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The aim of craniofacial reconstruction is to estimate the
shape of a face from the shape of the skull. Few works
in machine assisted facial reconstruction have been
conducted so far, probably due to technical (poor
machine performance and data availability) and
theoretical (complexity) reasons. Therefore, the main
works in the literature consist in manual reconstructions.
In this paper, an original approach is first proposed to
build a 3D statistical model of the skull/face set from
3D CT scans. Then, a reconstruction method is
introduced in order to estimate, from this statistical
model, the 3D facial shape of one subject from known
skull data.

Keywords: facial reconstruction, statistical model,

elastic registration, missing data reconstruction

1. Introduction

Craniofacial reconstruction is usually considered when
confronted with an unrecognizable corpse and when no
other identification evidence is available. In such cases,
the skeletal remains are the only available information
for creating a picture of that person. The aim of
craniofacial reconstruction is then to produce a likeness
of the face using the skeletalized remains. This
reconstruction may hopefully provide a route to a
positive identification.

Several 3D manual methods for facial reconstruction
have been developed up to now and are currently used
in practice. They consist of modeling a face on the
remaining skull by use of clay and plasticine. However,
manual  reconstruction methods have several
fundamental shortcomings, such as being highly
subjective, time-consuming and requiring artistic talent.
Computer-based methods have been developed to try to
complement or even provide an answer to these
shortcomings.

Some current machine aided techniques fit a template
skin surface to a set of interactively placed virtual

dowels on a 3D digitized model of the remaining skull
[1] — [5]. Other works propose to deform a reference
skull in order to match the remaining skull, thanks to
crest lines (lines of maximal local curvature) [6], control
data sets [7] or feature points [8]. Then they apply an
extrapolation of the calculated skull deformation to the
template skin surface associated to the reference skull.
For both techniques, the template skin or reference skull
can either be a generic surface or a specific best look-
alike according to the skull. However, the facial
reconstruction is biased by the choice of the reference
skull and the template skin. Recent works using
multiple reference skulls [9], or a combined statistical
deformable model of facial surfaces and tissue thickness
[10] both addressed the facial reconstruction problem
and discussed these biases.

Several works have addressed the problem of
construction of statistical models. Input data are first
registrated in a common reference system by
minimization of a cost function. Then, the model, often
based on PCA, is computed. The cost function can be
modeled on voxel intensities, [11], voxel labels [12],
manual landmarks [13], features [14], or nearest points
[15] in 2D images or 3D density maps. In craniofacial
reconstruction, two objects, the skull and the skin, have
to be registrated. It is of utmost importance that the
registration method does not modify the relationship
between these objects. Most methods based on voxel
intensities use an implicit model of elastic deformation
in the cost function, which can biais the relationship
between skin and skull objects in the registrated image.
Other methods often use meshes to represent surfaces in
3D. The meshes must have the same connectivity (same
number of vertices and same relationships among them)
to build a statistical model. This is achieved by a
parameterization of the object [16], by an optimization
of the resulting statistical model [17], or by constructing
template references [18]. In [12], the authors decimate
the meshes to reduce the influence of noise and the
processing time. Our model is closely related to these
last methods [17, 18] and also follows tracks from [20]
where the model is built from labeled images.
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In this paper, a method to build a joint statistical 3D
model of the skull and face is presented. This model is
then used to reconstruct a face from available skull data.
The idea is similar to [6-8] but uses a statistical shape
model of both the skull and the face for the
reconstruction task, instead of a sole extrapolation of the
deformation field. A 3D-to-3D matching procedure
propagates pseudo-landmarks from reference surfaces to
the various surfaces of the skull and face of our
database. Therefore, when applied to several
individuals, a statistical model of the cross-variability of
the skull and the face is built. The reconstruction of the
face is then solved using the direct statistical
relationship between skin and skull surface shapes given
by the model. Face reconstruction can therefore be seen
as a missing data problem.

