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Abstract: This article deals with a local improvement of domain decomposition methods

for 2-dimensional elliptic problems for which either the geometry or the domain decompo-

sition presents conical singularities. After explaining the main results of the theoretical

analysis carried out in [4], the numerical experiments presented in this article confirm the

optimality properties of the new interface conditions.
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1 Introduction

Domain decomposition algorithms are often introduced artificially in order to facilitate or

make possible large computations. Sometimes they occur in the original model with a natu-

ral piecewise presentation. These methods are now well understood in the case of a regular

domain decomposed into regular subdomains, see for example [2],[20] and [23]. A significant

challenge for the applications is a good understanding of the singular cases, for example

problems with corners in 2D. The general principle of those methods is as follows:

1. For an elliptic differential operator L, a domain Ω and a given right-hand side f ,
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consider the problem of finding u such that

{
Lu = f in Ω

+B.C. on ∂Ω .
(1)

2. When the domain Ω is large from the numerical complexity point of view or complex

from the modeling or geometrical point of view, it can be decomposed into subdomains,

Ω = ∪i=N
i=1 Ωi where each Ωi is an open subdomain of Ω.

3. The initial problem (1) is then approximated by an iterative process: the step n + 1 is

determined by solving





Lun+1
i = f in Ωi

Bijγiju
n+1
i = Bijγiju

n
j on ∂Ωi ∩ Ωj(i 6= j)

+B.C. on ∂Ωi ∩ ∂Ω
(2)

simultaneously in all subdomains Ωi, i = 1, ..., N .

The interface operators Bij can be differential or pseudodifferential operators applied to the

traces vectors γiju. The choice of the interface operators has a great influence on the speed

of convergence of the algorithm. Cases are known where for a given geometry the change of

Bij transforms the absence of convergence into the exact convergence after a finite number

of iterations. Within the framework of the regular interfaces, this analysis has already been

done theoretically and numerically. A good final choice actually relies on a compromise

between the theoretical optimality and the ease of implementation, see [12][20].

In the situation with geometrical singularities one can consider two situations:

1. The global domain Ω is regular and thus the global solution is a priori more regular than

the solution of the problem in every subdomain with only a piecewise-C1 boundary.

2. The global domain is polygonal and possibly non-convex. Thus the global solution

present singularities which may not appear in the solutions of the (possibly regular)

subdomain problems with selected interface conditions.

We study in this paper the influence of the transmission conditions on the Schwarz algorithm

for the operator η − ∆ with η > 0. Improved transmission conditions with second order

tangential derivative which were derived from an asymptotic analysis around the corner in

[4] of the Schwarz algorithm, are now numerically tested. The theoretical optimality of the
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asymptotic analysis relying on the matching of the main singularities within Kondratiev’s

theory is supported by the numerical computations.

The article is organized as follows: After the presentation of the domain decomposi-

tion method with the selected interface conditions at the corner (Section 2), we write its

variational formulation both at the continuous and discrete level in Section 3. In Subsec-

tion 3.4, the refined mesh around the corner is introduced in order to catch accurately the

corner singularities. In Section 4, several numerical tests carried out with the FreeFem++

software support the theoretical approach of [4]. In all cases, the minimal number of itera-

tions is achieved when the interface transmission conditions are chosen according to [4] and

additional tests are done in order to eliminate any irrelevant numerical artefact.

2 The interface conditions

We shall use polar coordinates (r, θ) ∈ R
∗
+ × [θ0, θ+] in order to develop the analysis of

this domain decomposition around the corner, r = 0, . We work in the sectorial domain

Ω = R
∗
+ × (θ0, θ+) ⊂ R

2, or Ω = R
2 = (R∗

+ × S1) ∪ {O} where S1 is the unit circle. On this

simple geometry, we consider the model boundary value problem (1) with L = η−∆, η > 0 .

For such a second order elliptic partial differential operators and when the interfaces are

regular, the practically used and efficient interface boundary conditions involve the second

order tangential derivative

Bij(
∂u

∂ν
, u) =

∂u

∂ν
+ βu − ∂

∂τ
(
α

2

∂

∂τ
)u

where ∂
∂ν

and ∂
∂τ

respectively denote the normal derivative and the tangential derivative.

When Ω = R
2 = Rx × Rτ is split into two half-planes, {x < 0} and {x > 0}, and for a

given bounded set of frequencies in the tangential variable with the size proportional to 1/h

when h is the characteristic mesh size of the numerical discretization, there is an optimal

choice of (α, β) for the convergence of the domain decomposition process (2). By introducing

the error at step n, en
i (x, τ) = un

i − u and its Fourier transform in the tangential variable

ên
i (x, k), the optimized coefficients αopt > 0 and βopt > 0 are determined according to [12]
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by the max-min problem

min
α,β∈R

max
|k|≤π

h

|ρ(k; α, β)| (3)

with %(k; α, β) =
ên+2

i (0, k)

ên
i (0, k)

=

(
−
√

η + k2 + β + αk2/2√
η + k2 + β + αk2/2

)2

Here our domain Ω = R
∗
+ × (θ0, θ+) or Ω = R

2, is decomposed into two sectors Ω1 =

R
∗
+ × (θ−, θ+) and Ω2 = R

∗
+ × (θ0, θ−) (with the convention θ0 = θ+ − 2π when Ω = R

2). In

polar coordinates, the previous boundary operator now takes the form

Bij(±
∂

r∂θ
u, u) = ± ∂

r∂θ
u + βoptu − αopt

2

∂2

∂r2
u . (4)

