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THERMODYNAMIC FORMALISM AND VARIATIONS OF THE
HAUSDORFF DIMENSION OF QUADRATIC JULIA SETS

GUILLAUME HAVARD, MICHEL ZINSMEISTER

ABSTRACT. Let d(c) denotes the Hausdorff dimension of the Julia set of the
polynomial z + 22 4+ c. The function d restricted to [0, +00) is real analytic in
[0, %) U (%,+oo) ([Ru?)), is left-continuous at % ([Bo,Zi]) but not continuous

([Do,Se,Zi]). We prove that ¢ — d’(c) tends to +co from the left at % as
(% - c)d(%)_%. In particular the graph of d has a vertical tangent on the left

at %, result which comforts the numerical experiments.

1. INTRODUCTION AND STATEMENT OF THE RESULT
By quadratic family we mean the family of polynomials
P.:z+— 2% o, ceC

As usual K. and J,. will denote respectively the filled-in Julia set and the Julia
set of P.. We recall that J. = 0K, and that K, is the set of complex numbers z
for which the sequence obtained by induction by zp = 2, zp41 = Pe(2zn) does not
converge to co.

c=0,21 c=10,25 ¢=0,251

F1GURE 1. Filled-in Julia sets for different values of the parameter c
(Pictures made with Arnaud Cheritat’s program).

We are interested in the function ¢ — d(c) where d(¢) denotes Hausdorff dimension
of J.. A well known result of Ruelle ([Ru?]), based on thermodynamic formalism
(Bowen Formula) asserts that this function is real-analytic on the complement of
the Mandelbrot set Ml = {¢ € C | K, is connected} as well as on every hyperbolic
component of 1\041

So d is real-analytic on ]52, 2[U]4, oo, since ]52, 1[ is the trace on IR of the main
cardioid of M, the hyperbolic component of values of ¢ such that P, has an attracting
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fixed point, and ], co[C C\ M.
The point % corresponds dynamically to a bifurcation; for 0 < ¢ < % P, has two

real fixed points, one attracting and one repelling and they both converge to %, the
1

parabolic fixed point for P%, as ¢ goes to %. When c is greater than 7, P. possesses

two repelling conjugated fixed points.

In [Bo,Zi] it has been proved that d|g is continuous from the left at %. On the
other hand, parabolic implosion produces a topological discontinuity which induces
a jump of the function d; more precisely it is shown in [Do,Se,Zi] that

1
d(=) < liminfd(e) < limsupd(c) < 2.

e+ 510 c—+1+40

Notice that it is not known if d has a limit from the right at %.

The purpose of the present article is to precise the speed of convergence of d(c)
towards d(%) from the left. From now on we write § = d(%).

Bowen’s formula is relatively well adapted to computation and several numerical

experiments have been performed [Ga], [Bo,Zi], [McMu]. They all show the same

behaviour before %, namely a vertical tangent at this point. We prove this rigor-

ously modulo the accepted bound § < % Indeed all quoted numerical values give
§ ~ 1,0770,02 which is very far from % We do not feel like going into tedious
computations to prove this, even if it can certainly be done.

1.25
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F1GURE 2. The graph of d obtained in [Bo,Zi].

Theorem 1.1. There exist cg < % and K > 1 such that

< (5 —¢)579d'(¢) < K.

1 1
v - il
c€leogl %

Remark 1.2. Notice that it implies



2. BOWEN’S FORMULA AND THERMODYNAMIC FORMALISM.

The Julia set Jy admits a natural Markov partition corresponding to dyadic
development of the argument measured in “numbers of turns”; namely the partition
into two half circles [0, %[ and [%, 1[ which will be denoted by 0 and 1 respectively.
On the other hand the polynomials P, 0 < ¢ < % admit a Bottcher coordinate,
i.e. there exists ¢. : C\D = C\ Ko — C\ K. holomorphic bijective satisfying
¢c(z) = z+ -+ at infinity and conjugating Py into P.. The sets J. being for
0<ce< % Jordan curves, the ¢.’s have homeomorphic extensions from Jy to Jq,
which allow to define a Markov partition for all J.’s. This Markov partition has
of course refining at all orders n; more specifically J. is for every n a union of 27
cylinders v two of these cylinders having closure intersecting at at most one point.
We denote by T'y,(c) the set of all cylinders of order n for J.