This paper is organized as follows. Section 2 describes
the elaboration of the normalized skull and face
geometries obtained by a 3D-to-3D matching procedure.
Section 3 presents the statistical model built upon the
normalized faces and skulls. Finally, section 4
introduces the facial reconstruction method and presents
results. Some open research lines for further
improvements are also presented.

2. Skull and Face Database

2.1. Method

An entry (i.e. a sample) in our database consists of a
skull surface coupled with a skin surface. For facial
reconstruction, only the skull surface is known. These
surfaces are represented by 3D meshes (vertices and
triangles). In order to construct the statistical model,
each skull or skin shape must share the same mesh
connectivity. This particular connectivity arises from a
subject-shared reference mesh (also denoted as generic
mesh in the following). For each individual in our
database, original meshes are reconstructed from CT
data of the subject (Figure 1). Each of these subject
meshes has its own connectivity. The main problem is
then to establish correspondences between the different
meshes of the training set, so as to match the
anatomically equivalent features. Each of these subject
meshes needs to be registrated in the subject-shared
reference system. Like Fleute et al. [21] correspondence
is established by elastic registration of template shapes
(mandible, skull and face) with all the subject shapes
(Figure 2). Joint propagation of mesh connectivity and
geometry is performed from the generic mesh to match
the subject shapes. The triangles for a region of the skull
or the face are therefore supposed to be the same for all
samples, while the variability of the position of the
vertices will reflect the anatomical characteristics of
each sample. These vertices can be considered as semi-
landmarks (or pseudo-landmarks), i.e. points that do not

have names but that match across all the samples of a
data set under a reasonable model of deformation [22].
As each skull or skin shape (also denoted as subject-
specific generic meshes) share the same mesh
connectivity, a statistical model can be built (Figure 3).
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Figure 1. Generation of the subject meshes.
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Figure 2. Generation of the subject-specific generic
meshes.
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Figure 3. Building the statistical model from the
subject-specific generic meshes.



3D Semi-landmarks based statistical face reconstruction

Figure 4. (Top) 3D raw scan data (only axial slices were
collected; midsagital and coronal have been
reconstructed here by image processing), (Bottom)
subject-specific mesh reconstructed using the marching
cube algorithm [23]

2.2. Generation of Subject Meshes

Axial CT slices (see Figure 4) were collected for the
partial skulls and faces of 15 subjects (helical scan with
a 1-mm pitch and slices reconstructed every 0.31 mm or
0.48 mm). Since these data were collected during
regular medical exams, excitation of the brain volume
was avoided if not necessary. So nearly all the skull are
partially scanned, and only two complete skull and face
volume data were available. Bones and skin image
volumes are first separated using intensity thresholding
and morphological operators. Face volumes are then
filled up, with metal artefacts if any being manually
removed. The mandible and the skull have to be
separated during the segmentation process because the
subjects have different mandible apertures. Skull and
mandible are semi-manually separated using seed-
growing regions. At the end of the segmentation
process, three binary volumes are obtained. The subject
meshes are reconstructed for each volume (face, skull,
mandible) using a standard Marching Cube algorithm
[23] and a smooth decimation algorithm is applied to
the resulting meshes [24]. Each subject shapes are now
described with a different connectivity. Moreover,
undesired holes (such as the orbita wall, foramina, etc.)
are still present in the subject meshes.

2.3. Subject-specific generic meshes
generation

Subject-specific generic (SSG) meshes are obtained by
matching the subject meshes with generic meshes.
Generic meshes (see Figure 5) have been taken from the
Visible Woman Project [25] (skull, 3473 verts, and
mandible, 1100 verts) and from [26] (face, 5828 verts).
These meshes have been semi-manually obtained by
their respective authors. The vertices of these meshes

are located on crest lines and in [26] they are regularly
distributed following facial animation needs. Moreover
each of these generic meshes has no undesired holes.

