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Abstract
Many applications in biomedical engineering and sur-

gical simulators require effective modeling methods for
dynamic interactive simulations. Due to its high compu-
tation time, the standard Finite Element Method (FEM)
cannot be used in such cases. A FEM-based method is
first presented, which rely on the decomposition of the
deformation of each element into a rigid motion and a
pure deformation, and a fast implicit dynamic integration
without assembling a global stiffness matrix. A second
physically-based discrete method is also proposed, de-
rived from computer graphics modeling. These methods
are finally compared, in terms of accuracy and speed, to
theoretical problems, FEM results and experimental data.

Key words: FEM-based modeling, physical model, elas-
ticity, finite elements, dynamics

1 Introduction

Modeling the human soft tissues is of growing interest
in biomedical and biomechanical engineering, and com-
puter aided surgery. The range of applications is very
large, with examples in physiological analysis, biome-
chanical studies, surgery planning, or interactive simu-
lation for training and learning purpose [7].

1.1 Goals
Depending on the application, different requirements and
performance criteria are more or less relevant: accuracy,
computation time and robustness.

Accuracy is of course required in virtually all appli-
cations. It depends on several factors: space and time
discretization, accuracy of the material model and bound-
ary conditions, numerical methods. Notice, however, that
typical biological tissues are heterogeneous, anisotropic,
nonlinear and can additionally depend on external values
such as blood pressure or pathology. Consequently, the
rheological parameters of the models are extremely diffi-

cult to evaluate [12]. Discussing sophisticated numerical
methods may thus be pointless until we are able to set the
parameters with reliable values. In this paper we address
the question of enforcing the most basic laws that a sim-
ulator should implement, namely the two basic principles
of dynamics: Newton’s law on linear accelerations and
Euler’s law on angular accelerations. This simple issue
has not been extensively discussed in the literature.

Computation time is essential for interactive applica-
tions such as real-time simulators for education and intra-
operative surgical planning, as well as for massive sim-
ulations. Linear elasticity is often used for its compu-
tational efficiency. However its basic version generates
inflation artefacts when large displacements or large de-
formations occur, which is often the case with the highly
deformable biological tissues. In this paper we address
the question of performing linear elasticity with large ro-
tations as efficiently as possible, while strictly obeying
the two basic principles of dynamics.

The robustness of a simulator is its ability to han-
dle degenerate cases such as element inversions. This is
likely to occur when the boundary conditions vary too
fast compared with time discretization, especially when
a user interactively applies displacement constraints such
as pushing, pulling, tearing objects apart. In this case, ac-
curacy is no more an issue because the model is not in a
consistent state. However, it is important that the applica-
tion does not "crash" due to a numerical problem such as
division by zero or square root of a negative number. This
is true for an interactive simulator as well as for a massive
off-line simulation running for a long time. It is of course
possible to implement the detection and ad-hoc handling
of all possible degeneracies in a given process, but this is
time-consuming, thus an inherently robust computation
method is desirable.



1.2 Related work

Mechanical simulators are increasingly used in biomed-
ical engineering [1]. Given a discretized object and
mechanical laws, they numerically compute forces, dis-
placements, strains and stresses corresponding to a static
equilibrium or to a dynamic simulation. Static solutions
are used to compute the final shape or the internal con-
straints of a body subject to given boundary conditions
and topological changes. Dynamic solutions are used to
compute the evolution of shape and forces over time, tak-
ing inertia and damping into account. The dynamic sim-
ulation of an object which undergoes damping and con-
stant boundary conditions converges to the static solution.

In biomechanics, most of the models traditionally
rely on the equations of the mechanics of a continuous
medium, that are numerically solved using the Finite Ele-
ment Method (FEM) [24]. This extensively used method
is well-studied, and presents numerous advantages like
numerical accuracy, direct link with the underlying me-
chanical equations and direct parameters setting with rhe-
ological values. However, the FEM is numerically time-
consuming, especially for dynamic simulations or in the
case of large displacements/deformations, and is there-
fore inadequate for most interactive applications such as
intra-operative surgical planning or educational simula-
tors.

On the other hand, physically-based animation has be-
came essential in the field of computer graphics, with the
objective of real-time "realistic" simulators. This prob-
lematic is now changing, with the development of effi-
cient numerical methods that not only produce realistic
simulations but also lead to a reasonable accuracy of the
deformations. Working in collaboration between these
two communities, namely biomechanics and computer
graphics, could lead to the development of simulation
methods that combine both accuracy and numerical ef-
ficiency.