Ife< % then P, is hyperbolic and Kcebe distortion theorem applies to all cylinders
: there exists a constant ¢ > 1 independent of 2 or n (but not on c!) such that
(2.1) %diam a(2) < (P2 (2)|7F < Kdiam v, (2)

where v, (2) is the cylinder of order n containing z. Writing, for a cylinder v of
order n, if f is a continuous function on %

f(v) = sup f(z),

ZEY
we define
(2.2) L) = > (BN ()
V€T (c)
Then we have (see [Bow], [Wa'], [Ru']) that
. logll,(t)
23 o = i, 5

exists and define a convex function on R strictly decreasing from +oco to —oc.
Bowen’s formula [Bow] asserts that d(c) is the unique real ¢ such that II(¢) = 0.
Using Bottcher coordinate, (2.2) becomes

(2.4) I, (t) = Z eSn(—tlog|26c])(v)
YET, (0)

where
S(@)(2) = 3 w(z%).

The function IT then appears to be the pressure of the continuous function —t log |2¢.|.
For a continuous function ¢ on Jg the pressure P(yp) is defined (see [Wal]) by

o) — 1 1 Sn(e)()
(2.5) P(p) = ngg_loo - log E € A
Y€ (0)

Notice that ¢. (and thus log|2¢.|) is a Holder function on Jy because (¢, z) — ¢(2)
is a holomorphic motion and thus for all ¢ € [0, %[, @, has a quasiconformal extension
to C. Ruelle theorem follows from the fact that the map ¢ — P(¢) is real-analytic
on the spaces of Holder functions.

The key in Ruelle’s result is to interpret the pressure in terms of an operator called
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transfer operator or Ruelle operator.
If ¢ is continuous on Jy, the associated operator is defined as

(2.6) VecdD  Lo(f)(x?) = e fa) 4 %) f(—z).

Perron-Frobenius-Ruelle theorem [Rul] asserts that if ¢ is Holder then § = F(¥)
is a single eigenvalue of £, associated with an eigenvector A > 0 which is Holder
with same exponent.

On the other hand there exists a unique probability measure w on the circle such
that £, (w) = fw. When ¢ = p. = —d(c) log|2¢| this measure corresponds on J.
to a measure w, which is The Hausdorff measure (normalized to be of mass 1) in
dimension d(c) on J..

It can be shown that it is the unique conformal measure on J,, i.e. it is the unique
probability measure for which there exists t > 0 such that

(2.7) we(Po(A)) = /A P!t duo,

for every A C J. on which P, is injective.
For every 0 < ¢ < %, if h. denote the eigenvector of £,_ we define h, = h.o¢ . We

can choose h~C so that p. = h.w, is a probability measure. It is then the unique P.-
invariant measure equivalent to w.. In thermodynamic terms, it is an equilibrium
state, that is an invariant probability measure maximizing some functional called
free energy. There is no other equilibrium state (no phase transition). For ¢ = %,
there are exactly two equilibrium states [Ha']; there is a phase transition similar to
the transition water-ice.

This long introduction on thermodynamic formalism had for purpose the following

theorem which will allow us to start the computation.

Proposition 2.1. Let 0 < ¢ < %, we have
d(c) 0 ~
2.8 d(c)= ———""2—— — (log |2¢.]) dpi..
Proof. Let ¢. = —d(c)log|2¢.| : because of Bowen’s formula, we know that the

pressure of ¢ is 0. So Ly, and L, have an eigenvector associated with the eigen-

value 1. Denote by %c and @, those eigenvectors. We choose &, so that it is a
probability measure and h. so that . = h W, is a probability measure.

We have
Lo (he) = he.

Differentiating, we obtain

) ~ 0~ 0~
<%E%) (he) + Loy, <%hc) = %hc.

Now we integrate with respect to @.. Using the fact that it is an eigenvector for
L7, we get

(2.9) /aD (%ﬁw) (he)d@, = 0.

Using (2.6) we compute

vrec)  (goto.) )= Lo ([~ @086 - d(0) 5 o260 1)



and (2.9) leads to

/an (‘d'(c) log|2¢c| - d(c)% (log |2¢c|)) dfic = 0

which is what we wanted.