Figure 5. Skull mesh from [25] (Top) and face mesh
from [26] used as generic meshes (Bottom)

The matching procedure we use is the same as described
in [27]: the elastic registration of the generic meshes to
the subject meshes uses the matching algorithm
proposed by Lavallée et al. [28] with a minimisation of
the distances between the two shapes. It basically
consists of the deformation of the initial 3D space by
several trilinear transformations. These transformations
are applied to all vertices of elementary cubes of the
generic mesh towards the subject mesh. The problem of
matching symmetry [12] is encountered, due to the
vertices density dissimilarity between the subject and
generic meshes. Indeed, the number of vertices is 30 to
70 times larger in the subject meshes than in the subject-
specific ~ meshes.  Therefore, a  symmetrized
minimization function is used [29].

The distance computed for the quantitative analysis of
the SSG and subject meshes is a point-to-surface
distance from the subject-specific generic meshes to the
subject meshes.

Maximal matching errors between the SSG mandible
meshes and the subject mandible meshes are located on
the teeth and on the coronoid process. The mean
distance can be considered as the registration noise,
partly due to the density dissimilarity (see Table 1.).
Teeth will not be part of our model, due to the frequent
metal artefacts in CT scans.

Subject skull meshes are registered on the
corresponding parts of the generic skull mesh, as most
of the skulls were partially scanned. The maximal
matching errors in the resulting SSG skull meshes are
located in the spikes beneath the skull, where the
individual variability and the surface noise are large due
to segmentation errors. Only the minimum common
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subset of shapes will be used to build the statistical
model (Figure 6).

Finally, SSG face meshes are obtained using the same
procedure. In this case, the maximal matching errors
between SSG and subject meshes are located around the
eyes, that are part of the original data, but not part of the
generic mesh (see Figure 7 for a distance map between a
SSG mesh and a subject mesh). ). Again, only the
minimum common subset of shapes will be used to
build the statistical model. Figure 8 shows the 15
normalized shapes of the common subset of the face
database.

Table 1. Distance between the subject (subject CT data
reconstructed through Marching Cube) and the subject-
specific generic meshes.

Distances (mm) mean Max
Mandible 2 8
Skull 4 36
Face 1 5

The 15 subjects are now registrated in a common shape
space. These subset meshes have 3780 face vertices and
2900 skull vertices.

Figure 6. Minimum common subset of shapes used to
build the statistical shape model.
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Figure 7. Distance map of a SSG face mesh to a subject

mesh.

W
—

- -

L

—_—

Figure 8. The 15 face subsets forming the database

/I a refaire avec les modéles plus complets (nez/cou)



3D Semi-landmarks based statistical face reconstruction

3. Statistical Modelling

3.1. Building the statistical model
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Figure 9. Each vertex of the subject-specific generic
meshes is considered as being at the same location
reflecting thus the inter-individual variations of shape.

Each vertex of the SSG mesh is supposed to be a semi-
landmark of the 3D surfaces — see Figure 9 — reflecting
thus the inter-individual variations of shape. The
statistical model is based on this assumption and is
computed on the minimum common subset of the
original data. The 15 matched skulls and faces are first
fitted on the mean configuration of the skull using
Procrustes normalization [30]. Seven degrees of
freedom due to initial location and scale are retrieved by
this fit (three due to translation along the axes, three due
to rotations, one for scale adjustment). As the fitting is
based on mean skull configuration, the relationships
between each face and skull are conserved. A statistical
model of the subset of skulls and faces is then built
using Principal Component Analysis (PCA). The result
of the PCA is a geometrically averaged skull and face
template, which is computed together with a correlation-
ranked set of modes of principal variations based on
inter-subjects variations.