Different methods, often derived for computer graph-
ics, were recently developed for interactive biological and
medical simulation. A physically-based discrete model
will be presented in section 4, with specific constraints
like volume preserving. In parallel, numerous FEM-
based methods were developed.

Because of the need for speed, most interactive meth-
ods are based on linear computation of the deformations,
such as matrix pre-inversion [5] or the mass-tensors sys-
tems [4, 20]. Unfortunately these models are only valid
for small displacements, which is why Pincinbonno and
Debunne used a nonlinear computation of the deforma-
tions [6, 21].

Recently proposed methods favor a new approach
based on the decomposition of the displacement of each

element into a rigid motion and a pure deformation
tractable linearly in the local frame. Muller et al. [17]
proposed a simple and efficient method to carry out such
a decomposition. Etzmuss et al [11], followed by other
authors [19, 18], presented a method based on a more
complex decomposition which avoids some artifacts of
the former approach such as ghost forces. Based on this,
Irving et al [15] pointed out the importance of robust-
ness with respect to large element displacements and in-
versions, and proposed an even more sophisticated de-
composition to solve this problem.

Despite their realism and numerical efficiency, the ac-
curacy of these methods is often limited by numerically-
created artificial forces and torques. As it will be demon-
strated in section 2, this can be explained by the non-
respect of the Euler law. The FEM-based method pre-
sented in this paper combines the simplicity and effi-
ciency of Muller et al.’s early approach with the robust-
ness of Irving et al.’s method. Moreover, the respect of
both Newton and Euler’s laws is ensured, which make it
well suited for real-time direct interaction with a physi-
cally sound viscoelastic model.

1.3 Contribution and organization
The specific contributions of this paper are the following
:

• after presenting the theoretical background of FEM-
based methods (section 2), we show that precom-
puted element stiffness matrices generate nonphysi-
cal torques which can lead to obvious artifacts;

• we then derive the fastest FEM-based method, both
on tetrahedra and hexahedra elements, meeting our
criteria of accuracy and robustness while ensuring
Newton and Euler laws are respected. The limita-
tions of our method are then discussed. (section 3);

• a second method, a physically-based discrete model,
is then presented in section 4 to show that non FEM-
based model can also be used for biological simu-
lations providing additional constraints like volume
preserving are added.

• finally, we compare different numerical methods:
the two methods presented in this paper, the FEM-
based and the discrete one, and the standard FEM.
They are compared, in terms of accuracy and speed,
to both theoretical problems and real data (sec-
tion 5).

2 Background

2.1 Finite elements
We consider the standard finite element method (FEM)
used to simulate viscoelastic solids with tetrahedra ele-



ments. Background can be found in standard texts such
as [24, 13]. A solid is discretized usingn sample points
pj , j ∈ 1..n. Each point has fixed coordinatesxj with
respect to the object and moving coordinatesuj with re-
spect to the world coordinate system, along with mass
mj , velocity u̇j and acceleration̈uj . The object space
is partitioned in finite elements (cells) based on the sam-
pling points. Each element applies forces to its sampling
points according to their positions and velocities and the
properties of the medium.

Hooke’s lawσ = Dε is used to model linear elas-
ticity, where vectorσ models the local constraints (non-
isotropic internal pressures) within the medium, vectorε
models the local deformation (compression and shear in
all directions) and the6×6 matrixD models the stiffness
and incompressibility of the medium.

The deformationε of an element is related to the coor-
dinatesu of its sampling points by relation∆ε = B∆u
where vector∆u represents the displacement of the ver-
tices of an element and the12×6 matrixB, called strain-
displacement matrix, encodes the geometry of the ele-
ment.

The force applied by the deformed element to its sam-
pling points is given byf = BT σ.

Putting it all together, we obtain a linear relationship
between force and displacement :

∆f = BT DB∆u (1)

Matrix K = BT DB is called the stiffness matrix of
the element. The mesh forcefj applied to a sampling
point pj is computed by summing the forces applied by
all elements the point belongs to. A similar relation on
velocities can be used to model damping.

2.2 Newton’s and Euler’s laws

Newton’s law on linear acceleration relates the acceler-
ation of a system to the external forces applied to it :
Σjmj üj = Σjf

ext
j wherefext

j is the external force ap-
plied to sampling pointpj . It applies to a single particle,
to an element as well as to the whole object. The viola-
tion of this law would allow an isolated object to linearly
accelerate.

Euler’s law on angular acceleration relates the angular
acceleration of a system to the net torque applied to it :
Σjuj × mj üj = Σjuj × fext

j . The violation of this law
would allow an isolated object to angularly accelerate.

