technique with
the existence of Lipschitz continuous approximate correctors to exhibit a contradiction. The additional
difficulty in comparison with [28] lies in the way to handle the non-local term.

14



As announced above, let us consider a higher dimensional problem:

{

∂tU
ε =

[

c
(

x
ε

)

+Mε
[

Uε(t,·,xN+1)
ε

]]

|∇xU
ε| + h

(

Uε

ε ,∇xU
ε
)

in R
+ × R

N+1,

Uε(0, X) = u0(x) + xN+1 on R
N+1

(20)

where X = (x, xN+1). Let us exhibit the link between the problems in R
N and in R

N+1.

Lemma 1. If uε and Uε denote respectively the solutions of (1) and (20), then we have

∣

∣

∣
Uε(t, x, xN+1) − uε(t, x) − ε

⌊xN+1

ε

⌋∣

∣

∣
≤ ε, (21)

Uε
(

t, x, xN+1 + ε
⌊a

ε

⌋)

= Uε(t, x, xN+1) + ε
⌊a

ε

⌋

. (22)

This lemma is a straightforward consequence of a comparison principle for (20) and of invariance by
ε-integer translations w.r.t. xN+1.

We previously explained that the existence of regular sub- and supercorrectors of a family of cell
problems is necessary. Precisely, we consider for P = (p, 1) ∈ R

N+1:







λ+ ∂τV = H(L, y, λτ + P · Y + V, P + ∇V, [V ]) + β in (0,+∞) × R
N+1,

where H(...) = (c(y) + L+M [V (τ, ·, yN+1)])|p+ ∇yV | + h(λτ + P · Y + V, p+ ∇yV )
V (0, Y ) = 0 on R

N+1
(23)

where Y = (y, yN+1).
We also need to make more precise how the real number λ given by Theorem 1 for the Hamiltonian

H + β depends on its variables. The two following properties are by-products of the construction of
approximate correctors we will do in the next section.

Proposition 4 (Properties of the effective Hamiltonian). Let p ∈ R
N and L ∈ R. For any β ∈ R, let

H(L, p, β) be the constant defined by Theorem 1 for the Hamiltonian H + β. Then H is continuous w.r.t.
(L, p, β) and nondecreasing w.r.t. L and β and

H(L, p, β) → ±∞ as L→ ±∞ if p 6= 0, (24)

H(L, p, β) → ±∞ as β → ±∞. (25)

In particular, if λ(β) denotes H(L, p, β), then

{

λ(β) is nondecreasing and continuous w.r.t. β,
∀λ0 ∈ R, ∃β0 ∈ R, such that λ(β0) = λ0.

(26)

For β = 0, we have H
0
(L, p) = H(L, p, 0), and

H
0
(L, 0) = 0 for any L. (27)

Moreover if
∫

[0,1)N c = 0 and h ≡ 0, then

H
0
(0, p) = 0 for any p. (28)

Proposition 5 (Existence of approximate correctors). For any fixed p ∈ R
N , β ∈ R and K > 0 large

enough, there exist real numbers λ+
K(β), λ−K(β), a constant C > 0 (independent on K, β and p) and bounded

super and subcorrectors V +
K , V −

K (depending on β) i.e. a super and a subsolution of (23) respectively with
λ = λ±K(β), such that

λ(β) := lim
K→+∞

λ+
K(β) = lim

K→+∞
λ−K(β) (29)
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with λ+
K(β) and λ−K(β) satisfying (26) and for any (τ, Y ) ∈ R

+ × R
N+1:

|V ±
K (τ, Y )| ≤ C. (30)

For any λ0 ∈ R, there exists β±
0 , β

±
K such that







λ±K(β±
K) = λ(β±

0 ) = λ0,
∣

∣∇Y V
±
K

∣

∣ ≤ DK ,
β±

K −→ β±
0 as K → +∞

(31)

for the supercorrector V +
K and the subcorrector V −

K respectively associated to β+
K and β−

K , and for some
constant DK = D(K, p) > 0.

Proof of Theorem 2. Classically, we prove that U+ = lim sup∗Uε is a subsolution of

{

∂tW = H
0
(I1[W (t, ·, xN+1)],∇xW ) in (0,+∞) × R

N+1,
W (0, X) = u0(x) + xN+1 on R

N+1.
(32)

We will need the following lemma.

Lemma 2. If u0 and U0 denote respectively the solutions of (4) and (32), then we have:

U0(t, x, xN+1) = u0(t, x) + xN+1, (33)

U0(t, x, xN+1 + a) = U0(t, x, xN+1) + a. (34)

Like Lemma 1, it is a consequence of invariance by integer translations and of a comparison principle
for the higher dimensional problem (see Remark 7).

Using barriers analogous to the ones of Theorem 6, we know that the family of functions {U ε}ε>0 is
locally bounded so that U+ is everywhere finite. Analogously, we can prove that U− = lim inf∗Uε is a
supersolution of (32). Using a second time the barriers, that are uniform with respect to ε, we deduce that
U+(0, X) = U−(0, X) = u0(x) + xN+1. The comparison principle for (32) thus implies that U+ ≤ U−.
Since U− ≤ U+ always holds true, we conclude that the two functions coincide with U 0, the unique
continuous viscosity solution of (32). This last fact is equivalent to the local convergence of U ε towards
U0. By Lemmata 1 and 2, this proves in particular the local convergence of uε towards u0.

Arguing by contradiction, we prove that U+ is a 2-viscosity subsolution of (32). We consider a test
function φ such that U+ − φ attains a strict global zero maximum at (t0, X0) with X0 = (x0, x

0
N+1) and

t0 > 0 and we suppose that there exists θ > 0 such that:

∂tφ(t0, X0) = H(L0,∇xφ(t0, X0)) + θ

where

L0 =

∫

|x|≤2

(φ(t0, x0 + x, x0
N+1) − φ(t0, x0, x

0
N+1) −∇xφ(t0, x0, x

0
N+1) · x)µ(dx)

+

∫

|x|≥2

(U+(t0, x0 + x, x0
N+1) − U+(t0, x0, x

0
N+1))µ(dx).

(35)

First, let us consider δ > 0 such that:

H(L0,∇xφ(t0, X0)) + θ = H(L0 + δ,∇xφ(t0, x0)) +
θ

2
.

