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ABSTRACT 

3.8 million compounds from structural databases of 32 providers were gathered and stored in 

a single chemical database. Duplicates are removed using the IUPAC International Chemical 

Identifier. After this, 2.6 million compounds remain. Each database and the final one were 

studied in term of uniqueness, diversity, frameworks, „drug-like‟ and „lead-like‟ properties. 

This study also shows that there are more than 87 000 frameworks in the database. It contains 

2.1 million „drug-like‟ molecules among which, more than one million are „lead-like‟. This 

study has been carried out using „ScreeningAssistant‟, a software dedicated to chemical 

databases management and screening sets generation. Compounds are stored in a MySQL 

database and all the operations on this database are carried out by Java code. The druglikeness 

and leadlikeness are estimated with „in-house‟ scores using functions to estimate convenience 

to properties; unicity using the InChI code and diversity using molecular frameworks and 

fingerprints. The software has been conceived in order to facilitate the update of the database. 

„ScreeningAssistant‟ is freely available under the GPL license.   

 

Keywords: chemical databases, chemoinformatics, diversity, drug-like, lead-like, screening. 

 

ABBREVIATIONS 

HBA: H Bond Acceptor. 

HBD: H Bond Donor. 

HTS: High-Throughput Screening. 

InChI: IUPAC International Chemical Identifier. 

JNI: Java Native Interface. 

MW: Molecular Weight. 
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RO5: rule-of-five. 

SCA: Stochastic Clustering Analysis. 

SSSR: Smallest Set of Smallest Rings. 
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INTRODUCTION 

For a project of virtual or real screening, choosing the set of molecules that are to be tested is 

a really important and difficult step. It must be as representative as possible of the potential 

ligands of the studied biological target. To perform these operations in an efficient way, the 

medicinal chemist needs: 

- a suitable software. However, as far as we know, there is no affordable structure data 

management system which allows the end-user to easily manage a database of 

millions of screening compounds coming from various providers. This tool must store 

only unique structures (and in consequence it has to use an efficient unique code for 

structures) but also keep information of all the providers of a given structure. 

Furthermore the software must be able to assist the user to select compounds. Its 

function is to analyze the compounds in the database in terms of physicochemical 

properties, druglikeness, leadlikeness and diversity. 

- a good knowledge of the features of the commercially available chemical libraries. 

Except „Big Pharmas‟, companies usually prefer to buy compounds to a very limited 

number of providers for convenience and also to get a discount on those compounds. 

In consequence, a choice must be done among numerous providers. Druglikeness and 

diversity of a database are the two main features generally considered (even if a 

database with a low diversity and few „drug-like‟ compounds can be a good database 

when it is focalized on a particular target). Despite the relevance of such information, 

there is a lack of exhaustive commercially available chemical libraries comparison in 

the literature [1]. Even if some analysis have already been published, they are either 

limited to a small number of providers or do not compare both „drug-like‟ properties 

and diversity [1, 2, 3, 4, 5, 6].  
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The paper will discuss how to manage and profile a large size of compound library with 

reasonable cost, and how to distinguish „drug-like‟ and „lead-like‟ compounds from a huge 

chemical space. A program has been developed for these applications, and is publicly 

available [7]. 

 

MATERIALS AND METHODS 

The database server MySQL is used on a Linux PC. All the code is programmed in Java 

except one method that is coded in C using Java Native Interface (JNI) which allows 

launching batch jobs using Windows. Operations on chemical structures and descriptors 

calculation were carried out with the JOELib [8] Java library and Java code. The structural 

data (SDF, SMILES, InChI...) are separated from descriptors in order to speed up SQL 

queries on descriptors. The 3D structures are automatically generated in MOL2 format using 

Corina [9]. All structures are normalized by Corina software. 

 

PREPROCESS 

Each imported compound has, if necessary, its counter-ion removed (only the largest 

contiguous fragment is kept) and is protonated at physiological pH using JOELib. This new 

structure is added if not already present in the database. To characterize the chemical 

structures we chose to use the IUPAC International Chemical Identifier (InChI) [10]. This 

new unique code has been used recently in several projects [11, 12, 13]. InChI is free and 

conceived in the perspective to become a standard unique code for molecules. Structures are 

represented by a code made of one text line taking into account sp2 and sp3 stereochemistries, 

isotopes and tautomerism. It has very good functionalities compared to other softwares which 

use „unique‟ SMILES approaches. A comparison of the InChI, MOE [14], OEChem [15] and 
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Marvin [16] functionalities is available in Table 1. It is the only algorithm in our tests that 

manages simple tautomerism and moveable positive charge detection.  