The violation of Newton’s and Euler’s laws can lead to
obvious artefacts, even for nonspecialists. A model re-
specting these elementary laws will be called "physically
realistic" thereafter.

2.3 Implicit time integration
To dynamically interact with a FEM-based system, we
solve a second order differential equation, globally, on
the whole of the elements vertices :

Mü + Cu̇ + Ku = f

where matrixM models mass,C models damping (C =
αK + βId is a classical approximation) andK models
stiffness,u corresponds to displacements between initial
position x0 and actual positionx, and f corresponds to
forces, for all the vertices. In this paper bold letters de-
note global matrices and vectors, as opposed to single el-
ements. The global matrices can be computed by sum-
ming up the contributions of each element to its vertices.
This operation is called the assembly.

Baraff [2] has shown how to solve this differential
equation efficiently even in the case of stiff materials. A
modified conjugate gradient algorithm is used to itera-
tively solve a sparse linear equation system modeling a
constrained elastic system. The main computational task
consists in evaluating[∂F

∂x ]∆u̇ for each element, where
matrix [ ∂F

∂x ] is the stiffness matrixK . In this case the
matrices are addressed only through their products with a
vector, and assembly is not necessary because these prod-
ucts can be computed by summing up the contribution
of each element. On the one hand, the product with as-
sembled matrices is computationally more efficient. On
the other hand, the overhead due to assembly cancels the
benefit when the number of products performed at each
iteration is small. We discuss this issue later on.

2.4 Rotational invariance
The linear equation 1 is insensitive to translations but in-
accurate for large rotations of the elements, and this re-
sults in so-called “ghost forces” which make the element
artificially inflate. To solve this problem we have to de-
compose the displacement in one rigid rotation combined
with a deformation. Equation 1 becomes

∆f = RT BT DBR∆u (2)

and the "right part" of the integration for one element be-
comesf = RT BT DB(Rx − x0), where matrixR en-
codes the rotation of a local frame attached to the ele-
ment with respect to its initial orientation. This decom-
position is not unique and several approaches have been
proposed. An alternative approach is to use Green’s strain
tensor which is rotationally invariant. However this non-
linear tensor is not able to linearly relate deformation to
displacement except asymptotically for small displace-
ments.

A simple method [17] to eliminate rotation processes
one node after another and evaluates local frame ro-
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Figure 1: An initial tetrahedron is deformed by the trans-
formationJ , composed of a rigid motionR and local de-
formations contained inE.

tations based on the adjacent edges. It does not al-
ways give satisfactory results because it can create ghost
forces. Hence, methods processing one element after an-
other [11, 18, 15, 14] are usually preferred.

Three edges of each element are used to compute their
3 × 3 transformation matrix:

J =
[

e0
1 e0

2 e0
3

]−1 [

e1 e2 e3

]

with respect to its initial state, where thee0
i are the initial

edge vectors and theei are the current ones. MatrixJ
is then decomposed in order to extract separately a rigid
rotationR applied to the element and a deformationE
as shownfig. 1. This decomposition is not unique, as
explained below.

Polar decomposition
The polar decomposition of a square matrix computes the
nearest orthogonal frame to the given column axes [18,
14]. As such it provides the ideal decomposition of the
displacement matrixJ . The strain values can be derived
as shown in the following formula.

J = Rp.Es

Es = R−1
p J =





1 + εxx εxy εxz

εxy 1 + εyy εyz

εxz εyz 1 + εzz





A related SVD-based approach has been used to handle
element inversions [15].

QR decomposition1

The QR decomposition [22] is an alternative to the polar
approach. The first axis of the local frame is constrained

1Consistently with our notations,Q corresponds to the rotationRqr

andR corresponds toEt
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(b) QR decomposition : the
first axe is the first edge
AB, the second axe is or-
thogonal to the first on plane
(AB, AC), and the last axe
is obtained by construction of
an orthonormed frame.

Figure 2: the local frames.

to be aligned with the first column of the given matrix.
Then the second axis is constrained on the plane spanned
by the two first columns, and so on. We compute it by
performing a Gram-Schmidt orthogonalization, to guar-
antee that we obtain a right-handed frame. The strain can
then be computed by projecting the columns of J to the
axes of the local frame, or equivalently by the following
decomposition:

J = Rqr.Et

Et =





1 + εxx 2εxy 2εxz

0 1 + εyy 2εyz

0 0 1 + εzz





This approach is significantly faster than polar or SVD,
however it depends on vertex ordering because all edges
do not have the same influence, as illustrated infig. 2.
Consequently some ordering-dependent anisotropy is in-
troduced, contrary to polar or svd. Moreover, the eval-
uated strain is a bit higher. However, its computational
efficiency can allow one to use more refined meshes.

