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A weakness in strong localization for Sinai’s walk

by

Zhan Shi and Olivier Zindy

Université Paris VI

Summary. Sinai’s walk is a recurrent one-dimensional nearest-neighbour
random walk in random environment. It is known for a phenomenon of
strong localization, namely, the walk spends almost all time at or near the
bottom of deep valleys of the potential. Our main result shows a weakness
of this localization phenomenon: with probability one, the zones where the
walk stays for the most time can be far away from the sites where the
walk spends the most time. In particular, this gives a negative answer
to a problem of Erdős and Révész [4], originally formulated for the usual
homogeneous random walk.
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1 Introduction

Let ω = (ωx, x ∈ Z) be a collection of independent and identically distributed random

variables taking values in (0, 1). The distribution of ω is denoted by P . Given the value

of ω, we define (Xn, n ≥ 0) as a random walk in random environment (RWRE), which

is a Markov chain whose distribution is denoted by Pω. The transition probabilities of

(Xn, n ≥ 0) are as follows: for x ∈ Z,

Pω (Xn+1 = x + 1 |Xn = x) = ωx = 1 − Pω (Xn+1 = x − 1 |Xn = x) .
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We denote by P the joint distribution of (ω, (Xn)).

Throughout the paper, we assume that there exists 0 < δ < 1
2

such that

P (δ ≤ ω0 ≤ 1 − δ) = 1,(1.1)

and that

E[ log(
1 − ω0

ω0
) ] = 0,(1.2)

σ2 := Var[ log(
1 − ω0

ω0
) ] > 0.(1.3)

Assumption (1.1) is a commonly adopted technical condition, and can for example be

replaced by the existence of exponential moments of log(1−ω0

ω0
). It implies that, P -a.s.,

| log(1−ω0

ω0
)| ≤ M := log(1−δ

δ
). Condition (1.2) ensures, according to Solomon [12], that for

P -almost all ω, (Xn) is recurrent, i.e., it hits any site infinitely often. Finally, (1.3) simply

excludes the case of a usual homogeneous random walk.

Recurrent RWRE is known for its slow movement: indeed, under (1.1)–(1.3), it is proved

by Sinai [11] that Xn/(log n)2 converges in distribution to a non-degenerate limit. Recurrent

RWRE will thus be referred to as Sinai’s walk. We will from now on assume (1.1)–(1.3).

For an overview of RWRE, see Zeitouni [13]. Although the understanding of one-

dimensional RWRE reached a high level in the last decade, there are still some important

questions that remain unanswered. See den Hollander [7] for those concerning large devia-

tions.

Let

ξ(n, x) := # {0 ≤ i ≤ n : Xi = x} , n ≥ 0, x ∈ Z,(1.4)

V(n) :=

{
x ∈ Z : ξ(n, x) = max

y∈Z

ξ(n, y)

}
, n ≥ 0.(1.5)

In words, ξ(n, x) records the number of visits at site x by the walk in the first n steps, and

V(n) is the set of sites that are the most visited. Note that V(n) is not empty. Following

Erdős and Révész [4], any element in V(n) is called a “favourite site”.

The basic question we are addressing is: if we know that the walk spends almost all time

in Z+, does it imply that favourite sites would also lie in Z+?

To formulate the problem more precisely, let us introduce the notion of “positive se-

quence”: a (random) sequence 0 < n1 < n2 < . . . of positive numbers is called a “positive

sequence” (for the walk (Xn)) if

lim
k→∞

# {0 ≤ i ≤ nk : Xi > 0}

nk
= 1.(1.6)
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In words, the walk spends an overwhelming time in Z+ along any positive sequence.

Problem 1.1 Is it true that P-almost surely for any positive sequence (nk), we have V(nk) ⊂

Z+ for all large k?

Problem 1.1 was raised by Erdős and Révész [4] (also stated as Problem 10 on page 131

of Révész [8]), originally formulated for the usual homogeneous random walk.

It turns out for the homogeneous walk that the answer is no. Roughly speaking, it is

because there is too much “freedom” for the homogeneous walk, so that with probability

one, it is possible to find a (random) positive sequence along which the walk does not spend

much time in any of the sites of Z+ – typically, the homogeneous walk makes excursions in

Z+ without spending much time in any sites of Z+, thus the favourite sites are still in Z−.

When the environment is random, there is a phenomenon of strong localization (Golosov

[6]); indeed, Sinai’s walk spends almost all time at the bottom of some special zones, called

(deep) “valleys”. If we know that Sinai’s walk spends almost all time in Z+, then these deep

valleys are likely to be located in Z+, and the favourite sites – which should be located at

or near to the bottom of these deep valleys – would also lie in Z+. In other words, due to

strong localization, it looks natural to conjecture that the answer to Problem 1.1 would be

yes.

However, things do not go like this. Here is the main result of the paper.

Theorem 1.2 Under assumptions (1.1)–(1.3),

P {∀ positive sequence (nk), we have V(nk) ⊂ Z+ for all large k} = 0.

The reason for which the aforementioned heuristics are wrong is that even though Sinai’s

walk is strongly localized around the bottom of deep valleys, it can happen that a (rela-

tively) big number of sites are around the bottom. In such situations, none of these sites is

necessarily favourite, since the visits are shared more or less equally by all these sites.

The main steps in the proof of Theorem 1.2 can be briefly described as follows.

Step A. For P -almost all environment ω, we define a special sequence, denoted by

(mk)k≥1. This is the starting point in our construction of a positive sequence (nk) such that

for any k, V(nk) ⊂ Z−.

We mention that the special sequence (mk) depends only on the environment.
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Step B. Based on the special sequence (mk) and on the movement of the walk, we

construct in Section 4 another sequence (nk). We prove that (nk) is a positive sequence for

(Xn), i.e., condition (1.6) is satisfied.

Step C. Let (nk) be the positive sequence constructed in Step B. We prove in Section 5

that P-almost surely for all large k, V(nk) ⊂ Z−.

Clearly, Steps B and C together yield Theorem 1.2.

The rest of the paper is organized as follows. In Section 2, we present some elementary

facts about Sinai’s walk. These facts will be frequently used throughout the paper. A

detailed description of Step A is given in Section 3, but the proof of the main result of the

section, Proposition 3.1, is postponed to Section 6. Sections 4 and 5 are devoted to Steps B

and C, respectively. Finally, in Section 7, we make some comments on the concentration of

Sinai’s walk.

We use Ci (1 ≤ i ≤ 22) to denote finite and positive constants.

2 Preliminaries on Sinai’s walk

We list some basic estimates about hitting times and excursions of Sinai’s walk.