Following the approach presented in [4] (see also the discussion in [22]), the good interface

boundary conditions should have the form ± ∂
r∂θ

+ β±

r
− ∂

∂r
α±r

2
∂
∂r

around the corner r = 0 with

α± and β± constant. Far from the corner, the interface boundary must keep the optimal

form (4) of the case without corner. A synthesis of this is done by taking

Bij(±
∂

r∂θ
u, u) = ± ∂

r∂θ
u + β̃±(r)u − ∂

∂r

α̃±(r)

2

∂

∂r
u (5)

with α̃±(r) =

{
α±r if r ≤ αopt

α±

αopt if r ≥ αopt

α±

β̃±(r) =

{
β±

r
if r ≤ β±

βopt

βopt if r ≥ β±

βopt

(6)

with α± > 0 and β± ≥ 0 .

In the subdomain Ω1, one is led to consider the boundary value problem





(
η − 1

r2 ((r∂r)
2 + ∂2

θ )
)
un+1

1 (r, θ) = f
(
− 1

r
∂θ − β̃+(r) + 1

2
∂r(α̃+(r)∂r)

)
un+1

1 (r, θ+) =
(
− 1

r
∂θ − β̃+(r) + 1

2
∂r(α̃+(r)∂r)

)
un

2(r, θ+)
(
− 1

r
∂θ + β̃−(r) − 1

2
∂r(α̃−(r)∂r)

)
un+1

1 (r, θ−) =
(
− 1

r
∂θ + β̃−(r) − 1

2
∂r(α̃−(r)∂r)

)
un

2(r, θ−)

(7)

with the first boundary condition possibly replaced by the global boundary condition when

{θ = θ+} = ∂Ω ∩ Ω1 . A similar boundary value problem with possibly other pairs (α±, β±)

or with the global boundary conditions is written for any Ωj , j = 2, . . . , N .

3 Variational formulation

After ensuring an appropriate variational formulation of the continuous subdomain problem

(7) (with a straightforward adaptation to all possible combinations of boundary conditions),
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the discrete variational formulation is presented with a trick which avoids the computation

of discretized normal derivatives. Finally, a refined mesh process is introduced in order to

get an accurate numerical results around the corner.

3.1 Continuous problem

The variational space and the variational formulation of the subdomain problem (7) are first

specified in the continuous setting. Two cases are distinguished β± = 0 or β± 6= 0 with

different variational spaces. The case β± 6= 0 is not permitted when the general solution

of the complete problem does not vanish at r = 0. Nevertheless considering β± 6= 0 makes

sense for example when one puts homogeneous Dirichlet boundary conditions on the complete

problem with Ω = R
∗
+ × (θ0, θ+). This provides an additional flexibility in the choice of the

pairs (α±, β±) . 1

Let Ω1 be a sector of R
2, Ω1 = R

∗
+ × (θ−, θ+) and we note Ω1 its closure in R

2. The

spaces of regular test functions are C∞
0 (Ω1), which is the space of the restrictions to Ω1 of

C∞ functions with compact support in R
2, and C∞

0 (Ω1 \ {O}) the space of the elements of

C∞
0 (Ω1) whose support does not meet the corner O. These two spaces contain the space

C∞
0 (Ω1) of interior test functions and permit the analysis of weak formulations up to the

boundary (except at the corner).

The variational spaces in order to estimate all the terms involved in the variational

formulation of (7) are defined according to:

• G1 is the completion of C∞
0 (Ω1) for the norm ‖ ‖G1 given by

‖u‖2
G1 =

∫

Ω1

|u|2 (x) + |∇u|2 (x) dx +

∫

∂Ω1

|(r∂r)u|2
dr

r
.

This norm makes G1 a Hilbert space in which C∞
0 (Ω1) is dense.

• G1
0 is the completion of C∞

0 (Ω1 \ {O}) for the norm ‖ ‖G1
0

given by

‖u‖2
G1

0
=

∫

Ω1

|u|2 (x) + |∇u|2 (x) dx +

∫

∂Ω1

(|(r∂r)u|2 + |u|2) dr

r
,

It makes G1
0 a Hilbert space in which C∞

0 (Ω1 \ {O}) is dense.

1Practically, the case β± = 0 is implemented by keeping a constant coefficient β̃(r) = βopt along the
whole interface.
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The definition of these spaces leads moreover to the following properties:

• G1
0 ⊂ G1 ⊂ H1(Ω1).

• any u ∈ G1 (or u ∈ G1
0) admits a trace in H

1

2

loc(∂Ω1 \ { O}).

• The inclusion G1
0 ⊂ G1 is strict. In fact G1

0 does not even contain C∞
0 (Ω1) since

∫
∂Ω1

|u(r)|2 dr
r

= +∞ for a smooth function which does not vanish in r = 0.

On these spaces we consider the following weak formulation according to two cases:

1) β± = 0 :

∀v ∈ G1, aα±,0(u, v) = Lf,g−,g+
(v) (8)

with aα±,0(u, v) =

∫

Ω1

η u(x)v(x) + ∇u(x)∇v(x) dx +

∫ +∞

0

α+

2
(r∂r)u(r, θ+)(r∂r)v(r, θ+)

dr

r
+

∫ +∞

0

α−
2

(r∂r)u(r, θ−)(r∂r)v(r, θ−)
dr

r

and Lf,g−,g+
(v) =

∫

Ω1

f(x)v(x) dx −
∫ +∞

0

g+(r)v(r, θ+) dr +

∫ +∞

0

g−(r)v(r, θ−) dr .