The result of [Bo,Zi] implies that d(c) — & as ¢ — 3. On the other hand the
denominator in (2.8) is the Lyapounov exponent of P.. In the next paragraph we
prove the convergence as ¢ — % of this Lyapounov exponent towards the Lyapounov
exponent of P1 which is positive.

Finally the numerator will be estimated in section 4.

3. CONVERGENCE OF EQUILIBRIUM STATES AND LYAPOUNOV EXPONENTS

3.1. Approximate Fatou coordinates. We will denote z.and (. respectively the
repelling and attracting fixed point of P, :

1+ /1—4e 1—+1-—4c
—f - .

Cc = 5)
Ife. = % — ¢, the approximate Fatou coordinates is defined as

(3.1) Ze(2) = 2\}alog (i - z)

z—z¢

C\[¢e, 2] =5 C\]—o00,0]

Zc

77 los()
v {Rez e RIN{Zm =z €]—1i I

s gl

Notice that z being fixed we have
1

c ~ .
e.—0 z — %

which is the approximate Fatou coordinate for ¢ = %.

c=0,25

Ficurg 3. Filled-in Julia sets in Fatou coordinates
(Pictures made with Arnaud Cheritat’s program).
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Under this change of coordinates P. is conjugated to F.
Let E.(Z) = e2V5<Z . one can compute using ¢ — (., = ¢? and ¢ — z. = 22,
(3.2)

1 4E.(Z)e.
FZ) =7+ (2)e .
2/ e (1= 42)E.(Z) - (1 + 2y50)
Next lemma gives an estimation of how far from translation by one is F. when |Z|

is big.

log(1+ 2y/2.) + log <1 +

Lemma 3.1. There exist K > 0 and eq > 0 such that for Re 7 < —K and e. < &g,

1
) - (Z+1)] < .
Proof. By formula (3.2) this boils down to proving that
L oe (s AE(Z)e. p
)
SN (I—4c)B(Z) - 1+ 2 )| =
for Re Z < —K and ¢, < ¢g.
Put K > 100, then if Re Z < —K,

(14 2v/e) = (1 = dec) Ec(Z)]

1
10’

> (14 2E) — (1 — 4e.)e”100V5e
> 50E. ife. <eo.

For Re Z < —K < —100 and ¢, < gg this leads to
4E.(Z)e.
(= 4 E.(2) - (1 +2./50)

So we can conclude that

de.eKVEe
504/zc

1 4B, (Z)e.
N (1 MDA R 2@)‘ .

1
10°

We want now to estimate the size of the cylinders near z.. For n > 1 let Cy(c) be
the set of points of J. with external angle belonging to [2~(»+1) 2="]. In symbolic
dynamics it corresponds to the cylinder

Ca(c)=1---10.

n

Lemma 3.2. There exist cg < % and K > 0 such that

1
Ve€fco, ] Van €Calc) > 1Zm 2] < K.

n>0
Proof. The proof will be done by showing relations between Zm z, = y, and
Im Ze(zn) =Im Zp =Y,.
By construction,

2\/8 Zn

:—+¢a—c+2\/677

This leads to -
Ee sin(y/EcYn)
2 (sinh(\/EcX,))? + (sin(\/EcYn))?

Yn =



This can also be written

(3.3) _ sin(veeYn)

Yn = .
2\/5 (smh( ecXn) ) (sm sin(y/€cYx) ) y2
VEeXn VEcYn n
Using this relation and the fact that \/z2:Y, € [—7, 5], we easily get
|Vl
3.4 n| < —
(3.4) lun| < 3 FAE
With the lemma 3.1 this leads to
)\
(35) ol <22l <2

On the other hand, |Y,| < |Yo| + Zk;o |Yig1 — Yk|, and

Zk41 — Zc 2k — Ce
Vi1 — Yi| = Im lo g( ) :
2k —ze Zk41 — Ce
: Zkp41—2c __ Zk41—2c _ 1
Since Zh—7c  Polzni1)—Po(ze) _ zrqitze’ € have
— 1 Zkt1+Ce
Yier =il < 5 ‘Im log (zwm)‘
1 _ 2V/E(wrt1+20) 2/ ¥k
< 2/ ‘Arg (1 [2k+1+2c]2 +i Mertz? )|

We can conclude that there is A > 0 such that
n—1
(3.6) YVigr = Yl < Algel  and also [Ya] < [Yo| + A Jyel-
k=0

We use (3.5) and obtain

MYol A 1 logn
(3.7) lyn| < °+—22ng .

n?