Secondly, let us consider β+
0 > 0 and β+

K such that λ(β+
0 ) = λ+

K(β+
K) = ∂tφ(t0, X0) and choose K large

enough so that β+
K ≥ β+

0 /2 > 0. Then let V +
K be the supersolution of (23) given by Proposition 5 for

β = β+
K and for L = L0 + δ. In the following, λ = λ+

K(β+
K), ¡p = ∇xφ(t0, X0) and V = V +

K .
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For ε ≤ r < 1
2 , we consider the function F (t,X) = φ(t,X) − p · x− λt and we define a “xN+1-twisted

perturbed test function” φε by:

φε(t,X) =

{

φ(t,X) + εV
(

t
ε ,

x
ε ,

F (t,X)
ε

)

+ kεε on (t0/2, 2t0) ×B1(X0),

Uε(t,X) outside
(36)

where kε ∈ Z will be chosen later. We are going to prove that φε is a supersolution of (20) on Vr =
Qr,r(t0, X0) for some r = rK < 1/2 properly chosen, satisfying in particular Vr ⊂ (t0/2, 2t0) ×B1(X0).

Let us first focus on the boundary conditions. For ε small enough (i.e. 0 < ε ≤ ε0(r) < r), since
U+ − φ attains a strict maximum at (t0, X0), we can ensure that:

Uε(t,X) ≤ φ(t,X) + εV

(

t

ε
,
x

ε
,
F (t,X)

ε

)

− ηr on (t0/3, 3t0) ×B2(X0) \ Vr (37)

for some ηr = or(1) > 0. Hence, choosing kε = d−ηr

ε e, we ensure that U ε ≤ φε outside Vr.
Let us next study the equation. From (22), we deduce that U+(t, x, xN+1 + a) = U+(t, x, xN+1) + a.

Hence, we first derive that:
∂φ

∂xN+1
(t0, X0) = 1.

Consider a test function ψ such that φε − ψ attains a global zero minimum at (t,X) ∈ Vr. Then for any
(t, x) ∈ R

+ × R
N+1:

V

(

t

ε
,
x

ε
,
F (t,X)

ε

)

− 1

ε
(ψ − φ)(t,X) ≤ V

(

t

ε
,
x

ε
,
F (t,X)

ε

)

− 1

ε
(ψ − φ)(t,X).

We have ∂F
∂xN+1

(t0, X0) = ∂φ
∂xN+1

(t0, X0) = 1. Consequently, there exists r0 > 0 such that the map

Id× F : Vr0
−→ Ur0

⊂ R × R
N × R

(t, x, xN+1) 7−→ (t, x, F (t, x, xN+1))

is a C1-diffeomorphism from Vr0
onto its range Ur0

. Let G : Ur0
−→ R be the map such that

Id×G : Ur0
−→ Vr0

(t, x, ξN+1) 7−→ (t, x,G(t, x, ξN+1))

is the inverse of Id × F . Let us consider the variables τ = t/ε, Y = (y, yN+1) with y = x/ε and
yN+1 = F (t,X)/ε and define

Γε(τ, Y ) =
1

ε
(ψ (ετ, εy,G(ετ, εy, εyN+1)) − φ (ετ, εy,G(ετ, εy, εyN+1))) .

Let τ = t
ε , y = x

ε , yN+1 = F (t,X)
ε , Y = (y, yN+1). Then:

V (τ , Y ) − Γε(τ , Y ) ≤ V (τ, Y ) − Γε(τ, Y ) for all (ετ, εY ) ∈ Ur0
.

From Proposition 5, we know that V is DK-Lipschitz continuous with respect to Y . This implies that:

|∇Y Γε(τ , Y )| ≤ DK . (38)

Simple computations yield with P = (p, 1) ∈ R
N+1:







λ+ ∂τΓε(τ , Y ) = ∂tψ(t,X) + (1 + ∂yN+1
Γε(τ , Y ))(∂tφ(t0, X0) − ∂tφ(t,X)),

p+ ∇yΓε(τ , Y ) = ∇xψ(t,X) + (1 + ∂yN+1
Γε(τ , Y ))(∇xφ(t0, X0) −∇xφ(t,X)),

λτ + P · Y + V (τ , Y ) = φε(t,X)
ε − kε.

(39)
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Using (39) and (38), Equation (23) yields:

∂tψ(t,X) + or(1) ≥
[

c

(

x

ε

)

+ Tnl

]

|∇xψ(t,X) + or(1)| + h

(

φε(t,X)

ε
,∇xψ(t,X) + or(1)

)

+ β+
K (40)

with the nonlocal term

Tnl = L0 + δ +M [V (τ , ·, yN+1)](y).

We then have the following result whose proof is postponed:

Lemma 3. The quantity M ε
[

φε(t,·,xN+1)
ε

]

(x) is bounded independently of ε and we have

Mε

[

φε(t, ·, xN+1)

ε

]

(x) ≤ L0 + δ +M [V (τ , ·, yN+1)](y) = Tnl. (41)

Hence, from (40), we obtain with β+
K ≥ β+

0 /2 > 0

∂tψ(t,X) + or(1) ≥
[

c

(

x

ε

)

+Mε

[

φε(t, ·, xN+1)

ε

]

(x)

]

|∇xψ(t,X) + or(1)|

+h

(

φε(t,X)

ε
,∇xψ(t,X) + or(1)

)

+ β+
K .

