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Abstract. We establish quantum dynamical lower bounds for a number of
discrete one-dimensional Schrödinger operators. These dynamical bounds are
derived from power-law upper bounds on the norms of transfer matrices. We
develop further the approach from part I and study many examples. Particular

focus is put on models with finitely or at most countably many exceptional
energies for which one can prove power-law bounds on transfer matrices. The
models discussed in this paper include substitution models, Sturmian mod-
els, a hierarchical model, the prime model, and a class of moderately sparse
potentials.

1. Introduction

Consider a discrete one-dimensional Schrödinger operator

Hψ(n) = ψ(n− 1) + ψ(n+ 1) + V (n)ψ(n),(1)

in `2(Z) or `2(N) (with a Dirichlet boundary condition). We are interested in
proving lower bounds on the spreading of an initially localized wavepacket under
the dynamics governed by H . That is, if we consider the initial state ψ, we ask how
fast ψ(t) = exp(−itH)ψ spreads out. One is normally interested in initial states
that are well localized. In the present paper we shall limit our attention to the case
ψ = δ1.

A typical quantity that is considered to measure the spreading of ψ(t) is the
following: Define

〈|X |pψ〉(T ) =
∑

n

|n|pa(n, T ),(2)
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where

a(n, T ) =
1

T

∫ +∞

0

e−2t/T |〈δn, ψ(t)〉|2 dt.(3)

Clearly, the faster 〈|X |pψ〉(T ) grows, the faster ψ(t) spreads out, at least averaged

in time. One typically wants to prove power-law lower bounds on 〈|X |pψ〉(T ) and
hence it is natural to define the following quantity: For p > 0, define the lower
growth exponent β−

ψ (p) by

β−
ψ (p) = lim inf

T→+∞

log 〈|X |pψ〉(T )

logT
.

There are presently two distinct approaches to proving lower bounds for β−
ψ (p).

The first goes back to works of Guarneri [13], Combes [3], and Last [24] and is
based on a study of the Hausdorff dimension of the spectral measure µψ associated
with the pair (H,ψ). Namely, we have the following bound:

β−
ψ (p) ≥ p · dimH(µψ).(4)

The Jitomirskaya-Last extension [15, 16] of Gilbert-Pearson theory [12] allows for
a convenient way of investigating dimH(µψ) and hence this approach has enjoyed
some popularity (see, e.g., [5, 20, 35] for applications).

On the other hand, this bound clearly gives nothing in the case of a zero-
dimensional spectral measure, for example, in the case of a pure point measure.
There are a number of models where one expects (or can prove) pure point spec-
trum with strictly positive values for β−

ψ (p). An example is given by the random

dimer model; studied, for example, in [2, 11, 17]. It is therefore desirable to have
a way of proving lower bounds on the transport exponents which works for such
models and, of course, whose input is easy to verify in concrete cases. Such an
approach was developed in [8] (and employed in [17] to prove the conjectured dy-
namical lower bound for the random dimer model), and the present article is a
continuation of that paper. The necessary input are power-law upper bounds on
transfer matrices for certain energies. It may come as a surprise that dynamical
bounds can be obtained if there is only one energy where one can exhibit a power-
law bound for the transfer matrix. This is indeed necessary for models such as the
random dimer model and related ones [7], where there are only a finite number of
such energies.

Another advantage of the approach from [8] over the bound (4) is the stability
of its input with respect to perturbations of the potential V . It was noted in [8]
that if its approach can be applied to a given model, then it can also be applied to
all finitely supported perturbations of the given potential—and it gives the same
dynamical bounds for the perturbed models. Such a stability is not true in general
for bounds derived using (4). For example, it may happen that the addition of a
finitely supported perturbation turns a given singular continuous spectral measure
into a pure point measure; see [9] for many examples illustrating this phenomenon.

In [8], the general criterion was applied to three prominent models from one-
dimensional quasicrystal theory, namely, the Fibonacci model, the period doubling
model, and the Thue-Morse model. All these models can be generated by a substi-
tution process. This allows one to study the growth of transfer matrix norms with
the help of an associated dynamical system—the trace map—and this provides in
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particular a very convenient way of verifying the input to the general dynamical
criterion.

In the present paper we will prove a more general version of the dynamical result
from [8], involving also the weight assigned by the spectral measure to the set of
energies with power-law bounded transfer matrices. This gives stronger dynamical
results in cases where such bounds hold for all energies in the spectrum, for example,
models with Sturmian potentials. We shall also prove a stronger stability result.
Namely, we will show that, for a fixed energy, the power-law bound is stable with
respect to power-decaying perturbations. Here, the power-decay of the perturbation
that we can allow depends on the transfer matrix power-law bound we start out
with. Finally, we shall study a large number of examples and derive dynamical
results for them by applying our main theorem, Theorem 1 below. The examples
discussed in this paper include, in particular, generalizations of each of the three
prominent substitution models studied in [8].

The organization of the paper is as follows. In Section 2 we prove our main
theorem which derives quantum dynamical lower bounds from power-law bounds
on transfer matrices. Section 3 discusses the stability of such power-law bounds
on transfer matrices with respect to power-decaying perturbations of the potential.
Section 4 deals with a class of models that are “sparse” in a certain sense and
which includes a variety of substitution models (in particular, generalizations of
Fibonacci, period doubling, and Thue-Morse), the prime Schrödinger operator, and
moderately sparse models which were studied by Zlatoš in [35]. The hierarchical
model, which was studied in detail by Kunz et al. in [23] from a spectral point of
view, will then be considered in Section 5. Finally, we present results for Sturmian
models (studied, e.g., in [1, 5, 14]; see also the reviews [4, 33]) in Section 6.