2) β± 6= 0 :

∀v ∈ G1
0, aα±,β±

(u, v) = Lf,g−,g+
(v) (9)

with aα±,β±
(u, v) =

∫

Ω1

η u(x)v(x) + ∇u(x)∇v(x) dx +

∫ +∞

0

α+

2
(r∂r)u(r, θ+)(r∂r)v(r, θ+)

dr

r
+

∫ +∞

0

β+

r
u(r, θ+)v(r, θ+) dr

+

∫ +∞

0

α−
2

(r∂r)u(r, θ−)(r∂r)v(r, θ−)
dr

r
+

∫ +∞

0

β−
r

u(r, θ−)v(r, θ−) dr

and Lf,g−,g+
(v) =

∫

Ω1

f(x)v(x) dx −
∫ +∞

0

g+(r)v(r, θ+) dr +

∫ +∞

0

g−(r)v(r, θ−) dr .

3.2 Variational formulation of the algorithm

Owing to a reformulation of the algorithm the computation of the normal derivative involved

in these interface conditions is avoided. For the sake of simplicity we still consider a case

with two subdomains, but this procedure can be adapted to any general decomposition with

more than two subdomains.
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Assume now that Ω = R
∗
+× (θ0, θ+) is decomposed into two non overlapping subdomains

Ω1 = R
∗
+ × (θ−, θ+) and Ω2 = R

∗
+ × (θ0, θ−) with the interface {θ = θ−}. According to the

general presentation (2), we restrict our attention to the additive Schwarz method






(η − ∆)un+1
1 = f in Ω1

un+1
1 (r, θ+) = 0(

− 1
r
∂θ + β̃1(r) − ∂r(

α̃1(r)
2

∂r)
)
un+1

1 (r, θ−) =
(
− 1

r
∂θ + β̃1(r) − ∂r(

α̃1(r)
2

∂r)
)
un

2(r, θ−)
(10)






(η − ∆)un+1
2 = f in Ω2

un+1
2 (r, θ0) = 0(

1
r
∂θ + β̃2(r) − ∂r(

α̃2(r)
2

∂r)
)
un+1

2 (r, θ−) =
(

1
r
∂θ + β̃2(r) − ∂r(

α̃2(r)
2

∂r)
)
un

1 (r, θ−) .
(11)

Note that here no ± index appear because there is only one interface boundary at θ = θ−.

Meanwhile the indices 1 or 2 of the coefficients α̃ and β̃ refer to the subdomain Ω1 or Ω2.

A direct discretization would require the computation of the normal derivatives along the

interfaces {θ = θ−} in order to evaluate the right hand sides in the transmission conditions

of (10)-(11). This can be avoided by introducing two new variables,

λn
1 =

(
− 1

r
∂θ + β̃1(r) − ∂r(

α̃1(r)
2

∂r)
)
un

2 (., θ−),

λn
2 =

(
1
r
∂θ + β̃2(r) − ∂r(

α̃2(r)
2

∂r)
)
un

1 (., θ−).

The algorithm then becomes






(η − ∆)un+1
1 = f in Ω1

un+1
1 (r, θ+) = 0(

− 1
r
∂θ + β̃1(r) − ∂r(

α̃1(r)
2

∂r)
)
un+1

1 (r, θ−) = λn
1 (r)

(η − ∆)un+1
2 = f in Ω2

un+1
2 (r, θ0) = 0(

1
r
∂θ + β̃2(r) − ∂r(

α̃2(r)
2

∂r)
)
un+1

2 (r, θ−) = λn
2 (r) .

and
λn+1

1 (r) = −λn
2 (r) +

(
β̃1(r) + β̃2(r) − ∂r(

[α̃1(r)+α̃2(r)]
2

∂r)
)
un+1

2 (r, θ−)

λn+1
2 (r) = −λn

1 (r) +
(
β̃1(r) + β̃2(r) − ∂r(

[α̃1(r)+α̃2(r)]
2

∂r)
)
un+1

1 (r, θ−)
(12)

3.3 Discrete problem

This subsection is concerned with the finite element implementation of the interface condi-

tions along the interface. The numerical computations with the FreeFem++ software consist

in introducing the problem to be solved in each subdomain with its weak formulation. The
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variational formulation of the problem for each subdomain with interface conditions (5) is

given by

∫

Ωi

η un+1
i vi +

∫

Ωi

∇un+1
i ∇vi +

∫ ∞

0

β̃i(r)(u
n+1
i vi)(r, θ−) +

∫ ∞

0

α̃i(r)

2
(∂ru

n+1
i ∂rvi)(r, θ−)

=

∫

Ωi

fvi +

∫ ∞

0

λn
i (r)vi(r, θ−) ; i ∈ {1, 2} .