The proof of the lemma is finished since %%ﬂ < +o0.

Using (3.6) and the lemma 3.2 one obtains

Corollary 3.3. There exists co < % and K > 0 such that
Ve € [co, i] Zu(J.) C {Im 7 € [-K, K]}

We are now in position to prove the main technical result of this section.
Lemma 3.4. There exist « >0, ¢co < 7 L and K > 0 such that for all ¢ € [co, ], all
n €N and all Z,, = X,, +iY, € Cy(c) wehave
< diam (Cr(c)) < S

n2

N/ < 0 —
¢ Kn?

6c€2X"‘/EC

> a0 =
n,/ec > « %

< diam (Cy(c)) < Ke e?XnVee,
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Remark 3.5. There is K such that inequalities

coe KnvEe , K

are true for all integer n and all ¢ € [co, 3].

Proof. Let Z, be a point in Z;(Cy(c)), by lemma 3.1
|Z,| > A+ Bn.

Then by bounded distortion

diam Z.(Cy(c)) < K|Zp — Zn41] < K,

and
U2 (Za)] < diam Coe) < KI(Z7Y (Za)].
\

But

1o _ GeBe(Z) — 2 g decEl(Z) Ee
=" ™ TS g e T GeaEa e
So we have

Z70(2)] = =
2V AN = G + b))
B 1
a sinh(\/ec X 2 sin(/ecY 2 '
() X+ () v
. 2
But \ZoY € [-%, %] thus & < (%) < 1. And if —a < /X < 2 then
. 2 . 2
1< (%) < (SIM;(Q)) . Soif Z € Z.(J.) and if —a < \/2.X < 2 then
2
o 1 72 1

. Y ) <z < T —

(33) (o) e <Y @I < i

On the other hand if Z lies in Z.(J;), corollary 3.3 implies |Zm Z| < K. If
VEeX < —a and if ¢, is small enough then

(%) @_2\/:)( S (Slnh(\/aX))2 + (sm(\/ZY))? < 6_2\/:)(.

We can conclude that for Z € Z.(J.) and \/ecX < —a we have

£ 77— ! 4 £
(39) L < (27Y(2)] £ e

Applying estimations (3.8) and (3.9) with Z = Z,, gives the result.
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3.2. Equicontinuity of the ¢.’s. The function ¢ — ¢.(1) converges to qb%(l)
when ¢ grows to %. It follows that ¢, converges to (ﬁ% on the dense set of points of
the unit circle with dyadic argument. To show that ¢. converges uniformly on D
to qb% it thus suffices to show that the family {¢.} is equicontinuous.

In order to prove this it suffices to find a sequence ¢,, decreasing to 0 such that

(3.10) Ve € Th(e) diam ~. < g,

Among the cylinders T, (¢) we will distinguish the “good” cylinders as the ones for
which the symbolic writing ends with 1 0 or 0 1. These cylinders are the cylinders
for which the diameter may be computed “uniformly” by Keebe distortion theorem.
More precisely there exists K > 0 independent of ¢ such that if v,(c) is a good
cylinders of order n then

1 1 . K

K TPy Gaten] = 4 0 = [y G o)

Lemma 3.6. There exist ¢ E]O,%[, ng > 0 and a constant K > 0 such that if
Yn(c) is a good cylinder of order n > ng and ¢ € [cg, %[ then

(3.12) [(P2™) (n(e))] 2 An?

(3.11)

Proof. First of all let us consider a point in the cylinder 0 0 1. Its image by P, is
in the cylinder 0 1 which is easily seen to be included in E = {|z| > 1} N{Re z <
0}N{Zm z > 0}. So z€ 00 1 can be written /¢ — ¢ with ¢ € E. Tt follows that

1 1
|Z|: |C—C|Z(Z+C2)Z:mc.