2. A Quantum Dynamical Lower Bound Derived From Power-Law

Transfer Matrix Bounds

In this section, we prove a more general version of the main result from [8]. The
general idea of proof is the same and the result derives lower bounds on the dy-
namical quantity β−

δ1
(p) from power-law bounds on transfer matrices. However, the

result established in this section gives improved bounds in many cases, in particular
in the case of Sturmian potentials discussed later in the paper.

Recall the notion of a transfer matrix. Consider for some E ∈ R, a solution φ of
the difference equation

φ(n+ 1) + φ(n− 1) + V (n)φ(n) = Eφ(n).(5)

Denote Φ(n) = (φ(n + 1), φ(n))T . The transfer matrix T (n,m;E) is defined by
requiring

Φ(n) = T (n,m;E)Φ(m)

for every solution φ of (5). It is straightforward to verify that for n > m,

T (n,m;E) = T (V (n);E) × · · · × T (V (m+ 1);E),

where

T (x;E) =

(

E − x −1
1 0

)

,

and similarly for n < m.
With this notation at hand we can now state:
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Theorem 1. The following statements hold:

(a) Suppose that for some K > 0, C > 0, α > 0, the following condition holds: For

any N > 0 large enough, there exists a nonempty Borel set A(N) ⊂ R such that

A(N) ⊂ [−K,K] and

‖T (n,m;E)‖ ≤ CNα ∀E ∈ A(N), ∀ n,m : |n| ≤ N, |m| ≤ N(6)

(resp., with 1 ≤ n ≤ N, 1 ≤ m ≤ N in the case of `2(N)). Let N(T ) = T 1/(1+α)

and let, for j = 1, 2, Bj(T ) be the j/T -neighborhood of the set A(N(T )):

Bj(T ) = {E ∈ R : ∃E′ ∈ A(N(T )), |E −E′| ≤ j/T}.
Denote by F (z) the Borel transform of the spectral measure of the state ψ = δ1:

F (E + iε) =

∫

R

dµ(x)

x− (E + iε)
.

Then for the initial state ψ = δ1 and all T > 1 large enough, the following bound

holds:

P (T ) ≡
∑

n:|n|≥N(T )

a(n, T ) ≥ C

T
N1−2α(T )

∫

B2(T )

dE(1 + Im2F (E + iε)).(7)

In particular,

P (T ) ≥ C

T
N1−2α(T )(|B1(T )| + µ(B1(T ))),(8)

where |B| denotes the Lebesgue measure. This gives the following bound for the

time-averaged moments:

〈|X |pδ1〉(T ) ≥ C

T
Np+1−2α(T )(|B1(T )| + µ(B1(T ))).(9)

(b) Suppose that there exists a set A ⊂ [−K,K] of positive measure µ(A) > 0 such

that

‖T (n,m;E)‖ ≤ C(|n|α + |m|α)

for all E ∈ A, n,m. Then

β−
δ1

(p) ≥ p− 3α

1 + α
.(10)

(c) Assume that

‖T (n,m;E0)‖ ≤ C(E0)(|n|α + |m|α)

for some E0, uniformly in n,m, then

〈|X |pδ1〉(T ) ≥ CT
p−3α

1+α

(

T−1 + µ
([

E0 − T−1, E0 + T−1
]))

.(11)

Assume moreover that E0 is an eigenvalue (possible only if α > 1/2), so that there

exists ψ ∈ `2, ψ 6= 0 such that Hψ = E0ψ. Suppose that ψ(1) 6= 0 (this is always

true in the case of `2(N)). Then

β−
δ1

(p) ≥ p+ 1 − 2α

1 + α
.(12)

Proof. As in [8] we shall consider the case of `2(Z), because for `2(N), the proof is
similar but simpler. The main part of the proof is virtually identical with that of
[8]. For the sake of completeness we shall briefly recall the main lines.
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The starting point is the Parseval equality:

a(n, T ) ≡ 1

T

∫ ∞

0

e−2t/T |〈δn, exp(−itH)δ1〉|2 dt =
ε

2π

∫

R

|〈δn, R(E + iε)δ1〉|2 dE,

where R(z) = (H−zI)−1 and ε = 1/T . For z = E+iε, ε > 0, we define φ = R(z)δ1,
Φ(n) = (φ(n+ 1), φ(n))T . For each n > 1, one has the inequality

||Φ(n)|| ≥ ||T (n, 1; z)||−1||Φ(1)||(13)

and for each n < 0,

||Φ(n)|| ≥ ||T (n, 0; z)||−1||Φ(0)||.(14)

An upper bound for the norm of the transfer matrix with complex z is obtained
using condition (6) and [8, Lemma 2.1]. Namely, let us fix some T > 1, ε = 1/T
and define N ≡ N(T ) = T 1/(1+α). Then for every E ∈ B2(T ) and 1 ≤ n ≤ N

||T (n, 1;E + iε)|| ≤ DNα,(15)

where D = C exp(3C), and C is the constant from (6). A similar bound holds
for negative values of n. Using the bounds (13)–(15), one shows that for every
E ∈ B2(T ),

∑

n:|n|≥N/2

|〈δn, R(E + iε)δ1〉|2 ≥ cN1−2α(|φ(0)|2 + |φ(1)|2 + |φ(2)|2)(16)

with uniform constant c > 0. It was shown in [8] that under the conditions of the
theorem one always has

|φ(0)| + |φ(1)| + |φ(2)| ≥ c > 0

with uniform constant. What one can also observe (and this is a new point) is the
fact that

φ(1) = 〈R(z)δ1, δ1〉 = F (z),

where F (z) is the Borel transform of the spectral measure corresponding to the
pair (H, δ1). Therefore, it follows from (16) that

∑

n:|n|≥N/2

|〈δn, R(E + iε)δ1〉|2 ≥ cN1−2α(1 + Im2F (E + iε)).