3 Efficient physically realistic linear FEM-based
method

3.1 Updating the Strain-Displacement matrix
We now show that if the geometric matrixB of an ele-
ment accurately relates (at degree one) its deformation to
the displacement of its control points, then Newton’s law
is necessarily satisfied. The properties ofB are discussed,
rather than its expression. Letεi be as entry of a defor-
mation vectorε. This scalar value corresponds either to
a compression along a given axis or to a shear between
two given axes. EntryBij = ∂εi

∂uj
∈ R

3 encodes the
gradient of deformationεi with respect to the 3d world
coordinates of pointpj . The variation ofεi due to a dis-



placement∆u of the element is∆εi = ΣjB
T
ij∆uj . Since

the variation is null for any uniform translation we neces-
sarily haveΣjBij = 0. The net force generated by an ar-
bitrary constraint vectorσ is thusΣjfj = ΣjΣiBijσi =
ΣiσiΣjBij = 0. The net force due to elastic forces is
thus null by construction of matrixB. Note that this re-
mains true even ifB is obsolete due to a change of the
shape of the element. This implies that accumulating the
forces by looping over the elements necessarily satisfies
Newton’s law, even if we use a constant precomputedB
for each element.

We now show that if matrixB is up-to-date then Eu-
ler’s law is necessarily satisfied. A pure rotationω gen-
erates displacements∆uj = ω × uj but no deformation.
This implies that∆εi = ΣjB

T
ijω × uj = 0 for any, thus

Σjuj × Bij = 0. The net torque due to an arbitrary
constraintσ is thusΣjuj × fj = Σjuj × ΣiBijσi =
ΣiσiΣjuj ×Bij = 0. The net torque due to elastic forces
is thus null by construction of matrixB. However, this
is no more true whenB is obsolete due to a change of
shape because the originaluj are replaced by new values
in the last relation. Consequently, it is necessary to re-
compute each element’s matrixB at each time step if we
want to avoid artificial torques. An example of artificial
torque is givenfig. 3. Note, however, that multiplying
matrix B with a scalar uniformly scales the net torque,
and thus modifies the material, but does not induce artifi-
cial torques

ff/2 f/2

d

Figure 3: An artificial torque. Applied to the original ge-
ometry (solid lines) a given displacement (not shown) re-
sults in a torque-free set of forces (solid arrows). Applied
to a modified geometry (dotted lines), the same forces
generates an artificial torqued × f .

3.2 Strain-Displacement matrix computation

The classic computation of the Strain-Displacement
matrix B is given in appendix A. For a tetrahedron, it
takes 72 multiplications and 60 additions, and the com-
putation of∆f using this matrix in equation 2 takes 6660
multiplications and 2760 additions.

Simplifications for QR decomposition
In the particular case of QR decomposition, a lot of terms
are null. The coordinates of the first vertexa are null in
the local frame. Moreover, by construction of our frame,
the second vertexb is on the axis

−→
Ox, and the third point

c is in the plane(
−→
Ox,

−→
Oy). For a tetrahedron(a, b, c, d),

the coefficients of the shape functionsNi = αi + βix +
γiy + δiz are thus:

βa = −yczd

γa = (xczd) − (xbzd)
δa = ycxd − xcyd + xbyd − xbyc

βb = yczd βc = 0 βd = 0
γb = xczd γc = zdxb γd = 0

δb = ycxd − xcyd δc = −ydxb δd = −xbyc

Thanks to these many null terms, the calculation of the
strain-displacement matrix is simplified. It is thus possi-
ble to recompute it at each time step for a low cost, with
only 14 multiplications and 5 additions, and perform an
optimized computation of∆f in equation 2 using 4554
multiplications and 1707 additions.

Volume term
As shown in appendix A, matrixB is factored by1/6V
whereV is the volume of the element. It is shown in
section 3.1 that it remains physically realistic when mul-
tiplied by a scalar. We can exploit this opportunity to use
each element’s initial volume instead of recomputing it.
The advantages are a faster computation, with small error
in case of small deformations, and an increased robust-
ness when large deformations result in flat elements with
null volume.