1
51
2

as ¢ converges to % we conclude that there exists co € [0, 1[

Since m. converges to 3

and ¢¢ > 0 such that
Ye > ¢ Vze 001 |22] > 1 4 eg.

By symmetry it is also true for 010, 101 and 11 0.

In other words if z belongs to a good cylinder of order 3 then |2z] > 1 + &g if
¢ € [co, 1[.

Let now v, (¢) be any good cylinder of order n > 3, v, (¢) = 21 - -, (x; €{ 0, 1}).
Let p be the number of indices ¢ < n — 3 such that z;x; 122,42 is a good cylinder
and let k1, - -, kg be the lengths of the long (> 2) sequences of 0 or 1 that appear
in v, (c). Clearly p > ¢ and by the result of the preceding paragraph

[(P")(Mn 0)] > max(An®,1)
where M,, denotes the cylinder of length n with n 1. The above estimation implies
(3.13) [(PE™) (9 (€))] > (1 + €0)? (max(AkY, 1)) - - (max(Akg, 1))

If (14 £9)? > n? there is nothing to prove. If (1 + £g)? < n? then p < K logn. On
the other hand the largest k; is greater than w It follows that

(Y (o] 2 A1+ eop (e}

Since p < log n, necessarily ki + -- -+ kg > 5 if n is greater than some ng, and

q
A (1 + 60)p
2

(P (g (D] = 3 p n? > Kn?,
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since (1+Z”)p > (1+€2”)P > K.
q = =

If 4, (c) is a good cylinder, the lemma 3.6 and (3.11) immediately imply

. K
(3.14) diam 7, (¢) < 3
We recall that M, is the cylinder of length n with n 1, and let M, be the cylinder
of length n with n 0.

M,, can be written as Ug>, My 0, thus

diam M, < Z diam M}, 0.
k>n

But M 0 ends with a good cylinder so that

I/r
(3.15) diam M, < —.

n
One can now conclude. Let X be any cylinder of order n > ng. If it is good we
already know that diam X < 5—2 If not then we may assume that X = Y M (or
X = Y M) with k> 2 and Y good. If k > 5 then diam X < Kdiam My < % If
k < % then Y is a good cylinder of order n — k > % and

[,7
diam X < diam Y < %
n

In any case we have proven that there exists K > 0 such that

. K

(3.16) VYn > ng Vn(c) € Ty (c) diam 7, (c) < —

n
3.3. Weak convergence of equilibrium states. As we already know that the
@.’s converge uniformly, and in order to prove that the Lyapounov exponents con-
verge to a non zero limit, it suffices to prove that the equilibrium states weakly

converge to a measure i such that
(3.17) / log |21 |dfi > 0.
al !

The first prove of this fact is in [Ha?]. The strategy there is as follow : we write
fte = hcw. and we use the fact that &, converges weakly to ZJ%, the normalized

Hausdorff measure on Ji ([Bo,Zi]). Unfortunately (hc) [, 1 1s not an equicon-

tinuous family because %C(qbc(l)) tends to 4+co as ¢ grows to %. The difficulty is

overcome by showing that (%)66[607%[ actually is equicontinuous. Every weak limit

of fic, is then seen to be absolutely continuous with respect to ZJ%. The author then
uses Aaronson-Denker-Urbanski theorem [Aa,De,Ur| saying that there is only one
measure and that it satisfies (3.17).

In the purpose of being self contained we give another proof. It uses the same idea
as in [Do,Se,Zi]; we use a renormalization of P, which will appear to be uniformly
hyperbolic.

We denote by Cy the set of points in Jy with external angles between % and % and
by Cj, j > 1 the successive inverse images of Cp that are in the upper-half plane.
The associated Markov partition is then {C;, j > 0} U {C}, j > 1}. On each C;
or C’_] we replace P. by P2 sending C; into Cy. The advantage is that this new
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dynamical system is uniformly hyperbolic, the drawback being that the ”alphabet “
becomes infinite. But the results of Walters or Mauldin-Urbariski [Wa?], [Ma,Ur]
show that usual features go through in this case. In particular for every ¢ € [0, %]
there exists a unique invariant measure pf (r for renormalized) for the new dy-
namics which is equivalent to the conformal measure w., which is independent of
the renormalization. Moreover, we claim that (uf). € [0, 1[ weakly converges to
p . Indeed p = hlw,. and in this case, because of thermodynamic formalism, the
4

family (h%). € [0, ] is equicontinuous.