Therefore, there exists rK > 0 such that for any (ε, r) such that 0 < ε ≤ ε0(r) < r ≤ rK : φε is a
supersolution of (20) on Vr. By Theorem 4, we conclude that U ε ≤ φε on Vr, i.e. we get: U ε(t,X) ≤
φ(t,X) + εV (. . . ) + εkε on Vr and we obtain the desired contradiction by passing to the upper limit at
(t0, X0) using the fact that U+(t0, X0) = φ(t0, X0): 0 ≤ −ηr.

Proof of Lemma 3. We proceed in two steps.
Step 1: bound on M ε uniformly in ε. We write:

Mε

[

φε(t, ·, xN+1)

ε

]

(x)

=

∫

E1(X)

J(z)

(

φ(t, x+ εz, xN+1) + εV (τ , y + z, F
(

t, x+ εz, xN+1

)

/ε) − φ(t,X) − εV (τ , Y )

ε

)

+

∫

E2(X)

J(z)

(

Uε(t, x+ εz, xN+1) − φ(t,X) − εV (τ , Y )

ε

)

= M1 +M2

with

E1(X) = {z ∈ R
N : (x+ εz, xN+1) ∈ B1(X0)} ⊂ B 2

ε
(0),

E2(X) = {z ∈ R
N : (x+ εz, xN+1) 6∈ B1(X0)} ⊂ R

N \B 1
2ε

(0) ⊂ R
N \BR0

(0).

because r < 1/2 and (t,X) ∈ Vr. Hence,

|M2| ≤
∫

|x|≥1/2

|Uε(t, x+ x, xN+1) − φ(t,X) − εV (τ , Y )|µ(dx)

≤ (‖Uε‖L∞(|xN+1−x0
N+1

|≤1) + ‖φ‖∞ + ε||V ||∞)

∫

|x|≥1/2

µ(dx).
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Moreover using the fact that for ρ =
√

1 − (xN+1 − x0
N+1)

2, a = x− x0, we have E1(X) = Bρ/ε(a/ε) and

we remark that it contains Bρ̃/ε with ρ̃2 = ρ2 − |x0 − x|2 ≥ 0. Now we write:

M1 =

∫

E1(X)

J(z)
(

V (τ , y + z, F
(

t, x+ εz, xN+1

)

/ε) − V (τ , Y )
)

dz

+

∫

Bρ/ε(a/ε)\Bρ̃/ε

J(z)

(

φ(t, x+ εz, xN+1) − φ(t,X)

ε

)

dz

+

∫

Bρ̃/ε

J(z)

(

φ(t, x+ εz, xN+1) − φ(t,X) −∇xφ(t, x, xN+1) · εz
ε

)

dz

= M11 +M12 +M13.

We have |M11| ≤ 2||V ||∞, |M13| ≤ ||D2
xxφ||∞ ε

∫

|z|≤ρ̃/ε
|z|2
2 J(z)dz ≤ C||D2

xxφ||∞ and

|M12| ≤ 2||φ||∞ ε−1

∫

Bρ/ε(a/ε)\Bρ̃/ε

µ(dz) ≤ C.

Collecting all the estimates, we get the desired bound on M ε
[

φε(t,·,xN+1)
ε

]

(x).

Step 2: More precise estimate from above. Let us now estimate more precisely from above the
quantity:

Mε

[

φε(t, ·, xN+1)

ε

]

(x) =

∫

J(z)

(

φε(t, x+ εz, xN+1) − φε(t,X)

ε

)

dz.

Choose ε such that R0 ≤ 2/ε where R0 is defined in (2), use (37), the definition (36) of φε, and the fact
that J is even to get:

Mε

[

φε

ε

]

≤
∫

|z|≤2/ε

J(z)

(

φ(t, x+ εz, xN+1) + εV (. . . ) − φ(t,X) − εV (τ̄ , Ȳ )

ε

)

dz +

∫

|z|>2/ε

{. . . }

≤
∫

|z|≤R0

J(z)

(

φ(t, x+ εz, xN+1) − φ(t, x, xN+1) −∇xφ(t, x) · εz
ε

)

+

∫

R0≤|z|≤2/ε

J(z)

(

φ(t, x+ εz, xN+1) − φ(t, x, xN+1) −∇xφ(t, x, xN+1) · εz
ε

)

dz

+

∫

|z|≤2/ε

J(z)

(

V

(

τ , y + z,
F (t, x+ εz, xN+1)

ε

)

− V

(

τ , y,
F (t, x, xN+1)

ε

))

dz

+

∫

|z|>2/ε

J(z)

(

Uε(t, x+ εz, xN+1) − φε(t,X)

ε

)

dz = T1 + T2 + T3 + T4

where

T1 =

∫

|z|≤R0

J(z)

(

φ(t, x+ εz, xN+1) − φ(t, x, xN+1) −∇φ(t, x) · εz
ε

)

dz

T2 =

∫

εR0≤|x|≤2

(φ(t, x+ x, xN+1) − φ(t, x, xN+1) −∇xφ(t, x, xN+1) · x)µ(dx)

T3 =

∫

|z|≤2/ε

J(z)

(

V

(

τ , y + z,
F (t, x+ εz, xN+1)

ε

)

− V

(

τ , y,
F (t, x, xN+1)

ε

))

dz

T4 =

∫

|x|>2

(

Uε(t, x+ x, xN+1) − φ(t,X) − εV (τ , Y ) − kεε
)

µ(dx).
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Estimate of T1.

|T1| ≤
∫

|z|≤R0

J(z) ε
‖D2φ‖∞

2
|z|2dz = O(ε).

Estimate of T2. We claim that:

T2 =

∫

|x|≤2

(φ(t0, x0 + x, x0
N+1) − φ(t0, x0, x

0
N+1) −∇φ(t0, x0, x

0
N+1) · x)µ(dx) + or(1).

Remark first that:
∫

|x|≤εR0

(φ(t, x+ x, xN+1) − φ(t, x, xN+1) −∇xφ(t, x, xN+1) · x)µ(dx) = oε(1) = or(1).