3.3 Assembly
When the stiffness matrix is precomputed, the calculation
of the net forces (right term of the integration) can be op-
timized in precomputingf0, with f = RT K(Rx−x0) =
RT KRx − f0 andf0 = RT Kx0 as shown in [18]. In
this case, the computation off and∆f = RT KR∆u
use the same product by the stiffness matrixR−1KR,
so it is interesting to assembly all the individual stiffness
matrices of all the elements, to limit the calculation by
a single force computation by vertex. However, as was
shown in section 3.1 we think the stiffness matrix update
is required. In this case,f0 can’t be precomputed. Two
different products are therefore required : one byRT KR
and another byRT K. In practice, it is more efficient not
to build an assembled stiffness matrix ; its heavy con-
struction could be amortized by a lighter computation of
the conjugate gradient iterations, but in the case of in-
teractive animations, the number of iterations is too lim-
ited. It is preferable to keep separatelyR, B andD and



to work independently on each element. For each ele-
ment, we start computingR×∆u, thenB×R∆u... until
RT

× BT DR∆u.
Fig. 4 shows that at least 50 iterations are necessary to

justify the cost of the assembly, which is definitively too
large in the case of interactive methods.
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Figure 4: Computation time with or without assembling,
on 3430 tetrahedra and 512 particles.

3.4 Extension to hexahedra
Large displacements can be applied to hexahedra, pro-
vided that we are able to model element rotation. For
each hexahedron we could select three arbitrary edges
and extract the rotation as we did for tetrahedra. How-
ever, we think it is preferable to involve all the vertices
in the computation ; we propose therefore to use the av-
erage of the four edges in the three directions. Computa-
tion times are almost the same using the polar decompo-
sition or the QR decomposition because the axes of the
local frame computed using the QR decomposition are
not aligned with edges of the element, preventing us from
simplifying matrixB. In this case the polar decomposi-
tion should probably be used since it avoids the vertex
ordering artefacts discussed in section 2.4.

4 Physically-based discrete model

In parallel to the FEM-based method, we developed a
physically-based discrete model, called Phymul. Dif-
ferent kinds of living structures (tissues, bones) can be
modeled by using simple interactions of individual object
with defined mechanical identity. More precisely, living
structures are defined as 3D physical object with char-
acteristic sizes, in which mechanic features are based on
force balance equations.

Discrete models such as mass-spring networks are of-

ten used to model 3D physical object dynamics. The dis-
crete model presented in this paper is based on computer
graphics modeling [23, 8]. Natural motions and realistic-
looking flexible and elastic objects are efficiently mod-
eled and simulated by means of physically-based com-
puter graphics models. These models use a small amount
of data (object geometries and relations between objects).
From this, an animation motor (using forces, energies, or
direct displacements) integrates movement and deforma-
tion laws to compute the evolution of shapes and posi-
tions. Generally, constraints are added to control move-
ments and deformations or to model complex physical
properties.

Previously Phymul was used in the context of human
breathing [10]. We modeled the human abdomen using
an elastic and incompressible 3D object and the human
diaphragm using an elastic and contractile membrane.
These objects were linked together and attached to rigid
objects modeling the rib cage. This model, allowing for
rigid, incompressible elastic or contractile objects is the
groundwork, here extended to model volumetric defor-
mations. Other properties such as incompressibility have
also been taken into account, as detailed below.

The geometry of an object use the FEM meshes nodes
and for each node a list of associated nodes, called the
node neighborhood. The neighborhood is built from the
elements: in case of geometric linear element each line
linking two nodes define a neighborhood relationship.
The neighborhood can be interpreted as another way of
assembling element contribution to each node.

To generate forces and dynamic, a mass is assigned to
each contour node. Forces are exerted on the nodes to
generate displacements and deformations. Three kinds of
forces can be used in our model: force fields (e.g. grav-
itation force), locally applied forces (e.g. user manipula-
tion), and Linear Actuator Forces (LAFs). We introduce
a LAF when a target positionPtarget is known for a given
node of positionP . To minimize the distance |PPtarget| a
simple spring is created betweenP andPtarget. It gener-
ates a force that linearly attractsP towardsPtarget. The
expression of the LAF is:F = kelas(P −Ptarget), where
kelas is the elastic modulus of the spring. A LAF can be
seen as a potential force that tends to minimize a distance.
LAFs permit to model any kind of forces that could be de-
fined by target positions.Ptarget can depend on geometry
or on constraints and can dynamically change.

Calibration of mass-spring networks are known to be
difficult. Therefore, to model elasticity, we define a local
shape memory [9]. The elastic property of an object is
simply defined as its ability to recover its original shape
after mechanical deformation. To model this property,
we construct a local shape coordinate system where each



contour node position is defined relatively to its neigh-
boring nodes. The position of a node is thus defined rel-
atively to its neighborhood at rest shape. During the sim-
ulation, according to the neighboring node positions, a
target position is computed for each node under consid-
eration. This target position satisfies the local shape and
defines a LAF. A unique elasticity moduluskelas is used
by the corresponding LAF.