Formula (12) is also introduced in a weak form. All variational formulations are discretized

by a P1-Lagrange finite element method. This leads to a matrix form of the algorithm:

K̃1u
n+1
1 = f + BT

1 λn
1

K̃2u
n+1
2 = f + BT

2 λn
2

MΓλn+1
1 = −MΓλn

2 + (Mβ̃1,Γ + Mβ̃2,Γ + Kα̃1,Γ + Kα̃2,Γ)B2u
n+1
2

MΓλn+1
2 = −MΓλn

1 + (Mβ̃1,Γ + Mβ̃2,Γ + Kα̃1,Γ + Kα̃2,Γ)B1u
n+1
1

(13)

where λ1, λ2, u1 and u2 denote the degrees of freedom of the finite element functions approx-

imating the solution of the continuous problem, with the same names. The matrices B1 and

B2 are the restriction operators (entries are one or zero) corresponding to trace operators of

the domains Ω1 and Ω2 along the interface {θ = θ−}. The matrices K̃1 and K̃2 arise from

the discretization of the Laplace subproblems with the interface conditions (5),

K̃j = ηMj + Kj + BT
j (Mβ̃j ,Γ + Kα̃j ,Γ)Bj , ∀j = 1, 2. (14)

Here K1 and K2 are the subdomain stiffness matrices, M1 and M2 are the subdomain mass

matrices, MΓ and Mβ̃j ,Γ are the interface mass matrices, and Kα̃j ,Γ is the interface stiffness

matrix,

(MΓ)ij =

∫ ∞

0

(φiφj)(r, θ−) dr,

(Mβ̃k,Γ)ij =

∫ ∞

0

β̃k(r)(φiφj)(r, θ−) dr,

(Kα̃k,Γ)ij =

∫ ∞

0

α̃k(r)

2
(∂rφi∂rφj)(r, θ−) dr.

The functions φi and φj are the basis functions associated with the degrees of freedom i and

j along the interface {θ = θ−}.
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3.4 Refined mesh around the corner

The effect of singularities associated with corners on domain decomposition methods occur

when the discretization is fine enough. In order to show such effects without increasing

excessively the numerical cost, a refinement of the mesh around the corner associated with

the natural singularities of the global boundary value problem in Ω is introduced.

The specific mesh refinement which will be used is the one provided by [24] for the

Dirichlet or Neumann problem on Ω = R
∗
+ × (θ0, θ+). Set ω = θ+ − θ0 and assume that the

right-hand side f of the problem

(η − ∆)u = f in Ω, u = 0 on ∂Ω (15)

lies in the Sobolev space Hm(Ω), m ∈ N. The theoretical result of [24] say that the solution

u belongs to the weighted Sobolev space

W m,2
Ψ = {v ∈ D′(Ω) such that Ψ∂jv ∈ L2(Ω), 0 ≤ |j| ≤ m},

where the weight Ψ(x) equals |x|γ = rγ in the vicinity of the corner r = 0 and constant

outside with:
γ = 0 for ω < π

m+1

γ > m + 1 − π
ω

if ω ≥ π
m+1

.

This result also holds for the Neumann problem because Kondratiev theory provides the

same singularity exponents nπ/ω, n ∈ N
∗ for the Dirichlet and Neumann problem. With

such a choice of γ, a triangulation τh with generic mesh size h > 0 has to follow the next

refinement rule in order to fit with the W m,2
Ψ regularity

• If K is a triangle of τh which does not touch r = 0, its diameter hK satisfy the inequality

hK ≤ C h (infK Ψ)
1

m+1 ,

• If K is a triangle with a corner at r = 0, then hK ≤ Ch
m+1

m+1−γ .

In the discretization for the Dirichlet and Neumann problem on Ω without any domain

decomposition, such a refined mesh provides a good error control, similar to the one obtained

for a uniform grid when there is no corner (see [24]). Although some numerical cases are

presented with an interior artificial corner in Ω = (R∗
+ × S1) ∪ {O}, (ω = 2π), the same
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simple refinement rule will be followed in all cases in order to have an accurate presentation

of the singularity effects in domain decomposition. While doing so, it will be checked that

the refinement process does not bring any other artificial numerical effects.

4 Numerical Experiments

4.1 Generalities

The theoretical approach presented in [4] consisted in determining the “best pairs” (α±, β±)

from necessary conditions coming from an asymptotic analysis and then hope that in practice

this choice improves significantly the speed of convergence. After recalling the results of this

theoretical optimization, we present the numerical tests. The optimal choice of the pairs

(α±, β±) is done for every subdomain Ωj , j = 1, . . . , N , by matching the singularities of the

subdomain problem with well prepared data, which means with the expected singularities

of the global problem in Ω. We already know from the theoretical analysis that two ways

have to be considered for every subdomain Ωj , j = 1, . . . , N :

1. choose the coefficients (α±, β±) so that the first artificial singularity is canceled for well

prepared data;

2. choose the pairs (α±, β±) so that the first artificial singularity has the highest possible

exponent.

It is also known that the first approach does not admit a solution in all cases, depending on

the total angle θ+ − θ0 of Ω and on the angle of the subdomain Ωj . The second approach

which will also be tested when necessary, is less efficient in agreement with the theoretical

prediction.

Two possible types of corners, generated by the domain decomposition methods, were

already mentioned in Subsection 3.1: There are corners which are in the interior of the global

domain and other corners which are on the edge of the global domain. The treatment of

these two categories of corners is slightly different and depends also on the type of boundary

condition. For the corners in the interior of the global domain or on the boundary of the

global domain with Neumann condition the coefficient β± has to be 0 in order to make

possible a non vanishing value u(O) 6= 0. Meanwhile β± 6= 0 is possible when the corner is

11



on the edge of the global domain with Dirichlet condition. Both cases will be presented in

our numerical results.