In the study of Sinai’s walk, an important role is played by a process called the potential,

denoted by V = (V (x), x ∈ Z). The potential is a function of the environment ω, and is

defined as follows:

V (x) :=





∑x
i=1 log(1−ωi

ωi
) if x ≥ 1,

0 if x = 0,
−
∑0

i=x+1 log(1−ωi

ωi
) if x ≤ −1.

By (1.1), we have |V (x) − V (x − 1)| ≤ M for any x ∈ Z.

2.1 Hitting times

For any x ∈ Z, we define

τ(x) := min {n ≥ 1 : Xn = x} , min ∅ := ∞.(2.1)

(Attention, if X0 = x, then τ(x) is the first return time to x.) Throughout the paper, we

write P x
ω (·) := Pω( · |X0 = x) (thus P 0

ω = Pω) and write Ex
ω for expectation with respect to

P x
ω .
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It is known (Zeitouni [13], formula (2.1.4)) that for r < x < s,

P x
ω {τ(r) < τ(s)} =

s−1∑

j=x

eV (j)

(
s−1∑

j=r

eV (j)

)−1

.(2.2)

The next lemma, which gives a simple bound for the expectation of τ(r) ∧ τ(s) when the

walk starts from a site x ∈ (r, s), is essentially contained in Golosov [6].

Lemma 2.1 For any integers r < s, we have

max
x∈(r, s)∩Z

Ex
ω

[
τ(r) 1{τ(r)<τ(s)}

]
≤ (s − r)2 exp

[
max

r≤i≤j≤s
(V (i) − V (j))

]
.(2.3)

Proof. Given {τ(r) < τ(s)}, the walk does not hit site s during time interval [0, τ(r)].

Therefore, τ(r) under P x
ω{ · | τ(r) < τ(s)} is stochastically smaller than the first hitting

time of site r by a walk starting from s with a reflecting barrier (to the left) at site s. The

expected value of this latter random variable is, according to (A1) of Golosov [6], bounded

by (s − r)2 exp{maxr≤i≤j≤s(V (i) − V (j))}. This yields the lemma. �

We will also use the following estimate borrowed from Lemma 7 of Golosov [6]: for ℓ ≥ 1

and x < y,

P x
ω {τ(y) < ℓ} ≤ ℓ exp

(
− max

x≤i<y
[V (y − 1) − V (i)]

)
.(2.4)

Looking at the environment backwards, we get: for ℓ ≥ 1 and w < x,

P x
ω {τ(w) < ℓ} ≤ ℓ exp

(
− max

w<i≤x
[V (w + 1) − V (i)]

)
.(2.5)

2.2 Excursions

We quote some elementary facts about excursions of Sinai’s walk (for detailed discussions,

see Section 3 of [3]). Let b ∈ Z and x ∈ Z, and consider ξ(τ(b), x) under P b
ω. In words, we

look at the number of visits to x of the walk (starting from b) at the first return to b. Then

there exist constants C1, C2 and C3 such that

C1 e−[V (x)−V (b)] ≤ Eb
ω[ξ(τ(b), x)] ≤ C2 e−[V (x)−V (b)],(2.6)

and that

Varb
ω[ξ(τ(b), x)] ≤ C3 |x − b| exp

(
max
b≤y≤x

[V (y) − V (x)]

)
e−[V (x)−V (b)],(2.7)

where maxb≤y≤x should be replaced by maxx≤y≤b if x < b.
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3 Step A: a special sequence

Recall the constant δ from condition (1.1). We write

C4 :=
δ3

2
.

For any j > 0, we define

d+(j) := min {n ≥ 0 : V (n) ≥ j} ,(3.1)

b+(j) := min

{
n ≥ 0 : V (n) = min

0≤x≤d+(j)
V (x)

}
.(3.2)

Similarly, we define

d−(j) := max {n ≤ 0 : V (n) ≥ j} ,(3.3)

b−(j) := max

{
n ≤ 0 : V (n) = min

d−(j)≤x≤0
V (x)

}
.(3.4)

In the next sections, we will be frequently using the following elementary estimates: for any

ε > 0, P -almost surely for all large j,

j2−ε ≤ |b±(j)| < |d±(j)| ≤ j2+ε.(3.5)

To introduce the announced special sequence in Step A, we define the events (the constant

C5 will be defined in (6.8)):

E+
1 (j) :=

{
−2j ≤ V (b+(j)) ≤ −j

}
,(3.6)

E+
2 (j) :=

{
max

0≤x≤y≤b+(j)
[V (y) − V (x)] ≤

j

4

}
,(3.7)

E+
3 (j) :=

{
max

b+(j)≤x≤y≤d+(j)
[V (x) − V (y)] ≤ j

}
,(3.8)

E+
4 (j) :=





∑

0≤x≤d+(j)

e−[V (x)−V (b+(j))] ≥ C4 log log j




 ,(3.9)

and

E−
1 (j) :=

{
V (b−(j)) ≤ −3j

}
,(3.10)

E−
2 (j) :=

{
max

b−(j)≤x≤0
V (x) ≥

j

3

}
,(3.11)
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E−
3 (j) :=

{
max

b−(j)≤x≤y≤0
[V (x) − V (y)] ≤

j

2

}
,(3.12)

E−
4 (j) :=

{
j

3
≤ max

d−(j)≤x≤y≤b−(j)
[V (y) − V (x)] ≤ j

}
,(3.13)

E−
5 (j) :=





∑

d−(j)≤x≤0

e−[V (x)−V (b−(j))] ≤ 1 + C5




 .(3.14)

We set

E+(j) :=

4⋂

i=1

E+
i (j), E−(j) :=

5⋂

i=1

E−
i (j).(3.15)

In words, E+
1 (j), E+

2 (j) and E+
3 (j) require (V (x), 0 ≤ x ≤ d+(j)) to behave “normally”

(i.e., without excessive minimum, nor excessive fluctuations), whereas E+
4 (j) requires the

potential to have a “relatively large” number of sites near the minimum.

Similarly, E−
1 (j) and E−

2 (j) require (V (y), d−(j) ≤ y ≤ 0) to have no excessive extreme

values, E−
3 (j) and E−

4 (j) no excessive fluctuations, E−
5 (j) no excessive concentration around

the minimum.

Later, we will see that P{E+
1 (j) ∩ E+

2 (j) ∩ E+
3 (j) ∩ E−(j)} is greater than a positive

constant, while P{E+
4 (j)} tends to 0 (as j → ∞) “sufficiently slowly”.

See Figure 1 for an example of ω ∈ E+(j) ∩ E−(j).

For future use, let us note that for ω ∈ E−
3 (j) ∩ E+

1 (j) ∩ E+
2 (j) ∩ E+

3 (j), we have

max
b−(j)≤x≤y≤d+(j)

[V (x) − V (y)] ≤
5j

2
.(3.16)

The proof of the following proposition is postponed until Section 6.