Let{7;i=1---/}denote [ shapes (/=15). Each shape

— 3(n+m) .
T = (xil’yil’Zil""’yin+m’Zin+m ) €ER consists of

the 6680 vertices (n=2900 skull verts., m=3780 face
verts.) of the subset of meshes. Using PCA, we can
write :

T=T+®b (1)

where T'is the average shape vector, ® is a matrix
whose columns are the eigenvectors of the covariance
matrix S of the centered data and b is the shape
parameter vector of the model. If & contains the

t<min{/,3(m+n)} eigenvectors corresponding to the

largest nonzero eigenvalues of S, we can approximate
any shape of the training set using (1), where

®=(g |..|9)and b is a t-dimensional vector given by

b=®(T —T). Any points of the training set can be
represented or retrieved with the ¢ values of the vector b
by T =T +®b.

By varying the parameters b, different instances of the
skull and face can be generated. Assuming that the
cloud of the meshes vertices follows a multidimensional
Gaussian distribution and that shape parameters ly
within the statistical boundaries of the model, the skulls
and faces generated by varying the shape parameters are
similar to those contained in the training set, resulting in
new synthetic but plausible skulls and faces.

3.2. Results

In our case, with 15 subjects, a total of 13 variations
modes can be computed, since a leave-one-out approach
is used to test the generalization of the modeling
procedure. Only the first eight modes of variations (see
Table 2) are significant in terms of represented variance.

Table 2. Percentage of cumulative variance explained.

Mode 1 2 314|567 8
number

Cumulative | 36 | 51 | 64 |73 |79 |84 |88 | 91
variance

The accuracy of this model is tested by reconstruction:
for a given mesh, variation modes (b) are computed by
minimization of the distance between the true real mesh

(T) and the reconstructed mesh (ZN" +®b ). The mean
reconstruction errors (Figure 10) for the last three
modes are below the millimeter for samples of the
learning database. So the reconstruction is quite
accurate with samples in the learning database.
Reconstruction error for a test sample i.e. a sample
which is not in the learning database, is around 3.85 mm
for the skull and 3.25 mm for the face using the first
four modes. The skull reconstruction is mostly
determined by the first variation as the reconstruction
error is then around 4.2 mm. These two results
demonstrate that this method seems promising but that
the number of samples in the learning database is too
small.
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RECONSTRUCTION ERRORS

———face databse
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Figure 10. Mean reconstruction errors of the skull and
face using an increasing number of modes

Except for the first variation mode, the principal
variations of the shape explained by the model are a
little more descriptive of the variation of the face shape
than those of the skull shape. It can be linked to the
greater number of vertices belonging to the face (3780)
than to the skull (2900) (Table 3).

Table 3. Percentage of cumulative variance explained
for each part of the model (face, skull) for the first 6

modes.
Mode number / 1 21314516
Cumulative variance
face 36 |50 64 (75|82 |86
skull 39 |48 59 (66|72 |79

Figure 11 and 12 present the variations of the skull and
face shapes according to the first modes for parameters
varying between +3 and —3 times the standard deviation.
The first parameter influences variations of the face and
skull width, while the second parameter models the face
and skull height. The third parameter acts upon the
shape of the nose as well as the ratio between the upper
and the lower parts of the face. Parameter four
influences the shape of the nose and parameter five is
linked to the shape of the jaw. The first five modes of
variations represent 73 percents of the cumulative
variance (Table 2). As the mandible position is different
for each subject, each mode of variation models also the
jaw aperture (Figure 12).

Figure 11. Variations of the face shape according to the
first 5 modes for parameters varying between +3 and —3
times the standard deviation.

P

Figure 12. Variations of the skull shape according to the
first 3 modes for parameters varying between +3 and —3
times the standard deviation.
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4. Statistical Reconstruction

4.1. Missing Data Extension

The linear PCA model can be extended in an elegant
way in order to take into account spatial relations
between landmarks and to estimate an unknown part of
a partially visible or occluded model [31].