Integrating this bound over E ∈ B2(T ), one proves (7). Next, one observes that
1 + Im2F (z) ≥ 2ImF (z). For any set S, denote by Sε the ε-neighborhood of S.
Following [19], one can see that

∫

Sε

ImF (E + iε)dE =

∫

R

dµ(x)

∫

Sε

εdE

(x−E)2 + ε2

≥
∫

S

dµ(x)

∫ ε

−ε

εdu

u2 + ε2

=
π

2
µ(S).

Taking S = B1(T ), we prove (8). The bound (9) immediately follows.
To prove part (b), one just takes A(N) = A for every N . Since µ(B1(T )) ≥

µ(A(N(T )) = µ(A) > 0, the result follows from the bound (9).
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The bound (11) of part (c) follows directly from (9), taking A(N) = {E0} for
every N . Finally, to prove the second part of (c), we go back to (7) to obtain

〈|X |pδ1〉(T ) ≥ C

T
Np+1−2α(T )

∫

B2(T )

Im2F (E + iε)dE,

where B2(T ) = [E0−2ε, E0+2ε]. Under the condition ψ(1) 6= 0, one has µ({E0}) >
0. Thus,

ImF (E + iε) ≥ cε

(E −E0)2 + ε2
.

Integration over B2(T ) yields (12).

Remark. Part (b) of Theorem 1 remains true if

‖T (n,m;E)‖ ≤ C(E)(|n|α + |m|α)(17)

for all n,m and E ∈ A with C(E) < ∞ for µ-almost every E. To prove this, it is
sufficient to take a smaller set A′ ⊂ A of positive measure where C(E) ≤ C < ∞.
The bound (10) should be compared with the well-known result of [15, 16]: If (17)
holds for some α ∈ [0, 1/2) on a set A of positive µ-measure, then the restriction of
µ to A is 1 − 2α-continuous. In particular,

β−
δ1

(p) ≥ p(1 − 2α).

This bound is better than (10) for small p, but for p large enough, (10) is always
better. Moreover, (10) holds also if α ≥ 1/2.

3. Stability With Respect to Power-Decaying Perturbations

In this section, we discuss the stability of the crucial input to our dynamical
bounds, power-law bounds on transfer matrices, with respect to perturbations of
the potential. It is easy to see, and was noted in [8, Corollary 1.3], that finitely
supported perturbations of the potential cannot destroy such a power-law bound.
Here we strengthen this to stability with respect to power-decaying perturbations,
where the allowed power depends on the bound we can prove for the unperturbed
problem.

Theorem 2. Assume that for some energy E and some constant C1, the transfer

matrices T associated with ∆ + V satisfy

‖T (n,m;E)‖ ≤ C1|n−m|α for every n,m ∈ Z with nm ≥ 0.(18)

Assume further that, for some ε > 0, the perturbation W satisfies

|W (n)| ≤ C2(1 + |n|)−1−2α−ε for every n ∈ Z.(19)

Then the transfer matrices T ′ associated with ∆ + V +W satisfy

‖T ′(n,m;E)‖ ≤ C3|n−m|α for every n,m ∈ Z with nm ≥ 0.(20)

Proof. We present the proof in the special case where we assume (18) only for n ≥ 0
and m = 0 and then prove (20) for n ≥ 0 and m = 0. A slight variation of the
argument below works for general n,m ∈ Z with nm ≥ 0 (with a uniform constant
C3 in (20)).

Our strategy will be to work with solutions and employ a general perturbation
method developed by Kiselev et al. in [21].
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Consider the unperturbed equation (5) and the perturbed equation

ψ(n+ 1) + ψ(n− 1) + [V (n) +W (n)]ψ(n) = Eψ(n).(21)

Note that the transfer matrix T ′(n, 0;E) is given by

T ′(n, 0;E) =

(

ψD(n+ 1) ψN(n+ 1)
ψD(n) ψN(n)

)

,

where ψD, ψN solve (21) and obey
(

ψD(1) ψN(1)
ψD(0) ψN(0)

)

= I.

Fix a complex reference solution φ of (5). For example, we could set φ = φD + iφN,
where φD, φN solve (5) and have the same initial conditions as ψD, ψN. By (18) we
have

|φ(n)| ≤ C|n|α.(22)

Let ψ be one of the basic solutions ψD, ψN of (21). Define ρ(n) by

(

ψ(n)
ψ(n− 1)

)

=
1

2i

[

ρ(n)

(

φ(n)
φ(n− 1)

)

− ρ(n)

(

φ(n)

φ(n− 1)

)]

= Im

[

ρ(n)

(

φ(n)
φ(n− 1)

)]

.

Write φ(n) and ρ(n) in polar coordinates,

φ(n) = |φ(n)|eiγ(n) ρ(n) = R(n)eiη(n),

and define

θ(n) = η(n) + γ(n) and U(n) = −2W (n)

ω
|φ(n)|2,

where iω is the Wronskian of φ and φ, that is,

2iIm(φ(n+ 1)φ(n)) = iω for every n.

Clearly, the assertion of the theorem follows if we can show that R(n) remains
bounded as |n| → ∞. The key identity (equation (45) in [21]) is the following:

R(n+ 1)2 = R(n)2[1 + U(n) sin(2θ(n)) + U(n)2 sin2(θ(n))].(23)

It follows from (19) and (22) that U(n) is summable. Thus, boundedness of R(n)
follows from this and (23) (cf., e.g., [20, Lemma 3.5]). This concludes the proof.

The theorem above implies the stability of the number α and of the sets A(N),
B1(T ), A under suitable power-decaying perturbations of the potential. On the
other hand, the measure of the sets µ(B1(T )), µ(A) and the Borel transform F (z)
may change after such a perturbation. In particular, it is possible that µ(A) = 0
for the perturbed operator in part (b) of Theorem 1. Thus, the bounds (10) and
(12) are in general not stable. Of course, we still get a dynamical bound for the
perturbed model. For example, we have the following consequence of Theorem 1
and Theorem 2:
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Corollary 3.1. Assume that for some energy E0 and some constant C1, the trans-

fer matrices T associated with ∆ +V satisfy ‖T (n,m;E0)‖ ≤ C1|n−m|α for every

n,m ∈ Z with nm ≥ 0. Assume further that, for some ε > 0, the perturbation W
satisfies |W (n)| ≤ C2|n|−1−2α−ε for every n ∈ Z. Then we have for the operator

∆ + V +W ,

β−
δ1

(p) ≥ p− 1 − 4α

1 + α

for every p > 0.