Now use the continuity of the map

(t, x) 7→
∫

|z|≤2
(φ(t, x + z, xN+1) − φ(t,X) −∇φ(t,X) · z)µ(dz);

it follows from the continuity of the integrand and of the bound:

|φ(t, x + z, xN+1) − φ(t,X) −∇xφ(t,X) · z| ≤ ‖D2φ‖∞
2

|z|2.

Estimate of T3. We claim that

T3 = M [V (τ , ·, yN+1)](y) + or(1).

Let us define

T ε
3 :=

∫

RN

J(z)

(

V

(

τ , y + z,
F (t, x+ εz, xN+1)

ε

)

− V

(

τ , y,
F (t, x, xN+1)

ε

))

dz

Then, on the one hand we have

|T3 − T ε
3 | ≤ 2||V ||∞

∫

|z|≤2/ε

J(z) dz = oε(1).

On the other hand,

|T ε
3 −M [V (τ , ·, yN+1)](y)| ≤ 4||V ||∞µ(RN \BRr)

+

∫

|z|≤Rr

DK

ε
|φ(t, x+ εz, xN+1) − φ(t, x, xN+1) − εp · z)| J(z) dz

≤ or(1) +

∫

|z|≤Rr

DK

ε
[|φ(t, x+ εz, xN+1) − φ(t, x, xN+1) − ε∇xφ(t, x, xN+1) · z)| + Cr|εz|]J(z) dz

≤ or(1) + C(ε(Rr)
2 + rRr)

for Rr → +∞ as r → 0. Now choose ε ≤ r2 and Rr such that rRr → 0. We conclude that:

|T ε
3 −M [V (τ , ·, yN+1)](y)| ≤ or(1).

Estimate of T4. Remark that for any x ∈ BRδ
(with Rδ chosen later):

Uε(t, x+ x, xN+1) − φ(t,X) − εV (τ , Y ) ≤ U+(t0, x0 + x, x0
N+1) − φ(t0, X0) + oε(1) + or(1).

Keeping in mind that φ(t0, X0) = U+(t0, X0), we can chose Rδ big enough so that:

T4 ≤
∫

|z|≤Rδ

{. . . } +

∫

|z|≥Rδ

{. . . } ≤
∫

|x|>2

(

U+(t0, x0 + x, x0
N+1) − U+(t0, X0)

)

µ(dx) + δ.

Combining all these estimates yields (41) with L0 given in (35).
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5 Approximate cell problems

In this section, we approximate the Hamiltonian of (1) in such a way that: first, the modified solutions
are approximate solutions and are sub- or supersolutions of the exact problem; secondly, they are bounded
uniformly with respect to the approximation; thirdly they are Lipschitz continuous with respect to (τ, Y )
where the Lipschitz constant depend on the approximation.

Our first technical choice is to consider the non-local normal speed of the dislocation (see Section 2.1)
and the “correction” term as variables c and h. Next, in order to ensure that modified solutions are good
approximate solutions, Hδ,+

K is constructed so that it coincides with the exact Hamiltonian on a ball of
radius K centered at the origin. To ensure the Lipschitz continuity of the solution, the Hamiltonian is
modified in such a way that it is constant outside a starshaped compact set Ωδ,+

K . To finish with, in order to
be sure that the solution of the approximate problem is a supersolution of the exact one, the approximate
Hamiltonian Hδ,+

K is constructed above the exact one on Ωδ,+
K .

We modify H(c, h, q) := c|q| + h in order to ensure that it is coercive w.r.t. Q = (q, qN+1).

Lemma 4 (Approximate Hamiltonian). There exist a 0-starshaped compact set Ωδ,+
K ⊂ R

N+1 containing
the ball BK(0) and two piecewise linear nondecreasing functions γK , TK (truncature functions) with γK ≥ 0,
such that the approximate Hamiltonian:

Hδ,+
K (c, h,Q) = TK(Hδ

K(c,Q) + h) where Hδ
K(c,Q) = (c+ γK(|q|))|q| + δ|qN+1|

satisfies for any c ∈ [−CK , CK ] and h ∈ [−G,G],

Hδ,+
K (c, h,Q)







= c|q| + δ|qN+1| + h if |Q| ≤ K,

≥ Hδ
K(c,Q) + h ≥ c|q| + h if Q ∈ Ωδ,+

K ,

= M δ,+
K if Q /∈ Ωδ,+

K

(42)

for some constant M δ,+
K .

Proof. First, we consider two other constants R0
K , R

1
K > 0, we define for c, r ∈ R:

γK(r) =







0 if r ≤ R0
K ,

r −R0
K if R0

K ≤ r ≤ R1
K ,

R1
K −R0

K if r ≥ R1
K

and we introduce for δ > 0:

HK(c, q) = [c+ γK(|q|)]|q| and Hδ
K(c,Q) = HK(c, q) + δ|qN+1|.