— cbl,l Ln+m
C b,
= |+
X X b
1 1 n+l
n+m,l n+m,n+m
Pamra | 5, ]

Under this hypothesis, if some points (says 7 points) are
known, the remaining unknown points (says m points)
are determined using PCA. The shape parameter vector
b (of dimension ¢t = ntm) will also be determined.
Without any approximations, we can write the unknown

vector (b,,...,b,X ,...,X ) inthe following system:

cl [®, 0[5

= or T =MZ
0| |®, -1d|lx
¢1Al o ¢l.[
where ® . =
C
(2
¢n,| n,t
and (I)X =

n+m,l n+m,t

This is a linear system with n+m equations and n+2m
unknowns that can not be resolved. Since PCA can
represent the dataset with ¢ < n+m values, if we suppose
t=n, the system has a direct solution. Notice, that if we
choose t<n, the system becomes overdetermined and a
least square method can be used to resolve the system :

re1 7. o s
min -
o| |®, -1d||lx

The cost function is :

C-®_*b
J(b,X)=[C-® . *b —X+D, *b]

-X+®&,*b
In matricial form, J can be rewriten as :
J(Z)=J(b,X)=|T-M* Z||2 =
(T'T-TMZ-ZMY+ZMMZ)= 3)
(T'T-2T'MZ + Z’M'MZ)

As the matrix /®c ®y/’ is an orthonormal basis, MM
takes the following form and the cost function becomes:

MM = o, o e, 0] | d P,
1o -Wle, -k |-®, 1 |®

J(b,X)=C'C—2'D,.C+ XX -26'Y X +b'b

The derivatives with respect to X and b are null :

aJ (b, X) , ,

S =2+ 2h -2, X =0 5)
b=®.C+P, X

aJ(b,X) B

=2, b 42X =0 ©)
X=®,b

Reporting (6) in (5), the solution is :
b=(ld-®,®,)" ®.C
X=®, (ld-¥,®,) ®.C

(7

Note that (Id-®x’®x) is always invertible, since it is a
symmetric positive defined matrix.

In this framework, a linear approximation of spatial
relations between known and unknown points is
explicitly determined from the eigenvectors of the
covariance matrix. The determination of the unknown
points is in fact the determination of the shape
parameters given the known points (6). The
determination of the shape parameters can be linked to
the influence of each part on each shape parameter,
described by @ and ®@y. As @ and @y depend only of
the training set, new models must be build to act upon
@ and @y . One way is to build a new model with a
larger (or smaller) training set. One other way is to
change the ratio between each part.

4.2. Results : Synthetic Data

A synthetic skull and face database is first built using
one of the original individuals and a set of elastic
transformations defined as an octree. Random
transformations of the cube enclosing the two meshes
were provided, thus transforming the two meshes. Five
parameters are used to deform the meshes: three scaling
parameters, and variations of the center of the X face
and of the central axis of the cube (Z direction). Of
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course, these variations do not simulate the reality of the
skulls and faces variability. However, it is a way to
artificially verify the missing data formulation and the
semi-landmark hypothesis.

Using the extension of the linear PCA defined above,
the face of a synthetic subject can be reconstructed from
his skull and from the statistical model built using
synthetic data. The known part (Ci) contains the skull
vertices while the unknown part (Xi) contains the face
vertices.

el . V j’i a ’
o
e\ ‘g ﬁ ' ’

Figure 13.Examples of synthesis meshes.

A set of one hundred meshes is generated using these
random transformations (see Figure 13 for examples of
generated faces). To further increase the variability on
the face, a Gaussian noise is added to each point. The
level of this noise (2 mm) is chosen so that we still
remain in the semi-landmark paradigm. Indeed, a large
level of noise could change the relative positions of the
vertexes of the mesh, thus making the concept of semi-
landmark not valid anymore.

Figure 14 and 15 plot the reconstruction results.. Test
samples are reconstructed with a mean accuracy of 1
mm. The missing data error is in the same range. It is
important to note that the missing data error converges
to the reconstruction error for the known part of the test
sample (the skull) as well as for the unknown part (the
face. If the subject-specific meshes are used as test
samples on the synthesis database, bad reconstructions
are obtained for each individual as the variations of the
shapes used are too simple

RECONTRUCTION ERRORS

———face database
skull database
""""" face test sample ||
skull test sample

Reconstruction error - mm

0 L L L L L L L

3 4 a
Number of variation modes

Figure 14. Mean reconstruction errors of the skull and
face using an increasing number of mode for the
synthetic database model.