Proof. By Theorem 2, we have that the transfer matrices T ′ associated with ∆ +
V +W satisfy ‖T ′(n,m;E0)‖ ≤ C|n−m|α for every n,m ∈ Z with nm ≥ 0. Then,
an inspection of the proof of Theorem 1 shows that this suffices to prove the bound
(11) which yields

< |X |pδ1 > (T ) ≥ CT
p−3α

1+α
−1

and the assertion of the corollary follows. More precisely, one can work indepen-
dently on the two half-lines and hence needs bounds on ‖T ′(n,m;E)‖ only for the
case where n,m have the same sign.

4. A Class of Pseudo-Sparse Potentials

In this section, we study a class of “sparse” potentials which includes various
substitution models and the prime model. These potentials are not all sparse in the
standard sense, but the point is that the class we discuss contains sparse potentials,
and also a number of other potentials that have been considered before and which
can be studied within the same framework.

Let us consider the case where the potential V is defined on the half-line N and
takes on two values a, b ∈ R. We assume the following for n large enough, that is,
for n ≥ N :

(S1) Occurrences of b are always isolated, that is, if V (n) = b for some n, then
V (n− 1) = V (n+ 1) = a.

(S2) The value a always occurs with odd multiplicity, that is, if V (n) = V (n+ k+
1) = b and V (n+ j) = a, 1 ≤ j ≤ k, then k is odd.

Sparseness in this context refers to the b’s being isolated and the results below
holding for arbitrarily long gaps between consecutive b’s. However, some of the
concrete applications—for example the applications to substitution models—will
not be sparse in a traditional sense.

We can prove the following:

Theorem 3. Suppose V : N → {a, b} ⊂ R is a potential satisfying (S1) and (S2)
above. We have for every p > 0,

β−
δ1

(p) ≥ p− 5

2
.

Proof. Up to an initial piece, the transfer matrices are given by products of matrices
of the following form:

T (a,E)2l+1 and T (b, E).

Let E0 = a. Then

T (a,E0)
2l+1 =

(

T (a,E0)
2
)l
T (a,E0) = (−I)l T (a,E0) = ±T (a,E0).
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Up to sign, this gives rise to powers of

T (a,E0)T (b, E0) =

(

0 −1
1 0

) (

a− b −1
1 0

)

=

(

−1 0
a− b −1

)

.

Clearly, such powers satisfy a bound which is linear in the number of factors. Thus,
the claim follows from (11).

Remark. We can apply Corollary 3.1 and obtain that the dynamical bound in
Theorem 3 is stable with respect to perturbations W obeying |W (n)| ≤ C2n

−3−ε

for some fixed ε > 0 and every n ∈ N. Similarly, we have stability with respect to
power-decaying perturbations for all the dynamical bounds that will be shown in
this section and we will not make this explicit for each one of them.

Let us now discuss the case where the a’s occur with even multiplicities. That
is, we assume for n large enough,

(S3) The value a always occurs with even multiplicity, that is, if V (n) = V (n +
k + 1) = b and V (n+ j) = a, 1 ≤ j ≤ k, then k is even.

In this case we can prove a dynamical bound even without assuming the sparse-
ness condition (S1). However, we need that |a − b| is not too large. Namely, we
have the following result:

Theorem 4. Suppose V : N → {a, b} ⊂ R is a potential satisfying (S3) above.

(a) If |a− b| < 2, then for every p > 0,

β−
δ1

(p) ≥ p− 1.

(b) If |a− b| = 2, then for every p > 0,

β−
δ1

(p) ≥ p− 5

2
.

Proof. The argument proceeds in a way similar to the proof above. Again, up to an
initial piece, the transfer matrices are given by products of matrices of the following
form:

T (a,E)2l and T (b, E).

Again, let E0 = a. Then

T (a,E0) =

(

0 −1
1 0

)

and hence

T (a,E0)
2l =

(

T (a,E0)
2
)l

= (−I)l = ±I.
On the other hand, T (b, E0) is elliptic when |a−b| < 2 and parabolic when |a−b| =
2. Thus, in the former case, products of matrices of the form T (a,E)2l or T (b, E)
remain bounded, while in the latter case such products satisfy a bound which is
linear in the number of factors. The claim thus follows from (11).

Let us note that a result like part (a) of Theorem 4 is implicitly contained in
[17], where mainly random polymer models are studied.

It is clear that whole-line analogs of the above theorems hold. In this case, we
need (S1) and (S2) or (S3) to hold for |n| large enough.