When there are two coefficients, i.e. β± 6= 0, a first relation between them is associated

with the mesh discretization

min

{
αopt

α±
,

β±
βopt

}
= Φ(h) (16)

where h is the general mesh size of the discretization and the length Φ(h) corresponds to the

size of 3 possibly refined meshes. This equation ensures that the modification around the

corner of the interface boundary conditions is numerically effective by involving a non zero

number of meshes.

In our comparison of numerical methods, we shall use the terminology

1. CICC for the interface conditions (4) with constant coefficients (αopt, βopt) up to the

corner.

2. COC for the new interface condition (5)(6) with optimized coefficients at the corner

(α±, β±).

Unlike the theoretical analysis and presentation, the domain Ω is bounded and will be

specified in every case. This global domain Ω will be split into two or three subdomains.

The convergence will be tested and the logarithmic convergence curve will be plotted with

the norm

|e|1 =
(∫

Ω

|∇e|2(x)dx
)1/2

but the 3D plot of the error |e(x)| will be presented with a reference to the L∞-norm

|e|∞ = ‖e‖L∞(Ω) .

The right-hand side f is taken constant and equal to 1 in the whole domain Ω. It is used

only at the initialization step: The starting subdomain solutions u0
i are computed by solving

the subdomain problems like (10) and (11) with vanishing right-hand sides in the boundary

conditions.

Practically the error function en at step n is computed as uN − un where un is the result

after n iterations of the domain decomposition algorithm and N is large enough so that uN

is much closer to the (discrete) solution u∞ than the numerical tolerance ε = 10−6.
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Finally all our numerical computations were done with the free finite element software

FreeFem++ [9].

4.2 The L-shaped domain with Dirichlet boundary condition

We consider here the simple case of an L-shaped domain with θ0 = −3π
2

, θ+ = 0, θ− ∈

(−π,−π/2). Of course a numerical treatment requires a bounded domain Ω. The L-shaped

domain Ω is thus made with two rectangles adjacent to the quarter of a disc and Dirichlet

boundary conditions are set on ∂Ω. This shape was chosen in order to vary the interface

angle θ− ∈ (−π,−π/2) without changing the nature of the new artificial corner opposite to

the corner r = 0 of interest. Here only the case θ− = −3π/4 will be presented with other

more relevant discussions about the numerical parameters.

Consider the homogeneous Dirichlet problem

(η − ∆)u = f u
∣∣
∂Ω

= 0 . (17)

The domain Ω ⊂ R
∗
+ × (θ0, θ+) in polar coordinates is decomposed into

Ω1 = Ω ∩
(
R

∗
+ × (θ−, θ+)

)
and Ω2 = Ω ∩

(
R

∗
+ × (θ0, θ−)

)
,

with θ0 < θ− < θ+. The boundary problem solved by the error en+1
1 = un+1

1 − u reads






(
η − 1

r2 ((r∂r)
2 + ∂2

θ )
)
en+1
1 (r, θ) = 0 in Ω1

en+1
1

∣∣
∂Ω∩∂Ω1

= 0(
− 1

r
∂θ + β̃−(r) − 1

2
∂r(α̃−(r)∂r)

)
en+1
1 (r, θ−) = g−(r)

(18)

with g−(r) =
(
− 1

r
∂θ + β̃−(r) − 1

2
∂r(α̃−(r)∂r)

)
en
2 (r, θ−). The boundary {θ = θ+} ∩ Ω is

included here in ∂Ω ∩ ∂Ω1 and a similar boundary value problem is written for Ω2.

For general angles, 0 < θ− − θ0 < θ+ − θ0 < 2π, the theoretical analysis of [4] provides the

relation for the optimal pair (α−, β−)

−β− +
α−
2x2

0

=
1

x0 tan(πx
x0

)
, x0 =

θ+ − θ0

π
, x =

θ+ − θ−
π

. (19)

Here with θ+ = 0, θ0 = −3π/2 and θ− = −3π/4 it becomes

β−
α−

=
2

9
. (20)
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Keep in mind that this relationship has to be combined with (16) which ensures that the

coefficients (α−, β−) are numerically effective on 3 (for these tests) meshes.

The optimality of the relationship (20) is checked numerically while numerical tests with

three types of grids show :

1. The artificial singularities have a bad effect on the algorithm only for accurate calcu-

lations, i.e. after a certain number of iterations and with a refined mesh around the

corner.

2. The mesh refinement does not induce any other artificial numerical effect.

4.2.1 Refined mesh around the corner

We use a uniform grid everywhere except at the corner r = 0. The right-hand side Φ(h) in

the matching relationship (16) corresponds to three refined meshes of the discretized domain.

The domain decomposition algorithm is tested with various ratios β−/α− in order to check

that (20) is optimal (see Table 1). We recall the abbreviation COC for the optimal pair

(α−, β−) and a comparison will be made with the CICC case (constant coefficients along the

interface). With CICC, 15 iterations are necessary in order to reach |en|1 ≤ 10−6 instead of

9 with COC and the curve of log10 |en|1 with respect to n in Figure 1 shows the improvement

brought by COC.

β−

α−
0.05 0.1 2/9 1 2 5 10

Iteration count 16 13 9 12 24 59 116

Table 1: Refined mesh around the corner: Number of iterations for different values of β−

α−
,

with |e|1 < 10−6.

The 3D plots of the error en(x) is even more convincing. The Figures 2,. . . ,5 show that

the error has a very stiff peak in the vicinity of the corner if nothing is done at the corner

(CICC). Meanwhile, the error is quite uniformly spread with the COC method (see Figures

6,. . . ,9).