We choose R0
K and R1

K as follows:

R0
K = K and R1

K = R0
K + 2CK (43)

so that, on the one hand, HK(c, q) is coercive w.r.t. q uniformly with respect to c ∈ [−CK , CK ] and, on
the other hand, γ(|q|) = 0 if |q| ≤ K. Next, define for r ≥ 0 and α ∈ R:

hK(r) = sup{HK(c, q) + h : c ∈ [−CK , CK ], h ∈ [−G,G], |q| ≤ r},
rK(α) = inf{r ≥ 0 : (|q| ≥ r) ⇒ (HK(c, q) + h > α for any (c, h) ∈ [−CK , CK ] × [−G,G])},

hδ
K(r) = hK(r) + δr

and
Hδ,+

K (c,Q) = TK(Hδ
K(c,Q) + h) (44)

where

TK(α) =







α if α ≤ hδ
K(K),

hδ
K(K) + µ+

K(α− hδ
K(K)) if hδ

K(K) ≤ α ≤ 2hδ
K(K),

(1 + µ+
K)hδ

K(K) if α ≥ 2hδ
K(K)
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with µ+
K ≥ 1 to be fixed later. Now we can introduce the following compact set of R

N+1:

Ωδ,+
K = {Q ∈ R

N+1 : |q| ≤ rK(2hδ
K(K) − δ|qN+1|), δ|qN+1| ≤ 2hδ

K(K) − inf HK +G}

with inf HK = inf |c|≤CK ,q∈RN HK(c, q) ≤ −CKK (we used (43)) and we can check that

BK(0) ⊂ {Q ∈ R
N+1 : ∃(c, h) ∈ [−CK , CK ] × [−G,G], Hδ

K(c,Q) + h ≤ 2hδ
K(K)} ⊂ Ωδ,+

K .

Eventually, we define:
M δ,+

K = sup
Q∈Ωδ,+

K

{hK(|q|) + δ|qN+1|}.

Remark that M δ,+
K ≥ 2hδ

K(K) − inf HK + G ≥ 2hδ
K(K) by choosing q = 0 and δ|qN+1| = 2hδ

K(K) −
inf HK +G.

Let us check that if we choose µ+
K ≥ 1 so that:

(1 + µ+
K)hδ

K(K) = M δ,+
K

we are sure that (42) holds true.
First, if |Q| ≤ K, then Hδ

K(c,Q) + h ≤ hδ
K(K) and the first property of (42) is proved.

Secondly, if Q ∈ Ωδ,+
K , then Hδ

K(c,Q) + h ≤ M δ,+
K and: either Hδ,+

K (c, h,Q) = M δ,+
K and we are done;

or Hδ
K(c,Q) + h ≤ 2hδ

K(K) and in this case, we use the fact that TK(α) ≥ α for α ≤ 2hδ
K(K).

To finish with, consider Q /∈ Ωδ,+
K . Suppose first that δ|qN+1| > 2hδ

K(K) − infHK +G. In this case,

Hδ
K(c,Q) + h ≥ δ|qN+1| + inf HK −G > 2hδ

K(K)

and we are done. In the other case, |q| > rK(2hδ
K(K)− δ|qN+1|) and we conclude, by definition of rK that

for any (c, h) ∈ [−CK , CK ] × [−G,G],

HK(c, q) + h > 2hδ
K(K) − δ|qN+1|

and we can conclude in this case too.

We can now consider the approximate cell problem:







λ+ ∂τV = Hδ,+
K ( c(y) + L+M [V (τ, ·, yN+1)](y),

h(λτ + P · Y + V, p+ ∇yV ), P + ∇V ) + β in R
+ × R

N+1,
V (0, Y ) = 0 on R

N+1

(45)

and state the existence of Lipschitz continuous approximate supercorrectors.

Proposition 6 (Lipschitz continuous approximate supercorrectors). Let p ∈ R
N and P = (p, 1) ∈ R

N ×R.

Let us consider the truncated Hamiltonian Hδ,+
K defined by (44) for K >

√

1 + |p|2 large enough. For any

β ∈ R, there exist real numbers λδ,+
K (β), and solutions V δ,+

K of (45) with λ = λδ,+
K (β) satisfying (26) and

|λδ,+
K (β) − β − L|p| − δ| ≤ ‖c‖∞|p| +G. (46)

W1,∞ a priori bounds on the correctors. We can construct bounded Lipschitz continuous correctors
with:

|V δ,+
K (τ, Y )| ≤ 6C+ (47)

with C+ =
⌈

2(‖c‖∞+G∗+1)
c0

⌉

and c0 = infd∈[0,1/2)N

∫

RN dz min (J(z + d), J(z − d)) > 0 and







(

P + ∇V δ,+
K (τ, Y )

)

∈ Ωδ,+
K ,

0 ≤ 1 +
∂V δ,+

K

∂yN+1
(τ, Y ) ≤ 2hδ

K (K)−inf HK+G
δ

(48)
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with inf HK = inf |c|≤CK ,q∈RN HK(c, q) < 0.

Further properties of the correctors. The correctors satisfy

{

V δ,+
K (τ, y, yN+1 + 1) = V δ,+

K (τ, y, yN+1),

|V δ,+
K (τ, y + k, yN+1) − V δ,+

K (τ, y, yN+1)| ≤ 1 for every k ∈ Z
N .

(49)

If p = P/Q with P ∈ Z
N and Q ∈ N\ {0}, then following [28], it is possible to build solutions on the whole

space-time satisfying

V δ,+
K (τ, y +Qk, yN+1) = V δ,+

K (τ, y, yN+1) for every k ∈ Z
N .

Proof. To construct such approximate correctors, we first consider the solution of the following initial value
problem:







∂τW = Hδ,+
K ( c(y) + L+M [W (τ, ·, yN+1)](y),

h(P · Y +W, p+ ∇yW ), P + ∇W ) + β in R
+ × R

N+1,
W (0, Y ) = 0 on R

N+1.

(50)

We perform the proof in two steps. We first construct barriers and get gradient estimates on W for short
times; secondly, we control the oscillations of W with respect to space for long times and finally, we control
the oscillations with respect to time.

Step 1: existence of a solution and gradient estimates. We first construct barriers for (50) of the
form W±(τ, Y ) = (β + L|p| + δ)τ ± C1τ . Since |P | < K, one can easily check that if C1 = ‖c‖∞|p| +G,
then W± is a supersolution (resp. subsolution) of (50). It follows that there exists a unique solution W
of (50) (by Perron’s method, as we did in Theorem 3 for instance).

Let us now recall that we constructed the approximate Hamiltonian H δ,+
K for speeds c ∈ [−CK ;CK ].