More importantly, these results cover a variety of seemingly very different cases:
First consider the period doubling Hamiltonian, which was already discussed in
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[8]. On the alphabet A = {a, b} ⊆ R, consider the period doubling substitution
S(a) = ab, S(b) = aa. Iterating on a, we obtain a one-sided sequence

u = abaaabababaaabaaab . . .

which is invariant under the substitution process. Define the associated subshift Ωpd

to be the set of all sequences over A which have all their finite subwords occurring
in u. Here, we can consider either one-sided or two-sided sequences. This does not
matter for the results in this paper, but we remark that for substitution models,
one generally considers the two-sided case. For ω ∈ Ωpd, we define the potential
Vω by Vω(n) = ωn. It is easy to check that each Vω satisfies (S1) and (S2) (even
for every n ∈ Z) and hence an application of Theorem 3 allows us to recover [8,
Theorem 3]. However, we can prove a more general result. Consider, for example,
substitutions of the form

S(a) = a2k−1b, S(b) = a2l, k, l ≥ 1.(24)

The case k = 1, l = 1 corresponds to the period doubling case. The potentials
generated by a substitution of the form (24) (by generating a one-sided fixed point
and passing to the associated subshift, as in the period doubling case above) are
easily seen to obey (S1) and (S2). On the other hand, substitutions of the form

S(a) = a2kb, S(b) = a2l, k, l ≥ 1(25)

give rise to potentials satisfying (S3) and hence Theorem 4 applies in these cases.
Thus we may state the following:

Corollary 4.1. (a) Let S be a substitution of the form (24), Ω the associated

subshift, and for ω ∈ Ω, let Vω(n) = ωn, n ∈ Z. Then, for every ω ∈ Ω, the

potential Vω gives rise to an operator satisfying

β−
δ1

(p) ≥ p− 5

2
for every p > 0.

(b) Let S be a substitution of the form (25), Ω the associated subshift, and for

ω ∈ Ω, let Vω(n) = ωn, n ∈ Z. Then, for every ω ∈ Ω, the potential Vω gives rise

to an operator satisfying

β−
δ1

(p) ≥ p− 1 for every p > 0 if |a− b| < 2

and

β−
δ1

(p) ≥ p− 5

2
for every p > 0 if |a− b| = 2.

Consider the following class of substitutions:

S(a) = ambn, S(b) = a.(26)

The case m = n = 1 gives rise to the Fibonacci substitution. Hence, the substi-
tutions in (26) are usually called generalized Fibonacci substitutions. If n = 1,
the resulting potentials are Sturmian and will be discussed in this more general
context in a later section. Here, we restrict our attention to the case n ≥ 2. These
substitutions and the associated Schrödinger operators were studied, for example,
in [22, 32, 34].
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If n is even, it is easily seen that each Vω satisfies (S3) with the roles of a and b
interchanged, that is, b’s always occur with even multiplicity. Thus, we can derive
a dynamical bound for the associated operators by applying Theorem 4.

If n is odd, the model satisfies neither (S2) nor (S3) but we can nevertheless
employ a similar argument. As a warmup, let us consider the case n = 3 (the
special case m = 1, n = 3 is usually called the nickel mean substitution). Then the
transfer matrices are given by products of matrices of the following form:

T (a,E) and T (b, E)3.

Let E0 = b+ 1. Then

T (b, E0) =

(

1 −1
1 0

)

and hence

T (b, E0)
3 = −I.

This would allow us to prove bounds on β−
δ1

(p) in the same way as in the proof of
Theorem 4.

Let us now turn to the case of a general odd n ≥ 3. Here we can extend the
above idea and prove a result which applies to the substitutions in (26) with n odd
but which is much more general. Denote

(S4) There is some odd k ≥ 3 such that the value b always occurs with a multiplicity
which is a multiple of k, that is, if V (n) = V (n+ l+1) = a and V (n+ j) = b,
1 ≤ j ≤ l, then l = mk for some m ∈ N,

Then we can prove the following:

Theorem 5. Suppose V : N → {a, b} ⊂ R is a potential satisfying (S4). Then

there is a set E ⊂ R of cardinality k − 1 such that for every E ∈ E, we have

(a) If |a−E| < 2, then for every p > 0,

β−
δ1

(p) ≥ p− 1.

(b) If |a−E| = 2, then for every p > 0,

β−
δ1

(p) ≥ p− 5

2
.

Proof. In this case, the transfer matrices are given by products of matrices of the
following form:

T (a,E) and T (b, E)k.

It suffices to exhibit k − 1 energies E0 with

T (b, E0)
k = ±I.(27)

This can be seen as follows: The matrix T (b, E)k is the monodromy matrix of the
constant potential V (n) = b, regarded as a k-periodic potential. This gives rise
to an operator with k − 1 gaps. However, since the operator with this potential
has spectrum [b − 2, b + 2], all these gaps are degenerate. Every degenerate gap
corresponds to an energy where the monodromy matrix is equal to ±I , hence there
are exactly k − 1 energies E0 for which we have (27).

Putting everything together, we obtain the following result for the models gen-
erated by substitutions from (26):
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Corollary 4.2. Let S be a substitution of the form (26), Ω and the Vω’s as above.

(a) If n ≥ 2 is even, then for every ω ∈ Ω, the potential Vω gives rise to an operator

satisfying

β−
δ1

(p) ≥ p− 1 for every p > 0 if |a− b| < 2

and

β−
δ1

(p) ≥ p− 5

2
for every p > 0 if |a− b| = 2.

(b) If n ≥ 3 odd, then T (b, E0)
n = ±I has n − 1 solutions E0 ∈ R and for each

such solution E0, we have that for every ω ∈ Ω, the potential Vω gives rise to an

operator satisfying

β−
δ1

(p) ≥ p− 1 for every p > 0 if |a−E0| < 2

and

β−
δ1

(p) ≥ p− 5

2
for every p > 0 if |a−E0| = 2.

The final substitution model we consider is the following:

S(a) = ambn, S(b) = bnam.(28)

The case m = n = 1 gives rise to the Thue-Morse substitution. Hence, the substi-
tutions in (28) are usually called generalized Thue-Morse substitutions. They were
considered, for example, in [34]. If at least one of m,n is even, (S3) holds and we
can apply Theorem 4. In the remaining case, where both m and n are odd (and at
least one is ≥ 3), (S4) holds and we can apply Theorem 5. Thus, for models gener-
ated by generalized Thue-Morse substitutions, we obtain the following dynamical
bounds:

Corollary 4.3. Let S be a substitution of the form (28), Ω and the Vω’s as above.