Proposition 3.1 Under assumptions (1.1)–(1.3), for P -almost all environment ω, there

exists a random sequence (mk) such that ω ∈ E+(mk) ∩ E−(mk) for all k ≥ 1.

By admitting Proposition 3.1, we will complete Steps B and C in the next two sections.

4 Step B: a positive sequence

Let (mk) be the special sequence introduced in Proposition 3.1. Without loss of generality,

we can assume mk ≥ k3k for all k ≥ 1. For brevity, we write throughout the paper,

b+
k := b+(mk), d+

k := d+(mk), τ+
k := τ(b+

k ),(4.1)

b−k := b−(mk), d−
k := d−(mk), τ−

k := τ(b−k ).(4.2)
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b−(j) b+(j)

d−(j) d+(j)

x

V (x)

0

log log j

j

−j

−2j

−3j

−4j

j/3

Figure 1: Example of ω ∈ E+(j) ∩ E−(j)

We define

nk := (1 + (log k)−1/4)τ−
k .(4.3)

We prove in this section that P-almost surely, (nk) is a positive sequence for (Xn), i.e.,
1

nk
#{0 ≤ i ≤ nk : Xi > 0} → 1, P-a.s. (as k → ∞).

We start with a few lemmas.

Lemma 4.1 We have, P -almost surely, for all large k,

Pω

{
τ−
k < τ+

k

}
≤ m3

k e−mk/12,(4.4)

Pω

{
τ(d+

k ) < τ−
k

}
≤ m3

k e−mk/2.(4.5)

As a consequence, P-almost surely for all large k,

τ+
k < τ−

k < τ(d+
k ).(4.6)
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Proof. By (2.2), Pω{τ
−
k < τ+

k } =
∑b+k −1

j=0 eV (j)/
∑b+k −1

j=b−k
eV (j). Since maxb−k ≤j≤0 V (j) ≥ mk

3
(see

(3.11)), we have
∑b+k −1

j=b−k
eV (j) ≥ emk/3. On the other hand, max0≤j≤b+k

V (j) ≤ mk

4
according to

(3.7). Therefore, Pω{τ
−
k < τ+

k } ≤ b+
k e−mk/12. Since b+

k ≤ m3
k for large k (see (3.5)), this yields

(4.4). The proof of (4.5) is along the same lines, using the fact that maxb−k ≤j≤0 V (j) ≤ mk

2

(a consequence of (3.12)).

Since mk ≥ k, (4.4) and (4.5) yield, respectively,
∑

k Pω{τ
−
k < τ+

k } < ∞,
∑

k Pω{τ(d+
k ) <

τ−
k } < ∞, P -almost surely. Now (4.6) follows from the Borel–Cantelli lemma. �

Lemma 4.2 Let A−(n) := #{i : 0 ≤ i ≤ n, Xi ≤ 0}. There exists a constant C6 such that

P -almost surely, for all large k,

Eω

[
A−(τ−

k )
]
≤ C6 (b−k )2 emk/2.(4.7)

Proof. Let x ∈ (b−k , 0] ∩ Z. Recall ξ(n, x) from (1.4). Recall that P x
ω (·) := Pω( · |X0 = x).

Clearly, Pω{ξ(τ
−
k , x) = ℓ} = (1 − πx)

ℓ−1πx, ℓ ≥ 1, where

πx := P x
ω

{
τ(x) > τ−

k

}
(4.8)

= (1 − ωx) P x−1
ω

{
τ(x) > τ−

k

}

=
1 − ωx∑x−1

j=b−k
eV (j)−V (x−1)

,

the last identity being a consequence of (2.2). In view of assumption (1.1), this yields

1

πx
≤ C6 |b

−
k | exp

(
max

b−k ≤j≤i≤0
(V (j) − V (i))

)
.

Since maxb−k ≤j≤i≤0(V (j) − V (i)) ≤ mk

2
, and Eω[ξ(τ−

k , x)] = 1
πx

, this yields Eω[ξ(τ−
k , x)] ≤

C6 |b
−
k | e

mk/2. Summing over x ∈ (b−k , 0] ∩ Z completes the proof of the lemma. �

Remark 4.3 A similar argument shows that for all x ∈ [0, b+
k ],

Eω[ξ(τ+
k , x)] ≤ C6 b+

k emk/4.(4.9)
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Lemma 4.4 For any k ≥ 1 and N ≥ 1, we have

Pω{τ
+
k < τ−

k < N} ≤ C6 e−4mk/3N.(4.10)

Furthermore, P -almost surely, for all large k,

Eω

(
1

τ−
k

1{τ+
k <τ−

k }

)
≤ C7 mk e−4mk/3.(4.11)

Proof. We observe that

Pω

{
ξ(τ−

k , b+
k ) = ℓ

}
= qk(1 − πb+k

)ℓ−1πb+k
, ℓ ≥ 1,(4.12)

where πb+k
is as in (4.8), qk := Pω{τ

+
k < τ−

k }, and Pω{ξ(τ
−
k , b+

k ) = 0} = 1− qk. Therefore, for

any N ≥ 1, Pω{1 ≤ ξ(τ−
k , b+

k ) ≤ N} ≤ πb+k
N . Note that,

πb+k
≤ exp

(
V (b+

k − 1) − max
b−k ≤j≤0

V (j)

)
≤ C6 e−4mk/3,(4.13)

the second inequality following from (3.6) and (3.11). In view of the trivial relations τ−
k ≥

ξ(τ−
k , b+

k ) + 1 and {τ+
k < τ−

k } = {ξ(τ−
k , b+

k ) ≥ 1}, this implies (4.10).

To prove the second inequality in the lemma, we note that by the strong Markov property,

Eω(
1
{τ+

k
<τ−

k
}

1+ξ(τ−
k ,b+k )

) = qk E
b+k
ω ( 1

1+ξ(τ−
k ,b+k )

). Since P
b+k
ω {ξ(τ−

k , b+
k ) = ℓ} = (1 − πb+k

)ℓ−1πb+k
, ℓ ≥ 1, it

follows that

Eω

(
1{τ+

k <τ−
k }

1 + ξ(τ−
k , b+

k )

)
=

qk πb+k

(1 − πb+k
)2

(
log(

1

πb+k

) − (1 − πb+k
)

)

≤
πb+k

(1 − πb+k
)2

log(
1

πb+k

).

The function u 7→ u
(1−u)2

log( 1
u
) is increasing in the (positive) neighbourhood of 0. Therefore,

by (4.13),
π

b+
k

(1−π
b+
k

)2
log( 1

π
b+
k

) ≤ C7 mk e−4mk/3 (for large k). Now (4.11) follows again by means

of the trivial inequality τ−
k ≥ ξ(τ−

k , b+
k ) + 1. �

Lemma 4.5 We have, P-almost surely, for all large k,

max
τ−
k ≤i≤nk

Xi < 0.(4.14)
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Proof. By the strong Markov property, {X(i + τ−
k ), i ≥ 0} is independent (under Pω) of τ−

k .