Moreover, we remark that:

|M [W (τ, ·, yN+1)]| ≤ osc W (τ, ·) with osc W (τ, ·) = max
Y ∈RN+1

W (τ, Y ) − min
Y ∈RN+1

W (τ, Y )

and osc W (0, ·) = 0. This is the reason why we introduce τ ∗, the first time τ such that osc W (τ, ·) +
‖c‖∞ + |L| ≥ CK .

We remark that U(τ, Y ) = W (τ, Y ) + P · Y satisfies

{

∂τU = Hδ,+
K (c(y) + L+M [U(τ, ·, yN+1) − p· ](y), h(U,∇yU),∇U) + β in R

+ × R
N+1,

U(0, Y ) = P · Y on R
N+1.

(51)

Remark that ∇U(0, Y ) = P ∈ BK(0) ⊂ Ωδ,+
K that is starshaped with respect to the origin and compact.

Hence, for any ξ ∈ R
N+1, there exists M ∈ R such that

ξ ·Q > M =⇒ ξ /∈ Ωδ,+
K =⇒ Hδ,+

K (c,Q) = M δ,+
K .

By adapting [28], we can easily prove that:

Lemma 5 (Gradient estimate). The solution U of (51) satisfies:

ξ · ∇U(0, ·) ≤M =⇒ ∀t > 0, ξ · ∇U(t, ·) ≤M.

Since 0 ≤ ∂yN+1
U(0, Y ) = 1 for any Y ∈ R

N+1, we can also prove (using the invariance by translation
in yN+1 of (51)) by following [28]:

Lemma 6 (Monotonicity preserving). The function U is nondecreasing with respect to yN+1.
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These lemmata imply that for any τ > 0 and Y ∈ R
N+1:

{

P + ∇W (τ, Y ) ∈ Ωδ,+
K ,

0 ≤ 1 + ∂W
∂yN+1

(τ, Y ) ≤ 2hδ
K(K)−inf HK+G

δ .
(52)

Step 2: Control of the oscillations w.r.t. space.

Step 2.1. For a given k ∈ Z
N+1, we set P · k = l + α, with l ∈ Z and α ∈ [0, 1). Then we have:

l ≤ U(0, Y + k) − U(0, Y ) ≤ l + 1.

From the comparison principle for (51) in the class of sublinear functions, and the various invariances by
integer translations of the equation, we deduce that W is 1-periodic with respect to yN+1 and for all τ ≥ 0:

l ≤ U(τ, Y + k) − U(τ, Y ) ≤ l + 1

and then
|W (τ, Y + k) −W (τ, Y )| ≤ 1. (53)

Step 2.2. Let us define

M(τ) = sup
Y ∈RN+1

W (τ, Y ), m(τ) = inf
Y ∈RN+1

W (τ, Y ),

q(τ) := M(τ) −m(τ) = osc W (τ, ·).

These three functions are locally Lipschitz continuous. Let us assume that the extrema defining these
functions are attained: M(τ) = W (τ, Y τ ), m(τ) = W (τ, Zτ ). If this is not the case, consider an ε-
supremum and an ε-infimum and use a variational principle, such as Stegal’s one for instance (see [13] for
a precise statement). Details are left to the reader.

We adopt the following notations: Y τ = (yτ , yτ
N+1) and Zτ = (zτ , zτ

N+1). Then we have in the viscosity
sense and therefore a.e.:

∂τM ≤ Hδ,+
K (c(yτ ) + L+M [W (τ, ·, yτ

N+1)](y
τ ), h(. . . ), P ) + β with M [W (τ, ·, yτ

N+1)](y
τ ) ≤ 0,

∂τm ≥ Hδ,+
K (c(zτ ) + L+M [W (τ, ·, zτ

N+1)](z
τ ), h(. . . ), P ) + β with M [W (τ, ·, zτ

N+1)](z
τ ) ≥ 0.

We have for a.e. τ ∈ [0, τ∗):

∂τq ≤ Hδ,+
K (c(yτ ) + L+M [W (τ, ·, yτ

N+1)](y
τ ), h(. . . ), P )

−Hδ,+
K (c(zτ ) + L+M [W (τ, ·, zτ

N+1)](z
τ ), h(. . . ), P )

≤ TK(c(yτ ) + L+M [W (τ, ·, yτ
N+1)](y

τ )|p| + γK(|p|)|p| + h(. . . ) + δ)

−TK(c(zτ ) + L+M [W (τ, ·, zτ
N+1)](z

τ )|p| + γK(|p|)|p| + h(. . . ) + δ).

Now recall that we chose K >
√

1 + |p|2 so that γK(|p|) = 0 and we remark that for τ ≤ τ ∗:

|c(·) + L+M [W (τ, ·)]||p| + h(. . . ) + δ ≤ (‖c‖∞ + |L| + osc W )|p| +G+ δ ≤ CKK +G+ δ ≤ hδ
K(K)

for K ≥ 1 since hδ
K(K) = CKK +G+ δK. We conclude that:

∂τq ≤ |p|
{

c(yτ ) +M [W (τ, ·, yτ
N+1)](y

τ ) − c(zτ ) −M [W (τ, ·, zτ
N+1)](z

τ ))
}

+ 2G∗|p|
≤ 2‖c‖∞|p| + 2G∗|p| + |p|

{

M [W (τ, ·, yτ
N+1)](y

τ ) −M [W (τ, ·, zτ
N+1)](z

τ ))
}

.