(a) If at least one of m,n is even, then for every ω ∈ Ω, the potential Vω gives rise

to an operator satisfying

β−
δ1

(p) ≥ p− 1 for every p > 0 if |a− b| < 2

and

β−
δ1

(p) ≥ p− 5

2
for every p > 0 if |a− b| = 2.

(b) If we have m ≥ 3 odd, then T (b, E0)
m = ±I has m − 1 solutions E0 ∈ R and

for each such solution E0, we have that for every ω ∈ Ω, the potential Vω gives rise

to an operator satisfying

β−
δ1

(p) ≥ p− 1 for every p > 0 if |b−E0| < 2

and

β−
δ1

(p) ≥ p− 5

2
for every p > 0 if |b−E0| = 2.

An analogous result holds if we have n ≥ 3 odd.

(c) If m = n = 1, then

β−
δ1

(p) ≥ p− 1 for every p > 0.
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Part (c) was proved in [8] and is stated for completeness. One might expect
the bound β−

δ1
(p) ≥ p− 1 to hold always. In fact, the paper [34] claims, for every

choice of m,n, a, b, the existence of an energy, where the transfer matrices remain
bounded. However, the argument given in that paper is incomplete and it would
be interesting to prove or disprove this claim.

Next, we consider the prime Schrödinger operator Hprime on `2(N) whose poten-
tial is given by

Vprime(n) =

{

a if n is not prime,
b if n is prime.

This operator was studied, for example, in [10, 30]. Based on numerics and heuris-
tics contained in these two papers, one may expect the following: On the one hand,
for almost every energy E, there is an `2 solution to Hprimeφ = Eφ, that is, when
one varies the boundary condition at the origin, one gets pure point spectrum for al-
most every boundary condition. On the other hand, the model displays non-trivial
transport for every boundary condition. We will confirm the latter below (the proof
discusses only the case of a Dirichlet boundary condition, but it readily extends to
every other boundary condition). Let us briefly discuss the first point. It is natural
to view Vprime as a sparse potential. In fact, this point of view was proposed in
[10]. However, the current methods in the spectral analysis of models with sparse
potentials (see, in particular, [20, 28]) are clearly insufficient to conclude anything
for the prime model. We regard this as an interesting problem and refer the reader
also to [29] for further motivation to consider models of moderate sparseness.

Let us now turn to a dynamical result for the prime model. Clearly, (S1) and
(S2) are satisfied for n large enough. Hence we get:

Corollary 4.4. For every a, b ∈ R, the operator Hprime satisfies

β−
δ1

(p) ≥ p− 5

2
for every p > 0.

Finally, we discuss a model which is sparse in the standard sense. Namely, pick
some integer γ ≥ 2 and define nk = γk for k ∈ N. Let Vsparse(n) = b if n = nk for
some k and Vsparse(n) = a otherwise. Schrödinger operators with potentials of this
kind were studied in [35]. Clearly, when γ is even, all nk’s are even, and when γ is
odd, all nk’s are odd, so we have (S1) and (S2). Thus, Theorem 3 applies and we
get

Corollary 4.5. For every a, b ∈ R and γ ∈ N \ {1}, the potential Vsparse gives rise

to an operator satisfying

β−
δ1

(p) ≥ p− 5

2
for every p > 0.

This can be improved if γ � |a− b|:

Proposition 4.6. Let

ν =
2 log

√

2 + (a− b)2

log γ
.

Then the potential Vsparse gives rise to an operator satisfying

β−
δ1

(p) ≥ p− 1 − 4ν

1 + ν
for every p > 0.
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Proof. Write C(a, b) =
√

2 + (a− b)2. Then

‖T (a,E = a)2l+1T (b, E = a)‖ =

∥

∥

∥

∥

(

−1 0
a− b −1

)∥

∥

∥

∥

≤ C(a, b).

For dn,m = #{m ≤ k ≤ n : V (k) = b}, we have dn,m ≤ log |n−m|/ log γ and hence

‖T (n,m;E = a)‖ ≤ C(a, b)dn,m ≤ C(a, b)log |n−m|/ log γ = |n−m|logC(a,b)/ log γ .

This yields the assertion.

5. A Hierarchical Model

The hierarchical model is defined through the potential

V (n) = λf(ordn),(29)

where f is some real function and ordn is the number of factors 2 in the prime
decomposition of n. The sequence (29) has some nice symmetries. Because
ord (−n) = ordn for all n and ord (l · 2m+ k) = ord k for m ≥ 1, all l and |k| < 2m,
analogous identities hold for V . In particular,

V (l · 2m + k) = V (k) = V (−k) = V (l′ · 2m − k)(30)

for any l and l′, m ≥ 1 and |k| < 2m. The Schrödinger operator with such a
potential appeared first in the works [26] and [31] with the special choice

f(m) =

m−1
∑

k=0

Rk,

where R is a positive constant. The advantage of this choice is that in this case,

xm = trMm(E) ≡ trT (2m, 0;E)

satisfies an autonomous difference equation [31],

xm+1 = x2
m − 2 +Rxm(xm − x2

m−1 + 2) , m ≥ 1 .(31)

The above recurrence and the symmetries (30) made it possible to obtain many
rigorous results about the spectrum of the corresponding Schrödinger operator. A
detailed mathematical study of this model was carried out by Kunz et al. [23].
Among other things, it was shown that for every R > 0, the spectrum is a Cantor
set, and for R ≥ 1, it is purely singular continuous. From the point of view of the
present article, it is interesting that a countable infinite set of exceptional energies
in the spectrum could be identified explicitly. The 2m zeros Emk , 1 ≤ k ≤ 2m,
of xm(E) are simple and xm = 0 implies xm+1 = −2 and xm+l = 2 for l > 1;
compare (31). From this it was possible to show that Emk, for m ≥ 0 and 1 ≤ k ≤
2m, are lower (resp., upper) gap-edges in the spectrum of H if λ > 0 (resp., λ < 0)
and they are dense in the spectrum. For the corresponding gap-edge states, the
following result was obtained (Proposition 15 in [23]).

