
HAL Id: hal-00080044
https://hal.science/hal-00080044

Submitted on 14 Jun 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pipelined memory controllers for DSP applications
handling unpredictable data acesses

Bertrand Le Gal, Emmanuel Casseau, Sylvain Huet, Eric Martin

To cite this version:
Bertrand Le Gal, Emmanuel Casseau, Sylvain Huet, Eric Martin. Pipelined memory controllers for
DSP applications handling unpredictable data acesses. 2005, pp.268 - 269. �hal-00080044�

https://hal.science/hal-00080044
https://hal.archives-ouvertes.fr


Pipelined Memory Controllers for DSP Applications Handling Unpredictable
Data Accesses

Bertrand Le Gal, Emmanuel Casseau, Sylvain Huet, Eric Martin
LESTER Laboratory - University of South Brittany

Lorient - FRANCE
name.surname@univ-ubs.fr

Abstract

Multimedia applications are often characterized by a
large number of data accesses with regular and periodic ac-
cess patterns. In these cases, optimized pipelined memory
access controllers can be generated improving the pipeline
access mode to RAM. We focus on the design and the im-
plementation of memory sequencers that can be automati-
cally generated from a behavioral synthesis tool and which
can efficiently handle predictable address patterns as well
as unpredictable ones (dynamic address computations) in a
pipeline way.

1 Introduction

Actual researches in Multimedia applications try to re-
duce the computation complexity of algorithms using ad-
hoc solution composed of conditional computations lead-
ing to execution hazards to appear with conditional and un-
bounded loop usages. On the other hand other architectural
implementations (computation and memory architectures)
are obtained for regular algorithms without execution haz-
ard. For most of multimedia applications the entire mem-
ory access sequence is not known a priori. This prevents
the designer and High-Level Synthesis tools to handle effi-
ciently the application repetitive sequences for efficient area
and power consumption design. In many digital signal-
processing applications, the array access patterns are pre-
dictable, regular and periodic. In these cases, the necessary
address patterns can be efficiently generated either directly
from a memory address sequencer. The sequencer genera-
tion allows the designer to decouple the concerns of mem-
ory interfacing and static scheduling of possible memory
accesses [2]. This technique is used to improve the pipeline
access mode to RAM. Researches [1] have demonstrated
the interest of an address sequencer utilization for memory
access for power efficient circuit generation.

In this paper, we first present a design flow for the
our sequencer which handles hazardous memory accesses
providing the ability of accessing to a dynamically calcu-
lated addresses in a data-flow fashion. In a second time
we present our sequencer architectures which can perform
pipeline memory access for statically and dynamic access
sequences. Experimental results are discussed in the con-
clusion.

2 The Design Flow

Our Design Flow (figure 1) starting point is a behavioral
description of the application specifying the circuit func-
tionality and a memory mapping specifying which data is
in memory. In order to map an application onto the mem-
ory sequencer architecture, we define a graph model name
Extended Data-Flow Graph which takes into account the re-
quired timing constraints due to dynamic address accesses.

Figure 1. Design Flow

The first step of our design flow for dynamic address se-



quencer generation is the Extended Data-Flow Graph an-
notation : this annotation step aims to handle the timing
requirements for data and address transfers from one unit to
the other (Communication, Memory and Datapath unit).

In second step, a dynamic address computation balanc-
ing algorithm is applied to the previously annotated graph
in order to move some dynamic address computations from
datapath to the memory sequencer unit reducing transfer
count, power consumption and delays. The decision met-
ric used to select address computations which must bal-
anced, takes into account different criteria: the number of
data-transfer, the time increase/decrease for critical paths,
the bitwise of the operators and the potential parallelism
that can be exploited for computations and data-transfers.
This dynamic address computation balancing script is ap-
plied in a static manner to the annotated graph. Depending
on the application of this script, the sequencer architecture
may need an internal datapath for address computations.

Then the designer can implement is datapath by hand or
using a high-level synthesis tool. During this process, the
HLS tool takes into account the timing constrains for dy-
namic data addressing and data transfers using the Extended
Data-Flow Graph annotations.

Finally, the entire sequencer is generated using the pre-
viously generated informations on the access patterns.

3 Dynamic Address Sequencer Architecture

This sequencer supports dynamic addressing capabilities
in a mainly deterministic data transfer sequence. In this ar-
chitecture (figure 2, without the dynamic address datapath
and its controller), we suppose that all the dynamic address
computations are calculated inside the datapath unit and
then transfered using data buses to the memory sequencer.
The datapath access buses are connected to the memory us-
ing a multiplexed crossbar which is controlled through the
memory access scheduler. This scheduler controls the ad-
dress generator progress in a synchronous manner from the
datapath point of view. A dynamic address access to the
memory will go through the address translation table, this
table will translate, the index of the data to a couple (mem-
ory bank, address). This translation allows the designer to
bind noncontiguous pieces of a vector into different memo-
ries to better exploit access parallelism. The dynamic access
controller will route the correct commands (read/write) and
physical address to the right memory bank according to the
dynamic access required.

Sequencer Architecture Improvement : We extend this
architecture for massive transfers reduction by inserting
dedicated computation units in the memory sequencer unit.
These computation units perform internal address compu-
tations realizing the datapath unit constraints for eligible

Figure 2. Dynamic Address Sequencer

address computations. This approach provides interesting
gains for pipeline architecture design : the data transfers
between the datapath and the sequencer can take more than
one clock cycle. In these applications, localizing compu-
tations in the memory sequencer will reduce latency and
avoid unnecessary address transfers. An internal datapath
specialized in dynamic address computations is inserted be-
fore the translation table (figure 2). It is composed of oper-
ators and registers like a datapath. This dedicated hardware
is shared between address computations during application
execution.

4 Conclusion

Several experiments we have performed which exhibit
the interest of this approach. This technique reduce the data
transfer requirements for low-conditional high-computation
applications exploiting data intensive techniques. This tech-
nique also allows performance increases by using an inter-
nal sequencer datapath for dynamic address computations
reducing delay in pipeline architectural implementations.

References

[1] Taewhan Kim Chun-Gi Lyuh and Ki-Wook Kim.
Coupling-aware high-level interconnect synthesis.
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 23(1):157–164, January
2004.

[2] Joonseok Park and Pedro C. Diniz. Synthesis of
pipelined memory access controllers for streamed data
applications on fpga-based computing engines. In Proc.
of ISSS’01, pages 221–226. ACM Press, 2001.