It remains to elucidate the link between pl and p.. We first observe that, if con-
tinuous on C'(JD), the linear form

pr— | Sne)(p)(2)dpi(e),
()

where N(z) =jifz € C; UC’_j, defines a Py-invariant measure. This form is indeed
continuous since

| 1Snoc@)@ldis) < el fy N )iz (e)
< Kllelloo | Y o(1+5)@c(C)
i>0
. 1
< Kllelleo Z W
Jj20
< Klfelleo-
Since d(c) > 1+ « for some o > 0 on [£, 1].
One can now conclude. If ¢ € C(JD) then
| el = fpSxe @)@
— fa]D) SN(x)(SD)('r)d/TZ(*E) = fa]D) S'Dd/j%

c—+1
This approach also allows us to have estimates on p.(C;) which will be used later.
What precedes indeed also proves that u. is uniformly equivalent to w, on Cy and
Lemma 3.7. There exist cg < %, A > 1 such that for all ¢ € [co, %] and alln > 1,

A
n2d(c)-1"

%63(0)‘%«3—*’”5 < Ji(Cale)) <

Notice that this approach gives a new proof in this particular case of the theorem

in [Aa,De,Ur].

Proof. By construction,
too
1e(Cr(e)) = D 1 (Cale)).
k=n

But %ﬁi < @, < Apl. On the other hand w, is normalized Hausdorff measure and
bounded distortion theorem implies

ST(Ca(e) < dinm (Cu(e) ) < AT (Ca(e))
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Using lemma 3.4 and remark 3.5 we get

Lde) #00 =1
c Y N TP E —_
1 € S ,Uc(cn(c)) S A kzd(c) !
ke k=n
And this leads to
L de)-% _anyes o ~ A
Tee e VEe < He(Cal0) € =t

4. PROOF OF THE MAIN THEOREM

First of all if we want to give an estimation of d’(¢) we need (see 2.8) an explicit
expression of 2 (log|2¢.).
Differentiating the following functional equation

(4.1) $e(2%) = 9e(2)* + ¢

we obtain, denoting ¢ for 2 (4.),

(4.2) de (%) = 260(2) de (2) + 1.
This can also be written

(43) be(2) = 57 L4 (=),

T 20c(2)  20c(2)
Reinjecting this formula one obtains
(4.4)
. B n—1 1 1
¢c () = - kz:% 20.(2)2¢c(22) - - 26.(22%)  20.(2)206(22) - - - 20(22" )

dc (%)

For ¢ < % the rest in (4.4) tends to 0 as n grows to infinity. So (ﬁc can be written
as an infinite sum

. oo 1
4.5 ¢ =— —.
( ) ¢ (Z) I§Q¢C(Z)2¢c(22)"'2¢c(z2 )
In particular we will use later the following functional equality
. 1 . n n 1
4.6 c . —— N 2 - -
(46) % () = amyiaey * ) L o)

Notice finally that

? de
4. — (log |2¢,]) = — 1.
(4.1 = (log 26c) = Re (¢)
In order to prove that the main contribution in fa]D) Re (%) dji. comes from

the integral near z., we must show that as long as we keep far from z., the integral
of the modulus is bounded by a constant independent of ¢y < ¢ < %.
Let N be an integer which will be chosen later. We define By as D\ My, where
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My = My U Mpy. Because of bounded distortion theorem and our estimation in
section 3.3 we know that there is A(N) > 0 independent of ¢ < ¢ < % such that

1 _AW)

(4.8) Yz € dD P (¢c(2)) € By = Py (6 (2))] = n?
and also

(4.9) VA C By He(A) < A(N)@(A)

We prove

Proposition 4.1. For all N € N there exists A(N) > 0 such that

Ve € [eo, 5] /BNI%IdﬁCSA(N)

c

Proof. Notice that |@.| > % so we just have to bound fBN | dc |dfic.