Then on [0, τ∗),
∂τq ≤ 2(‖c‖∞ +G∗)|p| + |p| L(τ)
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where L(τ) = M [W ](τ, ·, yτ
N+1)(y

τ )−M [W ](τ, ·, zτ
N+1)(z

τ ) ≤ 0. Let us estimate this quantity from above

by a function of q. Let us define kτ ∈ Z
N+1 such that (Zτ + kτ ) − Y τ ∈ [0, 1)N+1, Z̃τ = Zτ + kτ . Now

using successively (53) and (52), and the fact that W is 1-periodic with respect to yN+1, we obtain:

L(τ) ≤ 1 +

∫

J(z)(W (τ, yτ + z, yτ
N+1) −W (τ, Y τ ))dz −

∫

J(z)(W (τ, z̃τ + z, z̃τ
N+1) −W (τ, Zτ ))

≤ 2 +

∫

J(z)(W (τ, yτ + z, yτ
N+1) −W (τ, Y τ ))dz −

∫

J(z)(W (τ, z̃τ + z, yτ
N+1) −W (τ, Zτ )).

Now introduce cτ = yτ+z̃τ

2 and δτ = yτ−z̃τ

2 ∈
[

0, 1
2

)N
so that yτ = cτ + δτ and z̃τ = cτ − δτ . Hence,

L(τ) ≤ 2 +

∫

J(z)(W (τ, cτ + z + δτ , yτ
N+1) −W (τ, Y τ ))dz

−
∫

J(z)(W (τ, cτ + z − δτ , yτ
N+1) −W (τ, Zτ ))dz

≤ 2 +

∫

J(z − δτ )(W (τ, cτ + z, yτ
N+1) −W (τ, Y τ ))dz

−
∫

J(z + δτ )(W (τ, cτ + z, yτ
N+1) −W (τ, Zτ ))dz

≤ 2 +

∫

min(J(z − δτ ), J(z + δτ ))(W (τ, cτ + z) −W (τ, Y τ ) −W (τ, cτ + z) +W (τ, Zτ ))dz

≤ 2 − c0q(τ)

where c0 = infδ∈[0,1/2)N

∫

RN min (J(z − δ), J(z + δ)) dz > 0. Therefore we have on [0, τ ∗),

qτ ≤ 2(‖c‖∞ +G∗ + 1)|p| − c0|p|q.

From this inequality and the fact that q(0) = 0, we deduce that for τ ∈ [0, τ ∗), we have

0 ≤ q(τ) ≤ C+.

Now, if one chooses
CK > ‖c‖∞ + |L| + C+, (54)

we conclude that τ∗ = +∞ and W satisfies:

|W (τ, Y ) −W (τ, Y ′)| ≤ C+. (55)

Step 3: Control of the oscillations in time. For any T > 0 we define

λ+(T ) = sup
τ≥T

W (τ + T, 0) −W (τ − T, 0)

2T
and λ−(T ) = inf

τ≥T

W (τ + T, 0)−W (τ − T, 0)

2T

which satisfy λ−(T ) ≤ λ+(T ). From (55), we get for any τ ≥ T :

|W (τ − T, Y ) −W (τ − T, 0)| ≤ C+ (56)

and we deduce from the comparison principle for (50) that

−(C+ + 1) + 2T (β + L|p| + δ − C1) ≤W (τ + T, Y ) −W (τ − T, 0) ≤ (C+ + 1) + 2T (β + L|p| + δ + C1)

(we used once again the barriers of Step 1) and therefore

−C
+ + 1

2T
+ β + L|p| + δ − C1 ≤ λ±(T ) ≤ β + L|p| + δ + C1 +

C+ + 1

2T
. (57)
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By definition of λ±(T ), for any α > 0, there exists τ± ≥ T such that

∣

∣

∣

∣

λ±(T ) − W (τ± + T, 0) −W (τ± − T, 0)

2T

∣

∣

∣

∣

≤ α.

Let us define k ∈ Z such that 3C+ ≥W (τ−−T, 0)+k−W (τ+ −T, 0) > 2C+. Then from (56), we deduce
that

0 < W (τ− − T, Y ) + k −W (τ+ − T, Y ) ≤ 5C+.

From the invariance by translations in time of (50), from the 1-periodicity of c(y) in y, and from the
comparison principle for (50), we deduce that

0 ≤W (τ− + T, Y ) + k −W (τ+ + T, Y ) ≤ 5C+.

Therefore we deduce

−5C+ ≤
(

W (τ− + T, Y ) −W (τ− − T, Y )
)

−
(

W (τ+ + T, Y ) −W (τ+ − T, Y )
)

≤ 5C+

and then

|λ+(T ) − λ−(T )| ≤ 2α+
5C+

2T

and because α > 0 is arbitrarily small we deduce that

|λ+(T ) − λ−(T )| ≤ 5C+

2T
. (58)

Now let us consider T1 > 0 and T2 > 0 such that T2/T1 = P/Q with P,Q ∈ N\ {0}. Then we have

λ+(T1) ≥ λ+(PT1) = λ+(QT2) ≥ λ−(QT2) ≥ λ−(T2) ≥ λ+(T2) −
5C+

2T2
.

By symmetry we deduce that

|λ+(T2) − λ+(T1)| ≤ max

(

5C+

2T2
,
5C+

2T1

)

(59)

and similarly

|λ−(T2) − λ−(T1)| ≤ max

(

5C+

2T2
,
5C+

2T1

)

. (60)

Finally the maps T 7−→ λ+(T ) and T 7−→ λ−(T ) are continuous and then the inequalities (59)-(60) are
still true even if T2/T1 is not rational. Therefore the inequalities (59)-(60) and (58) imply the existence of
the following limits

lim
T→+∞

λ+(T ) = lim
T→+∞

λ−(T ) = λ

and we deduce that

|λ±(T ) − λ| ≤ 5C+

2T
. (61)

Letting T → +∞ in (57), we get (46).

Step 4: change of unknown function. Consider now V δ,+
K (τ, Y ) = V (τ, Y ) = W (τ, Y ) − λτ . From

(50), we conclude that V satisfies (45). Moreover, combining (61) and (56), we get (47). Estimate (48) is
a consequence of (52). Eventually, (53) and the periodicity of W with respect to yN+1 yield (49).