Recall that nk = (1 + (log k)−1/4)τ−
k . We have, for any ℓ ≥ 1,

Pω

{
max

τ−
k ≤i≤nk

Xi ≥ 0
∣∣∣ τ−

k = ℓ

}
= P

b−k
ω

{
τ(0) ≤

ℓ

(log k)1/4

}
≤ C6

ℓ

(log k)1/4
e−3mk ,

the last inequality being a consequence of (2.4) (together with (3.10) and (3.11)). As a

consequence,

Pω

{
max

τ−
k ≤i≤nk

Xi ≥ 0, τ−
k < τ(d+

k )

}
≤

C6

(log k)1/4
e−3mkEω

(
τ−
k 1{τ−

k <τ(d+
k )}

)
.

By (2.3) and (3.16),

Eω

(
τ−
k 1{τ−

k <τ(d+
k )}

)
≤ (d+

k − b−k )2e5mk/2(4.15)

Since d+
k − b−k ≤ m3

k, P -almost surely, for all large k (see (3.5)) and since mk ≥ k, it follows

that
∑

k

Pω

{
max

τ−
k ≤i≤nk

Xi ≥ 0, τ−
k < τ(d+

k )

}
< ∞, P -a.s.

Recall from (4.6) that τ−
k < τ(d+

k ) P-almost surely, for all large k. Lemma 4.5 now follows

from the Borel–Cantelli lemma. �

It is now time to complete the argument for Step B by showing that (nk) is a positive

sequence for (Xn).

Combining (4.7) with (4.10) yields that

Pω

{
A−(τ−

k )

τ−
k

≥ e−mk/3, τ+
k < τ−

k

}
≤ Pω

{
A−(τ−

k ) ≥ e−mk/3N
}

+ Pω

{
τ+
k < τ−

k < N
}

≤
C6 (b−k )2 emk/2

e−mk/3N
+ C6e

−4mk/3N.

Recall that |b−k | ≤ m3
k P -almost surely, for all large k (see (3.5)). Choosing N := emk , and

we have, for large k,

Pω

{
A−(τ−

k )

τ−
k

≥ e−mk/3, τ+
k < τ−

k

}
≤ C8 m6

k e−mk/6.

Since mk ≥ k, this yields
∑

k Pω{A−(τ−
k ) ≥ e−mk/3τ−

k , τ+
k < τ−

k } < ∞, P -almost surely. On

the other hand, by (4.6), we have τ+
k < τ−

k P-almost surely, for all large k. Therefore, the

Borel–Cantelli lemma shows that P-almost surely when k → ∞,

A−(τ−
k )

τ−
k

≤ e−mk/3 → 0.(4.16)
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Since for large k, A−(nk) = A−(τ−
k )+ (log k)−1/4 τ−

k (Lemma 4.5) and τ−
k < nk by definition,

we have proved that A−(nk)
nk

→ 0, P-almost surely. In words, (nk) is a positive sequence for

the walk. �

5 Step C: negative favourite sites along a positive se-

quence

Let (nk) be the positive sequence defined in (4.3). In this section, we prove that P-almost

surely for all large k, V(nk) ⊂ Z−. As before, we use the notation b±k , d±
k and τ±

k as in

(4.1)–(4.2).

We will prove that P-almost surely, for all large k,

ξ(nk, b
−
k ) ≥

τ−
k

(log k)1/3
,(5.1)

max
x∈[1, d+

k ]
ξ(τ−

k , x) ≤
τ−
k

(log k)1/2
.(5.2)

Observe that P-almost surely, for all large k, we have maxx∈[1,d+
k ] ξ(τ

−
k , x) = maxx≥1 ξ(τ−

k , x)

(by (4.6)), and maxx≥1 ξ(τ−
k , x) = maxx≥1 ξ(nk, x) (Lemma 4.5). It is now clear that (5.1)

and (5.2) together will complete Step C, and thus the proof of Theorem 1.2.

The rest of the section is devoted to the proof of (5.1) and (5.2). For the sake of clarity,

they are proved in distinct subsections.

5.1 Proof of (5.1)

Let T−
0 := τ−

k and

T−
j = T−

j (k) := min
{
n > T−

j−1 : Xn = b−k
}

, j = 1, 2, . . .

We define, for any j ≥ 1,

Y −
j (x) := ξ(T−

j , x) − ξ(T−
j−1, x), x ∈ Z,

Z−
j :=

∑

x∈(d−k , 0]

Y −
j (x).

By the strong Markov property, (Z−
j , j ≥ 1) is a sequence of iid random variables (under

Pω). Recall that nk = (1 + (log k)−1/4)τ−
k . Let ℓ ≥ 1. By the strong Markov property,

12



Pω{ξ(nk, b
−
k ) < ℓ

(log k)1/3 | τ
−
k = ℓ} = P

b−k
ω {ξ( ℓ

(log k)1/4 , b
−
k ) < ℓ

(log k)1/3}. Under probability P
b−k
ω ,

if τ(d−
k ) ∧ τ(0) > ℓ

(log k)1/4 , then the walk stays in (d−
k , 0) during time interval [0, ℓ

(log k)1/4 ]; if

moreover ξ( ℓ
(log k)1/4 , b

−
k ) < ℓ

(log k)1/3 , then
∑ℓ/(log k)1/3

j=1 Z−
j ≥ ℓ

(log k)1/4 . Accordingly,

Pω

{
ξ(nk, b

−
k ) <

ℓ

(log k)1/3

∣∣∣ τ−
k = ℓ

}

≤ Pω






ℓ/(log k)1/3∑

j=1

Z−
j ≥

ℓ

(log k)1/4




+ P
b−k
ω

{
τ(d−

k ) ∧ τ(0) ≤
ℓ

(log k)1/4

}
.

By (2.6), Eω(Z−
j ) ≤ C2

∑
x∈(d−k , 0] e

−[V (x)−V (b−k )], which, according to (3.14), is bounded by

C2(1 + C5) =: C9. Therefore

Pω





ℓ/(log k)1/3∑

j=1

Z−
j ≥

ℓ

(log k)1/4





≤ Pω





ℓ/(log k)1/3∑

j=1

(Z−
j − EωZ−

j ) ≥ ((log k)−1/4 − C9 (log k)−1/3)ℓ





≤
Varω(Z−

1 )

((log k)−1/4 − C9 (log k)−1/3)2(log k)1/3 ℓ
.