Let U, (n > 1) denotes the set of points in D that come back or arrived for the
first time in By after exactly n iterations of T : z +— 22,

Let Ng be an integer and set An, , = T=No(U,) N By. The set {ANgnln>1is a
Lie-partition of By . So we can write

+oo
(4.10) [ tecan=Y [ 161
BN n=1 AND,n

Now we study fAN | 6 |dfi. and using (4.6) with n 4+ Ny we get

/A 1

beldies [
Ao [PEFNY(60)

But if z € An,n then Pf(n+N°)(¢c(z)) € By so using (4.8) we obtain

o AN . n - ~
/A | b |d/uc < W/A | ¢ oT° +N0|diuc + (n + NO)NC(ANo,n)'
No,n Ng,n

| be 0T *No|dfi; + (n + No)fic(Ang.n)

We recall that fic is T-invariant, and also that 14, , < 1y o Ton+No 50 we have
AY)
(n 4+ Ng)?

We need an estimation of fic(An, n). But Ay, » can be written as

@iy [ Jeldns [ 16 a0+ M)A, )
AND,n Bn

No
ANon = U U XCntN+No—is
i=2 XelB;

where B; is the set of good cylinders of length i (see section 1). We use (4.9) in
order to obtain

No
(4.12) fie(Angn) SAN) DD Ge(XCrpntno—i)-
=2 XeDB;

We know that &, is a kind of quasi-Bernoulli measure on good cylinders. More
precisely there exists A > 1 independent of ¢ € [cg, %] such that :

%JC(X)LTC(Y) < Te(XY) < AT(X)@e(Y)
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for all good cylinders X. This leads to

No
fie(ANgn) S AN) Y &e(Crgngng—i) Y Te(X).
=2 XeDB;

But @e(Crengng—i) < W, and ZXeIB%, @e(X) < 1. So we have shown

that
~ No
ANy n) SAN)————.
Fie No, ) < A( )(n—i—N)zd(C)
This estimation in (4.11) gives

— A(N) / S n + No

¢ ldpe < ———=— ¢ |ldite + A(N)Ng———————.
/AND’n|¢ |lu _(n+N0)2 BN|¢ |lu ( ) 0(7’L—|—N)2d(c)

And with (4.10) we get

+00 Foo I
[ 1ot < A (;V i) 18147 8o 3 e+ 9NN 3
< 2 1o Fa M,
For@<N0§@+lweget
/BNMC |dﬁc§%.

We are now in position to give a proof theorem 1.1.

Proof. By (2.8) and (4.7) we know that

oy () (4
(4.13) d(c)_faD10g|2¢c|dﬁc/aDR ( ¢c) dfic.

Let N be an integer, we have

/aDRe (—Z—) dﬁCZ/MNRe (—Z—) dﬁc—/BN|£Z|dﬁc.

So using proposition 4.1 we get

éc o~ ¢.c ~
—— | dpec —— | dpic — A(N).
/a]D)Re ( ¢>c) ez MNRe( ¢>c) e = A)

We study fMN Re (—%) dic. We know that

b\ . R I 1 1\
i (‘E) d“C‘Z;V/cnRe (Z (P (6:(2) asc(z))d“c(z)'

This leads to

n=N k=1

1

n2d(c)
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1 ~
Z/n e PH () dfic(z).
But
NI p— ‘ = e | | o o)
S (PE) (¢e(2) T (PE) (¢e(2))
< A 0T ()| de 0T (2)].
Using the T-invariance we get
+oo +oo 1 N ) _ +oo 1
Z/ P n+1 PG | e @) SA(N)/BNIfbc Iducn;:vnz-

With proposition 4.1 this leads to
(4.14) Z /

Concerning fM Re (— %) dpi. we have

» Re (——) dfic > Z Z/ Re <m) dfic(z) — AM(N).

n=N k=1

dfic(z) < AN,

T aleae)

Chr

Now we fix N large enough so that |Arg (P¥) (¢.(2))] § % for all z € C,, with
n > N and k < n. Thanks to lemma 3.2 we know that it is possible and we obtain

Y

1 1 1
Yn >N Vk > n Vz e Cyp Re <W) TW

So we have shown that

¢C
o (£) > B EE L, oz -

n=N k=1

The estimation
n?