4.2.2 Case without refinement

The previous effects cannot be distinguished when the grid is too coarse. With a uniform

grid with the same interior mesh size h > 0 as before and with Φ(h) = 3h in (16), 9 iterations
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Figure 1: L-shaped domain with refinement at the cor-
ner: COC(solid line), CICC (dotted line)

are necessary with COC in order to reach |en|1 ≤ 10−6 while only 10 iterations suffices with

CICC.

The Figures 10 and 11 show the error |e7
1(x)| respectively with CICC and COC, without

a difference comparable to the one in 4.2.1.

4.2.3 Case with refinement at the corner and in the middle of the edge

This last test ensures that the phenomenon observed in 4.2.1 is not an artefact of the mesh

refinement around the corner. The grid is refined at the corner and in the middle of the edge

without showing any special behaviour due to this additional refinement.

Like in case 4.2.1, the relation β−

α−
= 2

9
is optimal according to the next table. Moreover,

β−

α−
0.05 0.1 2/9 1 2 5 10

Iteration count 15 13 9 12 23 56 111

Table 2: L-shaped domain with refinement at the corner and the edge, with |e|1 < 10−6.

with CICC, 14 iterations are necessary instead of 9 with COC .

The Figures 12 and 13 presents the error |e1(x)| for CICC while the Figures 14 and 15

corresponds to COC. No important difference with case 4.2.1 arises.

4.3 Interior artificial corner

The domain Ω is the unit disc of R
2, Ω = {(r cos(θ), r sin(θ)), r ∈ [0, 1], θ ∈ [0, 2π)} and we

consider the homogeneous Dirichlet problem

(η − ∆)u = f in Ω, u = 0 on ∂Ω . (21)
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The domain Ω in polar coordinates is decomposed into two or three sectorial subdomains

with vertex at r = 0. Again, we focus on Ω1 = [0, 1] × (θ−, θ+) while the other subdomains

Ω2 and possibly Ω3 are treated similarly. The boundary problem (21) with the selected

interface conditions (5) solved by the error en+1
1 = un+1

1 − u reads





(
η − 1

r2 ((r∂r)
2 + ∂2

θ )
)
en+1
1 (r, θ) = 0 in Ω1

en+1
1

∣∣
∂Ω∩∂Ω1

= 0(
1
r
∂θ + 1

2
∂r(α̃−(r)∂r)

)
en+1
1 (r, θ−) = g−(r)

(
1
r
∂θ − 1

2
∂r(α̃+(r)∂r)

)
en+1
1 (r, θ+) = g+(r)

(22)

where g−(r) =
(

1
r
∂θ+

1
2
∂r(α̃−(r)∂r)

)
en
2 (r, θ−+2π) and g+(r) =

(
1
r
∂θ−1

2
∂r(α̃+(r)∂r)

)
en
2 (r, θ+).

Here the equality β± = 0 is necessary because the solution u has in general a non zero value

at r = 0 (see Subsection 3.1). Only the coefficients α± can be used and the equation (16) is

not necessary. The condition αopt/α± ≥ Φ(h) is checked afterwards.

The theoretical analysis of [4] says that the optimal choice of the pair (α+, α−) is given by

α+ = α− = α1 =
2

tan(πx(Ω1)
2

)
, x(Ω1) =

θ+ − θ−
π

. (23)

Hence the coefficient α± = α1 is non negative only when the sector Ω1 is convex

θ+ − θ− ∈ (0, π), x(Ω1) ∈ (0, 1) .

When the disc Ω is decomposed into 2 subdomains, one of them must be non convex. As-

sume x(Ω1) < 1 and x(Ω2) > 1. The first strategy can be applied in Ω1 with the optimal

choice α± = α1 while the coefficient α± = 0 or chosen very small in Ω2 pushes the first arti-

ficial singularity as far as possible (second strategy). With this choice the expansion of the

artificial singularities around r = 0 has the order O(rmin(t2(Ω1),t1(Ω2))) where the exponents

tj(Ωi) satisfy 0 < t1(Ωi) < t2(Ωj).

Convex sectors can be obtained with a decomposition into three convex subdomains. Then

the optimal choice α± = αi can be done in every subdomain so that the first artificial sin-

gularity O(rmin(t2(Ω1),t2(Ω2),t2(Ω3))) suggests a better convergence (see [4]).

Both cases are numerically tested below. For all the presented numerical results it was

checked that the matching radius αopt

αi
in domain Ωi was larger than three meshes of the

possibly refined grid.
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4.3.1 Decomposition into three subdomains

Here the disc is decomposed into three isometric sectors with angle θ+ − θ− = 2π
3

so that the

optimal coefficients equal

α1 = α2 = α3 =
2

tanπ/3
=

2√
3

.

With a refined mesh around the corner, the optimality of the coefficient is confirmed by the

next Table. In this configuration the COC requires 11 iterations while 20 iterations are

α tan(πx
2

) 30 20 2 0.15 0.1 0.02
Iteration count 16 14 11 34 40 62

Table 3: Disc decomposed into 3 subdomains with refinement at the corner, |e|1 < 10−6.

necessary with the CICC, see Figure 16.

The 3D plots of the error after 10 iterations shows again a stiff peak for the CICC

method and a uniformly spread error for the COC method (see Figures 17 and 18)

Like for the L-shaped domain, some computations were done with a uniform grid and an

artificial refinement in the middle of the edge.