We have Varω(Z−
1 ) ≤ |d−

k |
∑

x∈(d−k , 0] Varω(Y −
1 (x)). By (2.7) and (3.12)–(3.13), Varω(Y −

1 (x))

is bounded by C3 |d
−
k | e

mk for all x ∈ (d−
k , 0]. Thus Varω(Z−

1 ) ≤ C3 (d−
k )2 emk . Accordingly,

for large k,

Pω






ℓ/(log k)1/3∑

j=1

Z−
j ≥

ℓ

(log k)1/4




 ≤ C10
(log k)1/6 (d−

k )2 emk

ℓ
.

We now estimate P
b−k
ω {τ(d−

k ) ∧ τ(0) ≤ ℓ
(log k)1/4}. There is nothing to estimate if ℓ <

(log k)1/4, so let us assume ℓ ≥ (log k)1/4. By (2.5) and (3.10),

P
b−k
ω

{
τ(d−

k ) ≤
ℓ

(log k)1/4

}
≤

(
ℓ

(log k)1/4
+ 1

)
e−[V (d−k +1)−V (b−k )] ≤

C6 ℓ

(log k)1/4
e−4mk ,

whereas by (2.4) and (3.10),

P
b−k
ω

{
τ(0) ≤

ℓ

(log k)1/4

}
≤

(
ℓ

(log k)1/4
+ 1

)
e−[V (−1)−V (b−k )] ≤

C6 ℓ

(log k)1/4
e−3mk .

Thus, for all ℓ ≥ 1,

P
b−k
ω

{
τ(d−

k ) ∧ τ(0) ≤
ℓ

(log k)1/4

}
≤

2C6 ℓ

(log k)1/4
e−3mk =:

C11 ℓ

(log k)1/4
e−3mk .
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As a consequence, we have proved that

Pω

{
ξ(nk, b

−
k ) ≤

ℓ

(log k)1/3

∣∣∣ τ−
k = ℓ

}
≤

C10 (log k)1/6 (d−
k )2 emk

ℓ
+

C11 ℓ

(log k)1/4
e−3mk .

Therefore,

Pω

{
ξ(nk, b

−
k ) ≤ (log k)−1/3τ−

k , τ+
k < τ−

k < τ(d+
k )
}

≤ C10 (log k)1/6 (d−
k )2 emkEω

(
1{τ+

k <τ−
k }

τ−
k

)
+

C11

(log k)1/4
e−3mkEω

(
τ−
k 1{τ−

k <τ(d+
k )}

)
.

The two expectations, Eω( 1
τ−
k

1{τ+
k <τ−

k }) and Eω(τ−
k 1{τ−

k <τ(d+
k )}), are estimated by means of

(4.11) and (4.15), respectively. We have therefore proved that, for large k, Pω{ξ(nk, b
−
k ) ≤

(log k)−1/3τ−
k , τ+

k < τ−
k < τ(d+

k )} is bounded by

C10C7 (log k)1/6 (d−
k )2 mk e−mk/3 +

C11

(log k)1/4
(d+

k − b−k )2e−mk/2.

Since |d−
k | ≤ m3

k and d+
k − b−k ≤ m3

k, P -almost surely, for all large k (see (3.5)), and since

mk ≥ k, this implies

∑

k

Pω

{
ξ(nk, b

−
k ) ≤ (log k)−1/3τ−

k , τ+
k < τ−

k < τ(d+
k )
}

< ∞, P -a.s.

The proof of (5.1) is now completed by means of the Borel–Cantelli lemma and (4.6). �

5.2 Proof of (5.2)

The proof of (5.2) bears many similarities to the proof of (5.1), the basic idea being again

via excursions.

Let T+
0 := τ+

k and

T+
j = T+

j (k) := inf
{
n > T+

j−1 : Xn = b+
k

}
, j = 1, 2, . . .

We write, for any j ≥ 1,

Y +
j (y) := ξ(T+

j , y) − ξ(T+
j−1, y), y ∈ Z,

Z+
j :=

∑

y∈[1, d+
k ]

Y +
j (y).

Let M = M(k) := max{j : T+
j < τ−

k }. In words, M denotes the number of excursions

(away from b+
k ) completed by the walk before hitting b−k .
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Let x ∈ [1, d+
k ]. We have ξ(τ−

k , x) ≤ ξ(τ+
k , x) +

∑M+1
j=1 Y +

j (x) and #{i ≤ τ−
k : Xi ≥ 0} ≥

∑M
j=1 Z+

j . Note that {M ≥ 1} = {τ+
k < τ−

k }. Therefore, for any ℓ ≥ 1 and kr := ℓ 2r,

p(x) := Pω

{
(log k)1/2ξ(τ−

k , x) > #{i ≤ τ−
k : Xi ≥ 0}, τ+

k < τ−
k

}

≤ Pω {1 ≤ M < ℓ} +
∞∑

r=0

Pω

{
(log k)1/2ξ(τ−

k , x) >
M∑

j=1

Z+
j , kr ≤ M < kr+1

}

≤ Pω {1 ≤ M < ℓ} + Pω

{
ξ(τ+

k , x) > ℓ
}

+

∞∑

r=0

Ir,

where

Ir := Pω

{
(log k)1/2ℓ + (log k)1/2

kr+1∑

j=1

Y +
j (x) >

kr∑

j=1

Z+
j

}
.

By (4.12), we have Pω{1 < ξ(τ−
k , b+

k ) ≤ ℓ} ≤ πb+k
ℓ, whereas by (4.9), Pω{ξ(τ

+
k , x) > ℓ} ≤

1
ℓ
Eω[ξ(τ+

k , x)] ≤
C6b+k

ℓ
emk/4. Thus,

p(x) ≤ πb+k
ℓ +

C6b
+
k

ℓ
emk/4 +

∞∑

r=0

Ir.(5.3)

We now estimate Ir. Recall that Y +
j (x) is the number of visits at site x by an excursion (away

from b+
k ). According to (2.6), Eω[Y +

1 (x)] ≤ C2e
−[V (x)−V (b+k )] ≤ C2. On the other hand, it fol-

lows from (2.6) and then (3.9) that Eω(Z+
1 ) ≥ C1

∑
y∈[1, d+

k ] e
−[V (y)−V (b+k )] ≥ C1C4 log log mk.

Since (log k)1/2ℓ − C1C4kr log log mk + C2 (log k)1/2kr+1 ≤ −C1C4

2
kr log log mk (for large k;

recalling that mk ≥ k3k), we see that, P -almost surely, for all large k, the probability Ir is

bounded (uniformly in all r ≥ 0) by

Pω

{
kr∑

j=1

[Z+
j − Eω(Z+

j )] − (log k)1/2

kr+1∑

j=1

[Y +
j (x) − Eω(Y +

j (x))] < −
C1C4

2
(log log mk)kr

}

≤
8

(C1C4 log log mk)2 kr

[
Varω(Z+

1 ) + 2(log k)Varω(Y +
1 (x))

]
.