Let us remark that the monotonicity of β 7→ λδ,+
K (β) follows from the comparison principle. To conclude

the proof of Proposition 6, it remains to prove that the map β 7→ λδ,+
K (β) is continuous. To do so, consider
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βn → β and Wn = W+,δ
K (βn) the solution of (50). Then W+,δ

K (βn) →W 0 = W+,δ
K (β0) locally uniformly in

(τ, Y ) by stability of viscosity solutions and strong uniqueness for (50). Now write with obvious notations:

∣

∣λn − λ0
∣

∣ =
|(Wn −W 0)(τ, 0) − (V n − V 0)(τ, 0)|

τ
≤ |(Wn −W 0)(τ, 0)|

τ
+

12C+

τ
.

Consider any limit of λn, let first n → +∞ and next τ → +∞ and conclude that this limit has to be λ0.
The proof is now complete.

6 Proofs of Propositions 5 and 4 and of Theorem 1

Let us deduce from the construction of the previous section (Proposition 6): the existence of approximate
correctors (Proposition 5), the ergodicity of the problem (Theorem 1) and the properties the effective
Hamiltonian satisfies (Proposition 4).

Proof of Proposition 5. Let us first remark that (48) and (42), and (54) imply that V δ,+
K is a supersolution

of (23). Let Ṽ δ,+
K denote the solution of (45) with c(y) replaced with c̃(y) = −c(−y), (L, β) by (−L,−β),

h(u, p) replaced with h̃(u, p) = −h(−u, p) and λ̃δ,+
K be the associated real number. Then, for λ = λδ,−

K =

−λ̃δ,+
K , we see that V δ,−

K (τ, Y ) = −Ṽ δ,+
K (τ,−Y ) is a solution of







λ+ ∂τV = H̃δ,+
K ( c(y) + L+M [W (τ, ·, yN+1)](y),

h(λτ + P · Y +W, p+ ∇yW ), P + ∇W ) + β in R
+ × R

N+1,
V (0, Y ) = 0 on R

N+1

(62)

for some function H̃δ,+
K such that V δ,−

K is also a subsolution of











λ+ ∂τV = (c(y) + L+M [V (τ, ·, yN+1)](y))|p+ ∇yV |
+δ̃
∣

∣

∣
1 + ∂V

∂yN+1

∣

∣

∣
+ h(λτ + P · Y + V, p+ ∇yV ) + β in R

+ × R
N+1,

V (0, Y ) = 0 on R
N+1.

(63)

with δ̃ = −δ and
|λδ,−

K (β) − β − L|p| + δ| ≤ ‖c‖∞|p| +G (64)

and we have estimates similar to those of Proposition 6.

Let us denote by V ±
K the solution V δ,±

K for δ = 1/K in the previous construction. Notice that it

suffices to choose C = 6C+ to get (30). If λ±K(β) denotes λδ,±
K (β), the comparison principle (for (50) for

instance) implies that both functions are nondecreasing w.r.t. β and (46), (64) imply that λ±
K(β) → ±∞

as β → ±∞.
Let us now prove (29). The proof is very similar to the proof of the continuity of λδ,+

K (β) in β. Since

Hδ,±
K → H , we know that W±

K = V ±
K + τλ±K(β) →W 0 locally uniformly in (τ, Y ). Next write:

0 ≤ λ+
K − λ−K =

W+
K −W−

K − (V +
K − V −

K )

τ
≤ |W+

K −W−
K |

τ
+

12C+

τ
.

This implies that
lim supλ+

K ≤ lim inf λ−K ≤ lim supλ−K ≤ lim inf λ+
K

and we conclude that they have the same limit (recall (46)).
By using (48), we also deduce the second line of (31) with

DK := |P | + diam Ωδ,+
K .

The proof of the fact that β±
K −→ β±

0 as K → +∞ is very similar to the proof of (29).
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Proof of Theorem 1. Let us first define:

H
0
(L, p) = H(L, p, 0) = λ(0).

Let W (resp. W+
K , W−

K ) be the solution (resp. supersolution, subsolution) of

{

∂τW = (c(y) + L+M [W (τ, ·, yN+1)](y))|p+ ∇yW | + h(P · Y +W, p+ ∇yW ) in R
+ × R

N+1,
W (0, Y ) = 0 on R

N+1

(65)
where V ±

K = W±
K − τλ±K and λ±K = λ±K(0) are given by Proposition 5. The comparison principle implies

that W−
K ≤W ≤W+

K , i.e.
λ−Kτ − C ≤W (τ, Y ) ≤ λ+

Kτ + C

Now letting K → +∞ and using (29), we conclude that |W (τ, Y )−λ(0)τ | ≤ C and then W (τ, Y )/τ → λ(0)
as τ → +∞ locally uniformly in Y . Using the fact that the solution w(τ, y) of (3) satisfies w(τ, y) =
W (τ, y, 0) (by an argument similar to the proof of Lemma 2), this proves the Theorem.

Proof of Proposition 4. From (46), we deduce that

|H(L, p, β) − L|p| − β| ≤ ‖c‖∞|p| +G

and it yields (24), (25). The monotonicity of H in L and β follows from the comparison principle. The

continuity of H w.r.t. (L, p, β) is proved as the continuity of λδ,+
K (β) with respect to β.

Now, because h(·, 0) = 0, we see that V ≡ 0 is a corrector for λ = H(L, 0) = 0 which proves (27). If
moreover we have h ≡ 0, and

∫

[0,1)N c = 0, then let us consider the unique solution v0 of

Mv0 = −c on R
n/Zn

with zero mean value. When L = 0, we deduce that for any p ∈ R
N , the function V (τ, Y ) = v0(y) is a

corrector with λ = H(0, p) = 0, which proves (28), and ends the proof of the Proposition.
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[38] A. Sayah. Équations d’Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. I. Unicité des
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