Proposition 5.1. Let xm(E) = 0 and let ψ be a solution of Hψ = Eψ.

(i) If ψ(0) = 0, then ψ(k + 2m+1) = −ψ(k) for every integer k.
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(ii) If ψ(0) 6= 0, then ψ(2l · 2m) = (−1)lψ(0) and asymptotically, as l → ∞,

ψ((2l + 1)2m) − ψ(2m) � (−1)l+1λmψ(0)fR(l)(32)

where

fR(l) =











2
2−R l , R < 2

l · log2 l , R = 2
(

2
R

)εl R2

2(R−1)(R−2) l
log2 R , R > 2.

(33)

Here λm = λRmxm−1(E) · · ·x0(E), εl ∈ [0, 1) is the fractional part of log2 l
and � means equality in the leading order of l.

We use this proposition to prove the following theorem.

Theorem 6. For every λ 6= 0 and R > 0,

β−
δ1

(p) ≥ p− 1 − 4α

1 + α
,

where

α = α(R) = max{1, log2R}.

Proof. We apply Proposition 5.1 with m = 0 for which it provides the precise
asymptotic form of the solutions. Because x0(E) = E, these belong to E = 0. Let
ψD and ψN be the two solutions defined by the initial values

ψD(0) = ψN(1) = 0, ψD(1) = ψN(0) = 1.(34)

According to part (i) of Proposition 5.1, ψD is a periodic solution with period 4,
namely

ψD(2l) = 0, ψD(2l+ 1) = (−1)l.(35)

On the other hand,

ψN(2l) = (−1)l, ψN(2l + 1) � (−1)l+1λfR(l).(36)

Equations (35) and (36) permit us to compute the asymptotic form of T (n,m; 0).
Because of V (−n) = V (n), it suffices to consider n ≥ m ≥ 0. In what follows, we
use the simplified notation T (n,m). Let Ψi(n) = (ψi(n + 1) ψi(n))T for i = 0, 1.
Then T (n, 0) = (ΨD(n) ΨN(n)). The determinant of any transfer matrix being
unity, the inverse is easy to compute. We find

T (n,m) = T (n, 0)T (m, 0)−1(37)

=

(

ψD(n+ 1) ψN(n+ 1)
ψD(n) ψN(n)

) (

ψN(m) −ψN(m+ 1)
−ψD(m) ψD(m+ 1)

)

.(38)

With the short-hand notation

F (l) = (−1)lψN(2l+ 1),
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equations (35), (36), and (38) then yield

T (2l, 2k) = (−1)k+l
(

1 F (l)−F (k)
0 1

)

T (2l+ 1, 2k) = (−1)k+l
(

0 −1
1 F (l)−F (k)

)

T (2l, 2k+ 1) = (−1)k+l+1

(

F (l)−F (k) −1
1 0

)

T (2l+ 1, 2k + 1) = (−1)k+l+1

(

−1 0
F (l)−F (k) −1

)

.(39)

All these matrices have the same norm. Denoting the Hilbert-Schmidt norm by
‖ · ‖2, for n = 2l, 2l+ 1 and m = 2k, 2k + 1, we have

‖T (n,m)‖ ≤ ‖T (n,m)‖2 =
√

2 + [F (l) − F (k)]2 �
√

2 + λ2[fR(l) − fR(k)]2 .

Therefore,
‖T (n,m; 0)‖ ≤ 2λfR(n/2)

for any n large enough and m ≤ n. If R 6= 2, the assertion of the theorem obviously
follows from the definition (33) of fR and Theorem 1. If R = 2, we note that for
any ε > 0,

‖T (n,m; 0)‖ ≤ λn1+ε

if n is large enough. Therefore, by Theorem 1,

β−
δ1

(p) ≥ p− 5 − 4ε

2 + ε

for any ε > 0 and, thus, for ε = 0 as well.

Remark. The proof shows that we can apply Corollary 3.1 and obtain that the
dynamical bound in Theorem 6 is stable with respect to perturbations W obeying
|W (n)| ≤ C2|n|−1−2α−ε for some fixed ε > 0 and every n ∈ Z.

We note that instead of m = 0, we could have used Proposition 5.1 with any
m > 0 and any zero of xm(E). This holds because of the following:

Theorem 7. For any λ 6= 0, R > 0, m ≥ 0, and k ∈ {1, 2, . . . , 2m}, there exists a

positive number Cλ,R(m,Emk) such that for any n ≥ n′ ≥ 0,

‖T (n, n′;Emk)‖ ≤ Cλ,R(m,Emk)fR(2−m−1n) .

Proof. We fix m > 0 and a zero Emk of xm. From equation (38) it is clear that
we have to bound the two particular solutions (34) of Hψ = Emkψ. According to
Proposition 5.1, ψD is 2m+1-antiperiodic and, thus, bounded. On the other hand,

ψN(2l · 2m) = (−1)l, ψN((2l + 1)2m) − ψN(2m) � (−1)l+1λmfR(l).(40)

Thus, the task is to bound ψN(n) in the intervals

2l · 2m < n < (2l + 1)2m and (2l+ 1)2m < n < 2(l + 1)2m .(41)

To proceed with the proof, let us recall equation (3.29) of [23], according to which

ψD(2m) = xm−1 · · ·x0

for any energy. Thus, ψD(2m) 6= 0 in the present case (E = Emk), for otherwise
xi = 0 for some i < m would imply |xj | = 2 for every j > i, contradicting xm = 0.
Then u0 := ψD/ψD(2m) is a solution of the Schrödinger equation satisfying the
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boundary conditions u0(0) = 0, u0(2
m) = 1 and, according to Proposition 5.1,

u0(k+2m+1) = −u0(k) for any k. From the general theory of second-order difference
(differential) equations, it follows that there exists a linearly independent solution
u1 with boundary values u1(1) = 1, u1(2

m) = 0 and that we can write ψN for
0 ≤ n ≤ 2m in the form

ψN(n) = ψN(2m)u0(n) + ψN(0)u1(n).