By means of (2.7) and (3.7)–(3.8), Varω(Y +
1 (x)) ≤ C3 d+

k emk ; it follows that Varω(Z+
1 ) ≤

d+
k

∑
y∈[1, d+

k ] Varω(Y +
1 (y)) ≤ C3 (d+

k )3emk . Accordingly,

Ir ≤
8C3 d+

k [(d+
k )2 + 2 log k]emk

(C1C4 log log mk)2 kr
.
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Plugging this into (5.3), and using the fact that
∑

r k−1
r = 2ℓ−1, we get that for any ℓ ≥ 1,

max
x∈[1,d+

k ]
p(x) ≤ πb+k

ℓ +
C6b

+
k

ℓ
emk/4 + C12

d+
k [(d+

k )2 + 2 log k]emk

(log log mk)2 ℓ
.

Recall from (4.13) that πb+k
≤ C6 e−4mk/3. Now we choose ℓ := e5mk/4, to see that by (3.5),

∑

k

d+
k max

x∈[1,d+
k ]

p(x) < ∞, P -a.s.

This implies that
∑

k Pω{(log k)1/2 maxx∈[1,d+
k ] ξ(τ

−
k , x) > #{i ≤ τ−

k : Xi ≥ 0}, τ+
k < τ−

k } <

∞, P -almost surely. This implies (5.2) by an application of the Borel–Cantelli lemma and

(4.6). �

6 Proof of Proposition 3.1

We now prove that, for P -almost all environment ω, there exists a sequence (mk) such that

ω ∈ E+(mk) ∩ E−(mk), ∀k ≥ 1, where E+(mk) and E−(mk) are defined in (3.15).

Let jk := k3k (k ≥ 1) and Fjk−1
:= σ{V (x), 0 ≤ x ≤ d+(jk−1)}.

Recall that (E+
j ) and (E−

j ) are independent events. If we are able to show that
∑

k

P
{
E+(jk) | Fjk−1

}
= ∞, P -a.s.,(6.1)

and that for some C− > 0 and all large j,

P
{
E−(j)

}
≥ C−,(6.2)

then Lévy’s Borel–Cantelli lemma ([10], p. 518) will tell us that with positive probability,

there are infinitely many k such that ω ∈ E+(jk) ∩ E−(jk). An application of the Hewitt–

Savage zero–one law (Feller [5], Theorem IV.6.3) will then yield Proposition 3.1.

The rest of the section is devoted to the proof of (6.1) and (6.2), presented in distinct

subsections.

6.1 Proof of (6.1)

Recall that |V (x) − V (x − 1)| ≤ M = log 1−δ
δ

for any x ∈ Z.

To bound P{E+(jk) | Fjk−1
} from below, we start with the trivial inequality E+(jk) ⊃

E+(jk) ∩ B+(jk−1), for any set B+(jk−1). We choose

B+(jk−1) :=

{
inf

0≤y≤d+(jk−1)
V (y) ≥ −jk−1 log2 jk−1

}
.
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Clearly, B+(jk−1) is Fjk−1
-measurable. Moreover, on B+(jk−1)∩E+(jk), we have d+(jk−1) ≤

b+(jk).

Recall that E+(jk) = ∩4
i=1E

+
i (jk). Let

F+
2 (jk) :=

{
max

0≤x≤y≤b+(jk)
[V (y) − V (x)] ≤

jk

4
− jk−1 log2 jk−1 − jk−1 − M

}
.

We consider

F+(jk) := E+
1 (jk) ∩ E+

3 (jk) ∩ E+
4 (jk) ∩ F+

2 (jk).

Since V (d+(jk−1)) ∈ Ijk−1
:= [jk−1, jk−1 + M ], we have, by applying the strong Markov

property at d+(jk−1),

P
{
E+(jk) | Fjk−1

}
≥

(
inf

z∈Ijk−1

Pz

{
F+(jk)

})
1B+(jk−1),

where Pz(·) := P ( · | V (0) = z), for any z ∈ R; thus P = P0. (Strictly speaking, we should

be working in a canonical space for V , with Pz defined as the image measure of P under

translation.)

Clearly, 1B+(jk−1) = 1, P -almost surely for all large k. Therefore, the proof of (6.1) boils

down to showing the existence of a positive constant C+ such that P -almost surely for all

large k,

inf
z∈Ijk−1

Pz

{
F+(jk)

}
≥

C+

k
.(6.3)

Let, for any Borel set A ⊂ R,

d+(A) := inf {i ≥ 0 : V (i) ∈ A} .

A simple martingale argument yields that, whenever x < y < z,

Py

{
d+([z,∞)) < d+((−∞, x])

}
≥

y − x

z − x + M
,(6.4)

Py

{
d+((−∞, x)) < d+([z,∞))

}
≥

z − y

z − x + M
.(6.5)

We now proceed to prove (6.3). Let

aℓ := −2jk + 3Mℓ, G+
1 (jk, ℓ) :=

{
aℓ ≤ V (b+(jk)) < aℓ+1

}
.
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Then

Pz

{
F+(jk)

}
= Pz

{
E+

1 (jk) , F+
2 (jk) , E+

3 (jk) , E+
4 (jk)

}

≥

⌊ jk/(3M)⌋−1∑

ℓ=0

Pz

{
G+

1 (jk, ℓ) , F+
2 (jk) , E+

3 (jk) , E+
4 (jk)

}

=:

⌊ jk/(3M)⌋−1∑

ℓ=0

P+
k,ℓ.(6.6)

Let L(k, ℓ) := #{0 ≤ i ≤ d+(jk) : V (i) ∈ [aℓ, aℓ+1)}. On G+
1 (jk, ℓ), we clearly have

e−3ML(k, ℓ) ≤
∑

0≤x≤d+(jk) e−[V (x)−V (b+(jk))]. Thus

P+
k,ℓ ≥ Pz

{
G+

1 (jk, ℓ) , F+
2 (jk) , E+

3 (jk) , e−3ML(k, ℓ) ≥ C4 log log jk

}

≥ Pz

{
G+

1 (jk, ℓ) , F+
2 (jk) , E+

3 (jk) , L(k, ℓ) ≥
1

2
log log jk

}
,

the last inequality following from the values of M := log 1−δ
δ

and C4 := δ3

2
.

We define T0 := 0, and by induction,

τp := min {i ≥ Tp−1 : V (i) < aℓ+1} ,

Tp := min {i ≥ τp : V (i) ≥ aℓ+1} , p = 1, 2, . . .

Let

α = α(k) := ⌊
1

2
log log jk⌋, T̃ := min {i ≥ τ1 : V (i) ≥ aℓ+2} .