Forces is often not enough to realistically model com-
plex behaviors of physical objects. Constraints are thus
added to maintain some additional conditions like bound-
ary conditions (non-penetrating area) or incompressibil-
ity. Our algorithm considers constraints as non-quantified
force components. Thereby, it is possible to handle the
total incompressibility of an object contour [9]. This al-
lows the model to verify the incompressibility constraint
exactly and efficiently for all simulated objects, individu-
ally.

Simulations in Phymul simply result of the force inte-
gration and constraint verification between timet to time
t + dt by a discrete integration scheme for the equation
of motion (e.g. Newton-Cotes).

5 Results

The methods presented in this paper, namely the different
options of the physically-realistic FEM-based methods
and the discrete physically-based phymul method, have
be evaluated with respect to the criteria of accuracy, ro-
bustness and computation time.

Concerning the accuracy, results are also compared
with standard Finite Element Method results in linear
elasticity, with both small and large deformations hypoth-
esis. These FEM calculus are obtained using the stan-
dard commercial application Ansys. The methods (Polar
and QA physically realistic FEM-based, Phymul, Ansys
FEM) are compared, all together, to a theoretical result of
a fixed beam problem and to experimental data.

5.1 Robustness
Large displacements sometimes result in degenerate con-
figurations such as flat or inverted elements (i.e. when a
node crosses its opposite face of the tetrahedron). Such
cases are not properly speaking "physical", and should
never occur in a medical context, but it is important to
guarantee the behavior and the stability of the simulator
in such limit cases.

Irving et al [15] propose a very elegant, but expensive,
solution to this problem. They always compute the small-
est inversion among all the possible combinations.

Using the QR decomposition method, the inversion de-
tection is induced and free, because the construction of a
direct orthonormal frame is always possible. However
this method always models an inversion of the fourth ver-

Figure 5: Simple method for inversion robustness : a
liver model (597 tetrahedra, 182 particles) is fixed in four
points (red balls)(picture 1). A user imposes a strong
displacement (blue ball) which reverses elements(pic-
ture 2 to 3). The system remains stable(picture 4)until
constraints are released(picture 4 to 5), where the liver
regains its initial shape(picture 6).

tex, the only one not used in the construction of the local
frame. If the inversion actually occurs at this fourth ver-
tex, then the reaction is realistic, but in case of another
vertex inversion, a large rotation appears. On a single
tetrahedron, this can lead to a non-intuitive behavior. For
a more complex model, such as the liver depicted infig. 5,
most elements are not inverted and behave correctly. As
illustrated in the figure, no visible artifacts were detected:
in all cases the tetrahedra do not break and recover their
initial shape.

The polar decomposition applied to an inversed ele-
ment computes a left-handed local frame. The element
tends to recover its initial shape in this frame, converging
to an inversed shape. This can be solved by flipping the
sign of an axis, but this requires the computation of the
determinant to detect the change of sign resulting from an
inversion.

Using Phymul, large displacements can also be applied
without producing unstability, unlike classical mass-
spring models (seefig. 6).

5.2 Speed

We compare the different methods computational costs,
for a single step of the dynamic simulation.

Concerning our FEM-based methods, computational
cost is measured for different decompositions and results
are given infig. 7. The major interest of the QR decom-
position applied on tetrahedra concerns the computation



Figure 6: Phymul simulation. The same displacement
is imposed on the liver(picture 2). The displacement is
applied until the system remains stable(picture 3)and
recovers its initial shape(picture 4-6)

time, which is about 30% faster than the method using
the polar decomposition. This applies when the basic
mecanic laws are respected, and thus that certain precal-
culations are not possible.

On the other hand, in the case of hexahedra, since
no simplification is possible, decomposition QR strongly
loses its interest, because its computing times are the
same than the polar one. The polar decomposition would
thus be prefered in the case of hexahedral meshes. In our
simulator, hexahedra are 20 times slower than tetrahedra.

Concerning Phymul, computational cost is linear in
number of nodes. On a Pentium 4 2.4 GHz, it takes 0.017
ms per node for one iteration. The number of iterations
depends on the integration scheme.

The FEM results obtained with Ansys cannot be di-
rectly compared with these values, since asingle step
computational cost cannot be determined. Indeed, sim-
ulation time strongly depends on the hypothesis (non-
linearity for example).

5.3 Accuracy

In some fields, such as surgical planning and simulation,
accuracy and precision are essential. The models have
then been quantitatively evaluated, by comparison with
the analytical solution of a fixed beam problem, and with
the experimental results of a compression indentation of
a real object.