Next, we observe that u1 can be expressed in terms of u0. Indeed, from equation
(30) we can see that the sequence V (1), . . . , V (2m − 1) is a palindrome,

V (2m−1 − k) = V (2m−1 + k) k = 1, . . . , 2m−1 − 1

and, hence,

u1(n) = u0(2
m − n), n = 1, . . . , 2m − 1.

Furthermore, the translational symmetry of the potential,

(V (l · 2m + 1), . . . , V ((l + 1)2m − 1)) = (V (1), . . . , V (2m − 1)),

valid for any l, implies that the translates of u0 and u1 can be used to give ψN in
each of the intervals (41). Altogether we find

ψN(n) = ψN((2l + 1)2m)u0(n− 2l · 2m) + ψN(2l · 2m)u0((2l + 1)2m − n)

if 2l · 2m ≤ n ≤ (2l + 1)2m and

ψN(n) = ψN(2(l + 1)2m)u0(n− (2l + 1)2m) + ψN((2l + 1)2m)u0(2(l+ 1)2m − n)

if (2l+ 1)2m ≤ n ≤ 2(l + 1)2m. Together with (40), in both intervals,

|ψN(n)| ≤ max |ψD|
|ψD(2m)| (|ψN((2l + 1)2m)| + 1).

Since l ≤ n/2m+1, we obtain that for n large enough

|ψN(n)| ≤ max |ψD|
|ψD(2m)| (|λm|fR(2−m−1n) + |ψN(2m)| + 1).

Due to (38), the assertion of the theorem follows from this bound.

6. Sturmian Potentials

In this section, we discuss dynamical bounds for the standard one-dimensional
quasicrystal model which is given by a Schrödinger operator on the whole line whose
potential is given by

V (n) = λvω,θ(n), where vθ(n) = χ[1−ω,1)(nω + θ mod 1),(42)

where λ 6= 0 is the coupling constant, ω ∈ (0, 1) irrational is the rotation number,
and θ ∈ [0, 1) arbitrary is the phase. For more information on this family of
operators, we refer the reader to the survey articles [4, 33].

It is well known, and easy to see, that the spectrum of the operator Hλ,ω,θ with
potential V from (42) is independent of θ, that is, for every λ, ω, there is a set Σλ,ω

with σ(Hλ,ω,θ) = Σλ,ω for every θ.
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Consider the continued fraction expansion of ω,

ω =
1

a1 +
1

a2 +
1

a3 + · · ·
with uniquely determined an ∈ N (cf. [18]). The associated rational approximants
pk/qk are defined by

p0 = 0, p1 = 1, pk = akpk−1 + pk−2,

q0 = 1, q1 = a1, qk = akqk−1 + qk−2.

The number ω is said to have bounded density if

d(ω) = lim sup
n→∞

1

n

n
∑

k=1

ak <∞.(43)

The set of bounded density numbers is uncountable but has Lebesgue measure zero.
The following was shown in [6] (see also [14] for the case of zero phase):

Theorem 8. Suppose ω is a bounded density number. For every λ, there is a

constant C such that for every θ, every E ∈ Σλ,ω, and every n,m ∈ Z, we have

‖Tλ,ω,θ(n,m;E)‖ ≤ C|n−m|α(λ,ω),(44)

with

α(λ, ω) = D · d(ω) · logCλ,(45)

where D is some universal constant, Cλ is given by

Cλ = 2 +
√

8 + λ2,(46)

and d(ω) is as in (43).

This yields the following:

Corollary 6.1. Let ω be a bounded density number. Then, for every λ, θ, the

operator Hλ,ω,θ satisfies

β−
δ1

(p) ≥ p− 3α(λ, ω)

1 + α(λ, ω)
for every p > 0,

with α(λ, ω) given by (45).

Since µ(Σλ,ω) = 1, this is an immediate consequence of (10). This bound is
better than the corresponding result in [8] (which follows from (9), bounding from
below |B1(T )|). One should stress that as opposed to all the other examples dis-
cussed earlier, the dynamical bound in Corollary 6.1 is not stable with respect to
perturbations of the potential. This is due to the fact that µ(Σλ,ω) may vanish for
the perturbed measure. However, by Corollary 3.1, we have the following result:
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Corollary 6.2. Let ω be a bounded density number and let λ be arbitrary. If

α(λ, ω) is given by (45) and W satisfies

|W (n)| ≤ C2(1 + |n|)−1−2α(λ,ω)−ε for every n ∈ Z

for some ε > 0, then, for every θ, the operator Hλ,ω,θ +W satisfies

β−
δ1

(p) ≥ p− 1 − 4α(λ, ω)

1 + α(λ, ω)
for every p > 0.

As in the case ω = (
√

5 − 1)/2 and θ = 0, studied in [8], it is possible to
improve this lower bound somewhat by exhibiting a suitable set A(N) (stable under
perturbation), studying its Lebesgue measure, and applying (9). The set A(N) will
again be given by the spectra of suitable periodic approximants, and the Lebesgue
measure can again be bounded through a fine analysis of the trace map, akin to
what is done in [8, 19, 27]; compare also [25]. We leave the details to the interested
reader.
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analysis of one-dimensional Schrödinger operators, Commun. Math. Phys. 194 (1998), 1–45

[21] A. Kiselev, C. Remling, and B. Simon, Effective perturbation methods for one-dimensional
Schrödinger operators, J. Differential Equations 151 (1999), 290–312

[22] M. Kolàř and M. K. Ali, One-dimensional generalized Fibonacci tilings, Phys. Rev. B 41

(1990), 7108–7112
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