Since G+
1 (jk, ℓ) ∩ {L(k, ℓ) ≥ α} ⊃ {τα < T̃ < d+(jk) < d+((−∞, aℓ])}, we have

P+
k,ℓ ≥ Pz

{
τα < T̃ < d+(jk) < d+((−∞, aℓ]), F+

2 (jk), E+
3 (jk)

}
.

Consider now the events

H+
2 (jk) :=

{
max

0≤x≤y≤τ1
[V (y) − V (x)] ≤

jk

5

}
,

H+
3 (jk) :=

{
max

T̃≤x≤y≤d+(jk)
[V (x) − V (y)] ≤ jk

}
.

We have, for large k, {τα < T̃ < d+(jk) < d+((−∞, aℓ])}∩H+
2 (jk) ⊂ F+

2 (jk), and {τα < T̃ <

d+(jk) < d+((−∞, aℓ])} ∩ H+
3 (jk) ⊂ E+

3 (jk). Therefore, for large k,

P+
k,ℓ ≥ Pz

{
τα < T̃ < d+(jk) < d+((−∞, aℓ]) , H+

2 (jk) , H+
3 (jk)

}
.

18



We apply the strong Markov property at time T̃ . Since V (T̃ ) ∈ Iaℓ+2
:= [aℓ+2, aℓ+2 + M ],

we have, for large k,

P+
k,ℓ ≥ Pz

{
τα < T̃ < d+(jk), T̃ < d+((−∞, aℓ]) , H+

2 (jk)
}
×

× inf
v∈Iaℓ+2

Pv

{
d+(jk) < d+((−∞, aℓ]) , max

0≤x≤y≤d+(jk)
[V (x) − V (y)] ≤ jk

}
.(6.7)

Of course, {τα < T̃} = {τ1 < T1 < τ2 < . . . < Tα−1 < τα < T̃}. To estimate Pz{· · ·} on the

right hand side, we apply the strong Markov property successively at τα, Tα−1, τα−1, . . ., T1

and τ1. At time τα, we use the following inequality (see (6.4)): for v ∈ [aℓ+1 − M, aℓ+1),

Pv

{
d+([aℓ+2,∞)) < d+((−∞, aℓ])

}
≥

(aℓ+1 − M) − aℓ

aℓ+2 − aℓ + M
=

2

7
.

At times τp and Tp (1 ≤ p < α), we use (see (6.4) and (6.5)), respectively, for v ∈ [aℓ+1 −

M, aℓ+1) and u ∈ [aℓ+1, aℓ+1 + M ],

Pv

{
d+([aℓ+1,∞)) < d+((−∞, aℓ])

}
≥

(aℓ+1 − M) − aℓ

aℓ+1 − aℓ + M
=

1

2
,

Pu

{
d+((−∞, aℓ+1)) < d+([aℓ+2,∞))

}
≥

aℓ+2 − (aℓ+1 + M)

aℓ+2 − aℓ+1 + M
=

1

2
.

Accordingly,

Pz

{
τα < T̃ < d+(jk), T̃ < d+((−∞, aℓ]) , H+

2 (jk)
}
≥

2/7

22α−2
Pz

{
τ1 < d+(jk), H+

2 (jk)
}

.

By Donsker’s theorem, infz∈Ijk−1
Pz{τ1 < d+(jk), H+

2 (jk)} is greater than a constant (for

large k, and uniformly in ℓ). Thus

Pz

{
τα < T̃ < d+(jk), T̃ < d+((−∞, aℓ]) , H+

2 (jk)
}
≥

C13

22α
≥

C14

k
,

the last inequality following from the definition of α := ⌊1
2
log log jk⌋. Plugging this into

(6.7) gives that for large k,

P+
k,ℓ ≥

C14

k
inf

v∈Iaℓ+2

Pv

{
d+(jk) < d+((−∞, aℓ]), max

0≤x≤y≤d+(jk)
[V (x) − V (y)] ≤ jk

}

≥
C14

k
inf

v∈Iaℓ+2

Pv{A
(+1)
ℓ }

∏

2≤p≤5

inf
v∈[ p−4

2
jk, p−4

2
jk+M ]

Pv{A
(+p)
ℓ },
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where

A
(+1)
ℓ :=

{
d+([−jk,∞)) < d+((−∞, aℓ])

}
,

A
(+p)
ℓ :=

{
d+([

p − 3

2
jk,∞)) < d+((−∞,

p − 5

2
jk])

}
, 2 ≤ p ≤ 5.

(The last inequality was obtained by applying the strong Markov property successively at

the stopping times d+([jk/2,∞)), d+([0,∞)), d+([−jk/2,∞)) and d+([−jk,∞)).) It is clear

that there exist constants C15 > 0 and C16 > 0 such that

inf
v∈Iaℓ+2

Pv{A
(+1)
ℓ } ≥

C15

jk
, min

2≤p≤5
inf

v∈[ p−4
2

jk, p−4
2

jk+M ]
Pv{A

(+p)
ℓ } ≥ C16.

Therefore,

P+
k,ℓ ≥

C14

k

C15

jk
(C16)

4 =:
C17

k jk
.

Plugging this into (6.6) gives

Pz

{
F+(jk)

}
≥

⌊
jk

3M

⌋
C17

k jk
≥

C18

k
,

which implies (6.3), and completes the proof of (6.1). �

6.2 Proof of (6.2)

We write V−(n) := V (−n), ∀n ≥ 0. Let as before Pz(·) := P ( · | V (0) = z). Under Pz, for

r > z, we define d−(r) exactly as in (3.3), i.e., |d−(r)| := min{i ≥ 0 : V−(i) ≥ r}, whereas

for s < z, we define

|d−(s)| := min {i ≥ 0 : V−(i) ≤ s} .

We start with the following estimate: there exist positive constants, denoted by C5 and

C19, such that

inf
r≥1

P





∑

0≤x≤|d−(r)|

e−[V−(x)−V−(|b−(r)|)] ≤ C5 , |d−(r)| < |d−(−
r

2
)|




 ≥ C19 > 0.(6.8)

This is essentially a consequence of Theorem 2.1 of Bertoin [2], which is a path decomposition

for (V−(s), s ≤ n), when n is deterministic. For more details, we refer to Lemma 3.2 of [9],

which, by means of an elementary argument, extends Bertoin’s theorem for hitting times.

Inequality (6.8) then follows from this lemma via the observation that it is possible to choose
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1 + c11 > 2c13 in [9] (notation of [9]) such that when E1(t) ∩ E2(r) is true (notation of [9]),

we have min0≤x≤|d−(r)| V−(x) = min0≤x≤t V−(x) ≥ − r
2

(our notation).

To prove (6.2), we write β := 3 − 1
1000

and γ := 3 + 1
1000

, and define

T := min
{
i ≥ |d−(−3j)| : V−(i) ≥ −βj

}
,

T̃ := min
{
i ≥ T : V−(i) ≤ −3j

}
,

Θ−(j) :=

{
|d−(

j

3
)| < |d−(−

j

12
)| < T < |d−(j)| < T̃ < |d−(−γj)|

}
.