MISSING DATA ERRORS

face database
—— ~ face test sample

Missing Data Errors - mm

0 1 2 3 4 5 B 7 8
Number of variation modes

Figure 15. Mean Facial Reconstruction errors using an
increasing number of modes for the synthetic database model.

4.3. Statistical Facial Reconstruction

The face of a subject can be reconstructed from his skull
and from the statistical model defined previously (in
3.2), using the missing data extension of the model. The
known part (Ci) contains the skull vertices while the
unknown part (Xi) contains the face vertices.

Again, a leave-one-out approach is used to test the
accuracy of the facial reconstruction. The learning
database is composed of all subjects minus one, which
is the test sample. Every subject becomes the test
sample in turn. Figure 16 gives the mean reconstruction
error of the test sample. It also gives the reconstruction
error for the samples of the learning database.

In all cases, the global reconstruction is correct. The
face and skull are reconstructed with an accuracy of 0.5
mm for the samples in the learning database. Test face
sample is reconstructed with a mean accuracy of 6 mm.
Clearly, these results show that the method is promising
but suffers from the size of the learning database. The
first parameter offers a better approximation of the
reconstructed face with a mean reconstruction error of
5.2 mm. As the skull provides essentially the first mode
of variation (see figure 10) and the other modes are
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mostly related to variations of the face for our test
sample, only the performance for the first parameter
should be considered. For each additional variation
mode, the prediction should not be considered as it
infers variations of the face from variations not taken
into account for the skull, the values of the variations
modes being not accurate. As these parameters do not
correspond to variation modes with null eigenvalues, a
large error in their prediction results in a large error in
reconstruction.

MISSING DATA ERRORS
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face database b
——=face test sample

Missing data errors - mm
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0 2 4 6 8 10 12

Number of variation modes

Figure 16. Mean Facial Reconstruction errors using an
increasing number of modes.

The repartition of the missing data errors on the face is
shown figure 17. Large errors are located on the cheeks,
on the neck and on the sides of the nose. It is important
to note that the cheeks are not attached to the skull and
that the database provides different mandible positions.
So, it is very difficult to predict correctly the position of
the vertexes of the cheeks. Moreover, the density of
vertexes for the cheeks region is quite low, which
authorizes a possible sliding of those points on the skin
surface. The neck is unconnected to the skull, so large
errors are inescapable. Finally it is known that the
prediction of the shape of the nose from the shape of the
skull is very difficult [32, 33]. The links between the
two organs are complex. These errors located on the
sides of the nose are probably due to this lack of
regularity. The good reconstruction of the tip of the nose
can be conversely associated to the template used during
the creation of the database.

When using a smaller bounding box that excludes the
tip of the nose and the neck, we gain half a millimeter in
the accuracy of the prediction (to 4.6 mm). The
maximal error is reduced to 3 mm as seen in figure 18.

Two limitations of the current database are its small
size, the non homogeneity of the face mesh (the regions
of the nose and the lips are much more dense than the
rest of the mesh) and the coarseness of the skull mesh.
The following section presents a way of compensating
for these limitations. Using a decimated mesh of the
face (with a more homogenous distribution of the
vertices), we indirectly give more weight to the skull
vertices in the statistical model. The skull is then more

accurately parameterised by the model and errors on the
estimation of the skull shape interfere less on the
prediction of the face.

] B B e
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Histogram of he missing data era (1) Histgram f the mising data et (1) Histogram fthe issing data eror (1)
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Figure 17 : Distance maps and histograms of the facial
reconstruction error for 3 reconstructed faces.
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Figure 18. Distance maps and histograms of the facial

reconstruction error for a reconstructed face using the

enclosed model (no neck or tip of the nose) (left) and
the original model (right).