1. Uniform grid: The COC and CICC both require 11 iterations in order to get |e|1 <

10−6 (3D plots in Figures 19 and 20)

2. Refined mesh in the edge and at the corner: With CICC 15 iterations are necessary

instead of 12 with COC, for |e|1 < 10−6 (3D plots in Figures 21 and 22).

4.3.2 Decomposition into two subdomains

Here the disc is decomposed into two sectors with angles 2π
3

and 4π
3

. In the non convex

subdomain Ω2 with angle 4π
3

the choice of α± = 0 is done by taking α̃±(r) proportional to

r2 on 5 meshes of the grid close to the corner. In the convex subdomain Ω1 with angle 2π
3

,

we take α1 = 2√
3

and we checked that the matching point was further than 4 meshes.

The comparison between the CICC and COC methods gave:

In the decomposition into two subdomains, the improvement of the convergence is not

so obvious. This method is less efficient than the decomposition into three convex sectors.

Only a slight improvement is brought by the COC method as shown also in the 3D plots of

|e(x)| in Figures 23 and 24.
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COC CICC
Iteration count 20 22

Table 4: Disc with two subdomains. Refinement at the corner. |e|1 < 10−6.

COC CICC
Iteration count 20 21

Table 5: Disc with two subdomains. Refinement at the corner and in the edge. |e|1 < 10−6.

4.4 The Neumann problem

Here we consider the sectorial domain Ω = {(r cos(θ), r sin(θ)), r > 0, θ0 < θ < θ+}, with

θ+ − θ0 ∈ (0, 2π). Consider the mixed problem

(η − ∆)u = f ∂nu
∣∣
θ=θ0

≡ 0 ∂nu
∣∣
θ=θ+

≡ 0 u
∣∣
r=1

≡ 0 . (24)

The decomposition is made into 2 or 3 subdomains and we write Ω1 =
(
R

∗
+ × (θ−, θ+)

)
∩Ω .

In order to have a well posed problem in Ω1 and Ω2 which permits non null values at the

corner, we must take β− = 0 like in the interior corner problem (with the same consequences

for the numerical implementations).

The boundary problem (24) in Ω1 with the interface conditions (5) solved by the error

en+1
1 = un+1

1 − u reads





(
η − 1

r2 ((r∂r)
2 + ∂2

θ )
)
en+1
1 (r, θ) = 0 in Ω1

en+1
1 (1, θ) = 0

∂θe
n+1
1 (r, θ+) = 0(

1
r
∂θ + 1

2
∂r(α̃−(r)∂r)

)
en+1
1 (r, θ−) = g−(r)

(25)

where g−(r) =
(

1
r
∂θ + 1

2
∂r(α̃−(r)∂r)

)
en
2 (r, θ−).

In the subdomain Ω1 the optimal value of α− is given by

α− = −2x0 tan(
πx

x0
) , x =

θ+ − θ−
π

, x0 =
θ+ − θ0

π
. (26)

In our case with x0 = 3
2

it can be non negative only with the condition

x0

2
< x ≤ x0, i.e. θ+ − θ− >

3π

4

COC CICC
Iteration count 13 13

Table 6: Disc with two subdomains. Uniform grid. |e|1 < 10−6.
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which plays the same role as the convexity condition in the interior corner problem. The

two strategies will be tested:

1. Decomposition into two subdomains with θ+ − θ− > 3π/4. In the second subdomain

Ω2 with angle less than 3π/4, the choice α− = 0 (implemented with an O(r2) coefficient

close to the corner) pushes the exponent t1(Ω2) as far as possible.

2. Decomposition into three subdomains. The choice α− = 0 has to be done in Ω1 and a

symmetric choice has to be done in Ω3. The case of the middle subdomain Ω2 will be

discussed further.

4.4.1 Decomposition into two subdomains

The opening angle of Ω1 is 6π
5

> 3π
4

and the one of Ω2 equals 3π
10

< 3π
4

. The comparison of

the COC and CICC methods for the three types of grids is given in the next tables.

COC CICC
Iteration count 13 26

Table 7: L-shaped with two subdomains. Refinement at the corner. |e|1 < 10−6.

COC CICC
Iteration count 14 26

Table 8: L-shaped with two subdomains. Refinement at the corner and in the edge. |e|1 <
10−6.

COC CICC
Iteration count 14 14

Table 9: L-shaped with two subdomains. Uniform grid. |e|1 < 10−6.

The convergence curve with a refined mesh at the corner is shown in Figure 25.

The 3D plots of the error |e(x)| with a refined mesh around the corner in Figures 26 and

27 also show that this approach kills the singularity in Ω1.

4.4.2 Decomposition into three subdomains

The three domains are chosen with the same opening angle π/2. For the subdomains Ω1

and Ω3 the choice α± = 0 is implemented by taking α̃±(r) proportional to r2 on 5 meshes of

the grid close to the corner.
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The middle subdomain Ω2 with two interfaces, has to be treated like in the interior corner

problem. Nevertheless the well-prepared data associated with the global problem in Ω lead

to the impossibility of the optimization of α±(Ω2). The choice α± = 0 implemented by

truncation has to be done also in Ω2.

The computations were done with a refined mesh around the corner and also with an

additional refinement in the middle of the edge. With CICC 13 iterations were necessary

in order to get an error |e|1 smaller than 10−6, instead of 12 iterations with COC, in both

cases.