See Figure 2 for an example of ω ∈ Θ−(j).

|d−(j)|

|d−(−3j)| |b−(j)| T x

V
−

(x)

j

j/3

−j/12

−βj

−3j

−γj

Figure 2: Example of ω ∈ Θ−(j)

Recall that E−(j) = ∩5
i=1E

−
i (j). Clearly, E−

1 (j) ∩ E−
2 (j) ⊃ Θ−(j). Thus

E−(j) ⊃ Θ−(j) ∩ E−
3 (j) ∩ E−

4 (j) ∩ E−
5 (j).

Let

F−
3 (j) :=

{
max

|d−( j
3
)|≤x≤y≤|d−(−3j)|

[V−(y) − V−(x)] ≤
j

12

}
,
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F−
4 (j) :=

{
j

3
≤ max

T≤x≤y≤|d−(j)|
[V−(x) − V−(y)] ≤ j

}
.

Then E−
3 (j) ⊃ Θ−(j) ∩ F−

3 (j), and E−
4 (j) ⊃ Θ−(j) ∩ F−

4 (j). Thus

E−(j) ⊃ Θ−(j) ∩ F−
3 (j) ∩ F−

4 (j) ∩ E−
5 (j).

On Θ−(j) ∩ {|d−(j)| ≤ j3} ∩ {V−(|b−(j)|) ≤ −3j − j1/2}, we have

∑

x∈[0, |d−(j)| ] \ [ |d−(−3j)|, T ]

e−[V−(x)−V−(|b−(j)|)] ≤ j3e−j1/2

≤ 1,

(for large j). Thus E−
5 (j) ⊃ F−

5 (j) ∩ Θ−(j) ∩ {|d−(j)| ≤ j3} ∩ {V−(|b−(j)|) ≤ −3j − j1/2}

(for large j), where

F−
5 (j) :=





∑

|d−(−3j)|≤x≤T

e−[V−(x)−V−(|̂b−(−βj)|)] ≤ C5



 ,

and |̂b−(−βj)| := min{n ≥ |d−(−3j)| : V−(n) = minx∈[|d−(−3j)|, T ] V−(x)}.

For j → ∞, we have P{|d−(j)| > j3} → 0 and P{V−(|b−(j)|) ∈ (−3j − j1/2,−3j]} → 0.

Therefore,

P
{
E−(j)

}
≥ P

{
Θ−(j), F−

3 (j), F−
4 (j), F−

5 (j)
}
− o(1),(6.9)

where o(1) denotes a term which tends to 0 (when j → ∞). The value of o(1) may vary

from line to line.

We apply the strong Markov property at time T . Since V−(T ) ∈ I−βj := [−βj, −βj+M ],

this leads to: for large j,

P
{
Θ−(j), F−

3 (j), F−
4 (j), F−

5 (j)
}
≥ P (1) inf

v∈I−βj

P (2)
v ,

where

P (1) := P

{
|d−(

j

3
)| < |d−(−

j

12
)| < T < |d−(j)|, T < |d−(−γj)|, F−

3 (j), F−
5 (j)

}
,

P (2)
v := Pv

{
|d−(j)| < |d−(−3j)|,

j

3
≤ max

0≤x≤y≤|d−(j)|
[V−(x) − V−(y)] ≤ j

}
.

By Donsker’s theorem, infv∈I−βj
P

(2)
v ≥ C20 > 0 (for large j). Therefore, for large j,

P
{
Θ−(j), F−

3 (j), F−
4 (j), F−

5 (j)
}
≥ C20 P (1).

22



To obtain a lower bound for P (1), we apply the strong Markov property at time d−(−3j).

Since V−(|d−(−3j)|) ∈ I−3j−M := [−3j − M, −3j], we have

P
{
Θ−(j), F−

3 (j), F−
4 (j), F−

5 (j)
}
≥ C20 P (3) inf

v∈I−3j−M

P (4)
v ,

where

P (3) := P

{
|d−(

j

3
)| < |d−(−

j

12
)| < |d−(−3j)| < |d−(j)|, F−

3 (j)

}
,

P (4)
v := Pv



|d−(−βj)| < |d−(−γj)|,

|d−(−βj)|∑

x=0

e−[V−(x)−V−(|b−(−βj)|)] ≤ C5



 .

We recall that |b−(−βj)| := min{n ≥ 0 : V−(n) = minx∈[0, |d−(−βj)|] V−(x)}.

By Donsker’s theorem, P (3) is greater than a positive constant (for all large j), whereas

according to (6.8), P
(4)
v ≥ C19 (for large j, uniformly in v ∈ I−3j−M). As a consequence, for

large j,

P
{
Θ−(j), F−

3 (j), F−
4 (j), F−

5 (j)
}
≥ C21 > 0.

Plugging this into (6.9) completes the proof of (6.2). �

7 A remark

For any set A, let ξ(n, A) :=
∑

x∈A ξ(n, x) = #{i : 0 ≤ i ≤ n, Xi ∈ A}.

The recent work of Andreoletti [1] focuses on:

Yn := inf
x∈Z

min {k ≥ 0 : ξ(n, [x − k, x + k]) ≥ an} ,

where a ∈ [0, 1) is an arbitrary but fixed constant. In words, Yn is (half) the minimal size of

an interval where the walk hits at least na times in the first n steps.

It is proved in [1] that under (1.1)–(1.3), there exists a constant c ∈ (0,∞) such that

lim inf
n→∞

Yn ≤ c, P-a.s.

A close look at our argument in Section 5 reveals that for some constant c∗ > 0,

lim sup
n→∞

Yn

log log log n
≥ c∗, P-a.s.(7.1)

In fact, the proof of (5.2) shows that, for some constant C22 > 0, maxx∈[1, d+
k ] ξ(τ

−
k , x) ≤

C22
τ−
k

log log mk
(P-almost surely, for all large k; ditto for all the other inequalities stated in this
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paragraph). In view of (4.6) and (4.16), this implies maxx∈Z ξ(τ−
k , x) ≤ C22

τ−
k

log log mk
. On the

other hand, by (4.15),
∑

k Pω{τ
−
k ≥ e3mk , τ−

k < τ(d+
k )} < ∞. Since τ−

k < τ(d+
k ) (Lemma

4.1), we have τ−
k ≤ e3mk . Thus, maxx∈Z ξ(τ−

k , x) ≤ 2C22
τ−
k

log log log τ−
k

. As a result, (7.1) follows,

with c∗ := 1
2C22

.

It is, however, not clear whether inequality “≤” would hold in (7.1) with an enlarged

value of the constant c∗.
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