Figure 19. Original and decimated face meshes.

4.4. Decimated Facial Reconstruction

A decimated face mesh (929 vertices) is extracted from
the original mesh (3780 vertices). As the decimated
mesh is a subpart of the original mesh, every entry of
the database can be expressed with only the vertices
belonging to the decimated mesh. Each vertex of the
decimated mesh represents a larger area of the face. The
skull vertices now represents 75% of the vertices of the
model. They have now more influence on the
eignevectors emerging from statistical modelling.

RECONSTRUCTION ERRORS
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""""" face test sample
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Reconstruction errors - mm
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Figure 20. Mean reconstruction errors of the skull and
face using an increasing number of mode for the
decimated model.

The accuracy of this decimated model is first tested by
global reconstruction. The mean reconstruction errors
(figure 20) for the last three modes are below the
millimeter for samples of the learning database as with
the original mesh. The reconstruction is quite accurate
with sample in the learning database. Reconstruction
error for a test sample is around 3.6 mm for the last four
modes. These results are similar to those of the non-
decimated mesh. The reconstruction of the skull test
sampled is now determined essentially by the first three
modes of variations: the cumulative explained variance
is now more descriptive of the skull shape variations
than the face shape variations (Table 4).
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Figure 21. Mean Facial Reconstruction errors using an
increasing number of modes for the decimated model

Table 4. Percentage of cumulative variance explained for
each part of the model (face, skull) for the first 6 parameters.

Mode number / 1 (2|3 ]|4]|5]|6
Cumulative variance
Face + skull 38 | 55|65 (72|78 |83
face 31 {40| 50|63 |71]|76
skull 41 |59 |68 |72 |78 | 83

Here again, the reconstruction of the face using the
missing data extension of the PCA is promising (figure
21). The face is reconstructed with an accuracy of 0.6
mm for the samples in the learning database. Test
samples are reconstructed with a mean accuracy of 6.0
mm. As with the original model, the first variation mode
offers a better approximation of the reconstructed face
with an error of 5.1 mm. But now the second parameter
also gives an adequate information for the prediction of
the face. The distribution on the face of the facial
reconstruction error is similar to the original model (see
figure 22).

In conclusion, the “decimated” model gives similar
results to the “global” model (the gain is 0.1 mm for the
facial reconstruction with 2 valid modes). However
these results show that the more accurately the skull will
be parameterised by the model (i.e. the greater the
number of valid variation parameters), the more
accurately the face will be predicted, as the error on
these parameters determining the skull will not interfere
on the prediction of the face.
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Figure 22. Distance maps and histograms of the
facial reconstruction error for 3 reconstructed
decimated faces.

5. Conclusion

In this paper, a face and skull statistical model is
proposed for 3D machine-aided facial reconstruction.
To build this statistical model, a 3D-to-3D matching
procedure delivers subject-specific meshes of the skull
and face with the same number of vertices. A shared
normalized space for the faces and skulls is therefore
built. The direct statistical relationships between the
face and the skull included in the statistical model are
used to reconstruct the missing data of the face when the
skull is the only available information. For this, a
missing data extension of the Principal Component
Analysis is used.

Results are visually correct and mean measured errors
show that the method is promising as it will be probably
more efficient for larger learning database. One way of
increasing the efficiency of the model is presented. It
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consists in decimating the face mesh in order to adjust
its density to the skull mesh density, thus giving a
higher weight to the known part of the problem, i.e.
skull data. The corresponding results are similar to the
ones provided by the original model (at least in term of
facial reconstruction), but a slightly more efficient
modeling of the skull was observed.

We will test this statistical approach using data acquired
with a more adequate experimental protocol and using
data from subjects with varied age and sex. The
approach presented here may be extended towards
relevant covariation between shape and appearance as
well as between shape and range of motion. Aestehetic
and rehabilitation surgery may thus also benefit from
such anatomy-aware and subject-informed statistical
models.
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