Fixed beam

Following the theory of deformable beams, the deviation
of a fixed beam subject to gravity (fig. 8) is:
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whereE is the Young’s modulus andI is the moment of
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Figure 8: Notations used for the fixed beam problem.

The physically realistic FEM-based approaches were
compared with this analytical result, modeling a beam of
40 m in length, 4 m in width and 2 m in height, with a 20
kPa Young modulus, a density of 1 and several values of
Poisson’s ratios.

It is known that analytically, the curve of inflection
follows a polynomial of degree 4. Logarithmic scales
are used to compare this degree.fig. 9 provides results
obtained with three different values for Poisson’s ratio.
For a given Poisson’s ratio value, all physically realistic
FEM-based methods provide the same result. The curves
being quasi-parallels, we can claim that the numerical ap-
proach follows a law of degree 4. Moreover, the simula-
tions converge to the analytical result when Poisson’s ra-
tio tends to zero, meeting the fact that incompressibility



is not taken into account by the classical theory of beams.
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Figure 9: Beam deviation given by the theory and by
numerical results with different Poisson’s ratios.

Truth cube
New approaches to model soft tissues can be more eas-
ily experimented with phantoms than with living tissues,
especially in-vivo. In a recent study, Kerdok et al.[16]
validated their finite element model using a cube made of
silicon containing very small metal beads used to mea-
sure the effective deformations during an indentation ex-
periment. The beads displacements, due to the indenta-
tion process, are tracked by MRI. Material properties of
the silicon cube are known, i.e. a Poisson’s ratio of0.499
and a Young Modulus of14.9 kPa.

To evaluate our methods, we model this cube using
a grid of 10 × 10 × 10 hexahedra, which corners posi-
tions correspond to the spheres locations. These spheres
are small enough to be ignored in the simulation, which
therefore assumes an isotropic behaviour of the cube.
Three displacements of the cube top face are simulated
(respectively 5%, 12.5% and 18.25% of compression).

To test tetrahedra, we cut out each hexahedra isotropi-
cally into ten tetrahedra by superimposing the two single
ways of cutting out a hexahedron into five tetrahedra (as
detailled in appendix B). The material being duplicated,
the Young modulus is divided by two. For the dynamic
simulations, compression is applied gradually, and mea-
surements are taken after a certain time in order to reach
convergence. In term of parameter setting, a time step
of 0.4 ms and 5 iterations in dynamic implicit integration
are used, as well as a gravity of 9.81 and no damping.

Results of the simultions are given intables 1, 2,
3. Different methods were tested: first the pure lin-
ear geometric tensor, then using rotational invariance
method with polar and QR decompositions, with or
without updating the strain-displacement matrix at each
time step, and with or without updating the volume
term of the strain-displacement matrix. The results of
a standard static linear FEM analysis (computed using
the Ansys FEM software) are also presented, using the

(a) at rest (b) 5% of
compres-
sion

(c) 12.5%
of com-
pression

(d) 18.25%
of com-
pression

Figure 10: Simulation of the truthcube experiment.

Green-Lagrange tensor in small and large deformation
hypotheses (namely with and without neglecting the
second order term of the tensor).

The comparison criterion between simulations and
measured data is based on the relative deviation:
(‖real_position−simulated_position‖ (mm)

truthcube_size (80mm) × 100)%

linear vs non-linear First, results given by the
pure linear method and the non-linear methods are very
close, which shows that the Truth cube is not enough
discriminant, since elements do not undergo large
enough rotations.
QR B updating vs Polar B updating As expected,
the polar decomposition gives better results than QR
decomposition by treating the smallest deformations.
The polar decomposition give results very similar to
the non-linear method, which is very interesting for
interactive dynamic methods.
QR B updating vs QR no B updating With this com-
parison, the strain-displacement matrix updating is not
very well emphasized, and do not follow the theory. That
can be explained by the fact that errors accumulations
of QR decomposition (discussed in section 2.4) may be
compensated by errors of non-update ofB, to seem to
offer a good result, but it is true only in the precise case of
this truthcube experiment, and is of nothing significant.
This observation somewhat calls into question the use
of a single "gold standard" to compare the numerical
methods, a more complete set of situations is necessary.
Polar B updating vs Polar no B updating In the case
of the polar decomposition the results are better when
updatingB, as expected.
Polar V updating vs Polar no V updating Tests on
volume term updating seem to validate the fact that
always using the intiial volume do not decrease the
precision. On the contrary, it might even improve it a
little.
Tetrahedron vs Hexahedron (Polar B updating)Glob-



ally, using hexahedra do not provide far more accurate
results than with tetrahedra, for a computation twice
longer (B updating is necessary, and there are less
numerical simplifications). This result is not in agree-
ment with the conclusions drawn by Benzley et al. [3]
claiming that hexahedral elements are more accurate
than tetrahedral elements in the context of FE analysis.
Phymul This method always gives a greater error
than the best continuous method. However the rather
small error is the price to pay for an efficient interactive
computation time.