(4.15) V2€ O (B (0elD <AL=

which is a consequence of lemma 3.4, is true for n\/; < a, (e; = % —c).
Using (4.15) we write

/mne( )duc>>\22uc ( ’f)z—A<N>.

n=0k=1

W=

We know (see lemma 3.7) that f.(C,) > )\60(6)_ e~*Vee  This leads to

o

¢c (c)__ Vee e—)\n t. 1 ,
/aDRe 5 diic. > Xac - > k= A(N)

n=N k=1

\%

M3

v

| —
™
0&
Mh
=
ml

>

3
ﬁ
o

|
=
=
S’

Y%
|
é“
o
i
3
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Finally we obtain

S\ A
Re (=22 ) dp.> — 2 _\(N).
/aD ( o EEPEER
In particular d’(c) = +oo as ¢ = % and so if ¢ € [co, 1], d(c) < & and

Veelo ] (0>

In order to get the opposite inequality we note that

/aDRe (_%) e _/MN et /BN

Since the proposition 4.1 asserts that |fBN | is bounded by a constant A(N) which
only depends on N, we have

()

o
9.

9e

(4.16) -

dpi..

9

S/MN o

(4.17) djic + A(N).

c

For fMN we write

/MN dmzz/ Pok dﬂc+2/

n=N k=1
We use (4.14) and we obtain

(4.18) /MN dji. < Z Z/ Pok duc+)\(N).

n=N k=1
Note that bounded distortion theorem implies

1 - |(P<?(n_k))l(¢c(cn—k))| <\ diam Cp(c)
|(PEF)! (¢(Cn))l [(Pe") (6c(Co))l = " diam Cr_g(c)”

Using this inequality, the lemma 3.7 and inequality (4.18), (4.17) becomes
Qéc diam Cy, (¢)
——= | du| < A(N)+ A E E
/6D Re ( be a + n2d(c dlam Ck C

Let S = fN he1, So Z+°° Zk < and Ss = ET/LZ EZ:%, we study those

three pieces showing that they are all bounded by )\(% - c)d(c)_%.
< \/O;_ and k < n, lemma 3.4 implies

diam Cp(c) _\ (k 2.
diam Cg(c) — n

dri,.
e a

;
2 T

Chr

¢c

C
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So we have

a

Ve 1 n
2
1Sl < A E p2d(c)+1 Ek
niN k=1
oo
S A Z n2d(c)—2
n=N 5
S AE?(C)_E.

For n > T and 1 <k < T lemma 3.4 implies

diam Cu(e) _ 52, =anve,
diam Cg(c) —

So
400 e_)‘”\/a VEe

2
192 < Aee Z n2d(c)—1 Zk
n:\/o;_C k=1

+o0

1 1
< /\\/—a Z} n2d(c)-1
S AEg(C)_E-

Andfornz\/—aand\/—g_cgkgn,wehave

diam Cp(c)
diam Cg(c)
where X,, and X}, are real part respectively of Z,, € Cp,(c) and Zj € Ci(c). Bounded

distortion theorem and lemma 3.1 imply

(Xn — Xi) <=An—k)

< A2Xn-Xi)VE

and we obtain

+ o0 n
1 —Aln—k)\/cc
Sa] < A Y 2d(0)—1 Y eV
n:\/LE_C :\/E_C
+o0 1 v
—Ak+/e.
< A Z n2d(c)-1 E € Ve
n:\/‘i_c k=0

1 1
< )\\/—5 Z; n2d(e)—1
TL:\/_

gc

< )\ES(C)_%
We have shown
1 3
(4.19) d'(c) < A7 - )4e)=3,

To finish the proof it remains to see why inequality (4.19) is actually equivalent with
the same one with d(c¢) replaced by §. We would like to thank Pierrette Sentenac
for showing us the following proof.

Putting ¢ = 3 — c and y(t) = § — d(}
t — t~¥(1) is bounded at the origin. But we know that y(t) converges to 0 at 0, so

— 1), the question boils down to proving that
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y(t) < £ for ¢ less than some n > 0. Integrating the analogue of (4.19) for y we
then see that |y(t)| < K#°~!, ¢t < 5, and the result follows.
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