With refinement only at the corner a slight improvement appears on the 3D plot of |e(x)|

for the COC method (no peak in Figure 29 in comparison with Figure 28).
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5 Conclusion

All the numerical experiments show that the implementation of COC methods improves the

behaviour of the error en in the decomposition algorithms. Even when the optimized coeffi-

cients do not exist and when the second less efficient strategy (of pushing the first artificial

singularity as far as possible) has to be chosen, the symptomatic peak of the error function

|e(x)| is reduced. The effect on the convergence curve is significant when the optimized

pairs (α±, β±) exist and can be implemented. The numerical experiments where the ratio

β±

α±
is changed also show that this choice is really the optimal one numerically. Finally the

conclusion of the experiments on the interior artificial corner and on the Neumann problem

in the L-shaped sector show that the more the first strategy (with optimal coefficients) is

applied, the better the convergence is.
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Figure 2: Error |e2
1(x)| with CICC after

two iterations, with |e2|∞ = 7.6 × 10−4.
Figure 3: Error |e4

1(x)| with CICC after
four iterations, with |e4|∞ = 1.9 × 10−4.

Figure 4: Error |e6
1(x)| with CICC after

six iterations, with |e6|∞ = 5.65 × 10−5.
Figure 5: Error |e8

1(x)| with CICC after
eight iterations, with |e8|∞ = 1.66×10−5.
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Figure 6: Error |e2
1(x)| with COC after

two iterations, with |e2|∞ = 10−3.
Figure 7: Error |e4

1(x)| with COC after
four iterations, with |e4|∞ = 6 × 10−5.

Figure 8: Error |e6
1(x)| with COC after

six iterations, with |e6|∞ = 5.2 × 10−6.
Figure 9: Error |e8

1(x)| with COC after
eight iterations, with |e8|∞ = 5.49×10−7.
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Figure 10: L-shaped domain without refine-
ment, Error |e7

1(x)| with CICC after seven it-
erations with |e7|∞ = 2.85 × 10−6.

Figure 11: L-shaped domain without refine-
ment, Error |e7

1(x)| with COC after seven it-
erations with |e7|∞ = 1.72 × 10−6.

Figure 12: L-shaped domain, refinement at
the corner and in the edge, Error |e5

1(x)|
with CICC after five iterations, with |e5|∞ =
1.55 × 10−4 .

Figure 13: L-shaped domain, refinement at
the corner and in the edge, Error |e9

1(x)|
with CICC after nine iterations with |e9|∞ =
1.18 × 10−5.
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Figure 14: L-shaped domain, refinement at
the corner and in the edge, Error |e5

1(x)| with
COC after five iterations, with |e5|∞ = 6.50×
10−5 .

Figure 15: L-shaped domain, refinement at
the corner and in the edge, Error |e9

1(x)| with
COC after nine iterations with |e9|∞ = 1.33×
10−6.
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Figure 16: Disc decomposed into three subdomains with
refinement at the corner: COC(solid line), CICC
(dotted line) .
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Figure 17: Disc decomposed into 3 subdo-
mains. Refinement at the corner. Error
|e10

1 (x)| with CICC after ten iterations, with
|e10|∞ = 1.08 × 10−5.

Figure 18: Disc decomposed into 3 subdo-
mains. Refinement at the corner. Error
|e10

1 (x)| with COC after ten iterations, with
|e10|∞ = 4.22 × 10−7.

Figure 19: Disc decomposed into 3 subdo-
mains. Uniform grid. Error |e11

1 (x)| with
CICC after eleven iteration with |e11|∞ =
2.06 × 10−6.

Figure 20: Disc decomposed into 3 subdo-
mains. Uniform grid. Error |e11

1 (x)| with
COC after eleven iteration with |e11|∞ =
1.36 × 10−6.

29



Figure 21: Disc decomposed into 3 subdo-
mains. Refined mesh at the corner and in the
edge. Error |e11

1 (x)| with CICC after 11 iter-
ations with |e11|∞ = 3.57 × 10−6.

Figure 22: Disc decomposed into 3 subdo-
mains. Refined mesh at the corner and in the
edge. Error |e11

1 (x)| with COC after 11 itera-
tions with |e11|∞ = 5.6 × 10−7.

Figure 23: Disk with two subdomains.
Refined mesh. Error |e20

1 (x)| with CICC
after twenty iterations with |e20|∞ =
1.25 × 10−6.

Figure 24: Disk with two subdomains. Refined
mesh. Error |e20

1 (x)| with COC after twenty
iterations with |e20|∞ = 6.64 × 10−7.
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Figure 25: Neumann problem with refinement at the
corner: COC(solid line), CICC (dotted line).

Figure 26: Refined mesh at the corner.
Error |e13

1 (x)| with CICC after 13 itera-
tions, with |e13|∞ = 2.13 × 10−5.

Figure 27: Refined mesh at the corner.
Error |e13

1 (x)| with COC after 13 itera-
tions, with |e13|∞ = 2.47 × 10−7.
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Figure 28: L-shaped decomposed into 3
subdomains. Refinement at the corner.
Error |e12

1 (x)| with CICC after 12 itera-
tions, with |e12|∞ = 1.51 × 10−6.

Figure 29: L-shaped decomposed into 3
subdomains. Refinement at the corner.
Error |e12

1 (x)| with COC after 12 itera-
tions, with |e12|∞ = 7.88 × 10−7.
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