6 Conclusion

FEM-based and a physically-based dicrete methods were
proposed for dynamic interactive simulations. Compared
to theoretical and experimental data, all these methods
prove to be quite relevant.

Generally speaking, the results obtained with the stan-
dard FEM are slightly better, especially under a large de-
formation hypothesis. However, very similar values can
be obtained with the polar method and the updating of
theB matrix, with a far more efficient computation time.
The QR method or Phymul would be prefered if the speed
criteria is the most relevant to the application, with a still
excellent accuracy.

These methods have now to be extensively tested with
more selective data, especially when extreme boundary
conditions in terms of rotations and deformations are ap-
plied, as encountered in actual biomedical interactive ap-
plications.
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Mean Min Max Std Dev
(%) (%) (%)

Tetrahedra Linear 1.06 0.09 2.92 0.62
QR noB updating 1.04 0.09 2.9 0.61

B updating 1.06 0.06 2.89 0.59
Polar noB updating 1.06 0.08 2.92 0.62

B updating 1.05 0.09 2.88 0.61
B andV updating 1.06 0.08 2.85 0.6

Hexahedra QR noB updating - - - -
B updating 1.05 0.09 2.88 0.61

Polar noB updating 1.65 0.08 3.66 0.79
B updating 1.06 0.09 2.88 0.6

Ansys small deformation 1.07 0.03 2.94 0.63
large deformation 1.06 0.04 2.93 0.63
Phymul 1.19 0.19 3.3 0.54

Table 1: Results of truthcube simulations for 5% compression.

Mean Min Max Std Dev
(%) (%) (%)

Tetrahedra Linear 1.53 0.08 4.38 0.88
QR noB updating 1.42 0.11 4.16 0.82

B updating 1.54 0.2 4.24 0.77
Polar noB updating 1.56 0.13 4.43 0.88

B updating 1.44 0.11 3.89 0.79
B andV updating 1.46 0.12 3.78 0.77

Hexahedra QR noB updating - - - -
B updating 1.44 0.09 3.9 0.8

Polar noB updating 3.27 0.44 6.83 1.39
B updating 1.47 0.09 3.87 0.78

Ansys small deformation 1.49 0.1 4.29 0.87
large deformation 1.45 0.05 4.12 0.83
Phymul 1.98 0.34 5.52 0.88

Table 2: Results of truthcube simulations for 12.5% compression.

Mean Min Max Std Dev Speed
(%) (%) (%) (ms/step)

Tetrahedra Linear 2.08 0.27 5.32 1.03 40
QR noB updating 1.69 0.10 4.78 0.94 57

B updating 2.13 0.64 5.39 0.91 58
Polar noB updating 2.24 0.44 5.37 1.05 75

B updating 1.77 0.15 4.25 0.88 80
B andV updating 1.81 0.18 3.96 0.84 81

Hexahedra QR noB updating - - - - -
B updating 1.76 0.09 4.36 0.92 150

Polar noB updating 4.97 0.91 9.57 1.89 24
B updating 1.82 0.14 4.16 0.87 150

Ansys small deformation 1.97 0.44 5.18 1.00
large deformation 1.78 0.20 4.83 0.91
Phymul 2.69 0.33 6.72 1.16 12

Table 3: Results of truthcube simulations for 18.25% compression.
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A Classical Strain-displacement matrix computa-
tion

For a tetrahedron(a, b, c, d) :

B =
1
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The coefficients of the other shape functions are the
same by a cyclic change of indices (a becomesb, b be-
comesc etc, and the signs also change).

B Cutting a hexahedron in five tetrahedra

An hexahedron has only 2 ways of being cut out into 5
tetrahedra. For an hexahedron with vertices numbered
like in fig. 11, possible cuttings are :

cutting 1 cutting 2

(1,4,5,7) (5,0,1,3)
(0,1,4,2) (4,5,0,6)
(1,3,2,7) (5,7,6,3)
(2,4,6,7) (6,0,2,3)
(1,2,4,7) (5,6,0,3)

10

4
5

2
3

76

Figure 11: An hexahedron with indexed vertices.