Most of the databases contain some duplicated products. A reason for detecting duplicates in 

databases is the presence of undefined or badly-defined stereochemistries (e.g. two 

diastereoisomers without the indicators of the chirality). We also want to note that counter-

ions are not taken into account to check duplicates (then, two different salts of the same acid 

are considered as duplicates). The result is a slight overestimation of the number of 

duplicates. 

We used the 1.12 Beta version of InChI which was the only available version at the time of 

this work. It had a basic support for aromatics bonds because this bond type is specified to be 

only “for query” in the MDL mol format description. As JOELib codes some structures using 

the aromatic bond type, these structures cannot have an InChI code computed and are 

considered as unique. The structures without unique codes represent less than 2 % of the 

database and then, the percentage of duplicates due to this problem is very low. The support 

of aromatic bond type was improved in the now available final version of InChI. 

In order to check for presence of a structure in the database, the MD5 hashcode of the InChI 

of this molecule is compared to the indexed MD5 hashcodes of the InChI of all the 

compounds in the database. If two structures possess the same MD5 hashcode, their InChI 

codes are compared to check whether they are actual duplicates, even if the probability that 

two structures have the same MD5 hashcode but not the same InChI code is very low (there 

are 16
32

 possibilities for MD5 hashcodes, so the probability of collision is very low). The use 

of the MD5 hashcode allows research of duplicates in a smaller table with fixed size rows, 

which is much more effective in term of computational time. 

 

DATABASES 



 7 

The different databases were gathered on the web or obtained by collaboration. We obtained 

the databases of 32 providers or institutions (Table 2). 

The database files of these 32 providers contain 3.8 million molecules. These compounds are 

made using classical organic synthesis, combinatorial chemistry or natural compounds 

extraction. The ICOA database is our corporate database, and is included in the french 

„Chimiothèque Nationale‟ (Chem. Nat.) which gathers the databases of 17 french public 

laboratories [17]. 

 

DIVERSITY 

We used the dissimilarity step of the Stochastic Clustering Analysis (SCA) [18] to identify the 

number of clusters as it had previously been done in a study of the NCI database [6]. Since the 

clusters are created by diversity, the number of clusters gives us information about the 

diversity of the database. The descriptors used and stored in the database are the SSKey-3DS 

[19] fingerprints. The SSKey-3DS are constituted of 32 bits coding for the presence or 

absence of 32 fragments, and 22 bits for the number of H bond acceptors, number of aromatic 

bonds, and fraction of rotatable bonds. These keys are computed during the insertion step of 

new compounds in the database. We used Tanimoto coefficient as a metric for pairwise 

comparison of molecules. The similarity cut-off has been set to 0.8. We programmed the SCA 

in Java. The number of clusters of the whole database (2.6 million unique compounds) is 

investigated within one hour on a standard PC. 

 

FRAMEWORKS 

In a study of shape of „drug-like‟ compounds, Bemis used the notion of graph frameworks 

corresponding to ring systems connected to each other by linkers [20]. We chose to use 

frameworks because we think that the number of frameworks of a database can give 
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information about its diversity. To obtain the graph framework of a hydrogen depleted 

structure of a compound, all the atoms of the molecule are to be replaced by „non-typed‟ 

atoms and all the bonds are replaced by „non-typed‟ bonds. Then, all the atoms connected to 

only one other atom are removed. This step is repeated until no atom is deleted (Figure 1).  

Our implementation of this algorithm replaces „non-typed‟ atoms by C atoms and „non-typed‟ 

bonds by single bonds. However, unlike the Bemis method, we differentiate aromatic from 

non aromatic bonds. In our opinion, it is important to distinguish between aromatic and non 

aromatic compounds because they belong to two very different chemical families. For 

instance, compounds based on a cyclohexan framework or on a benzene one are very different 

in terms of shape and flexibility, and it is important to keep this information. The advantage 

of this representation is that it can be stored as a simplified structure, able to be visualized 

with a molecular viewer. Furthermore, InChI can be computed for the frameworks which will 

be stored in a unique frameworks list.  

 

„DRUG-LIKE‟ AND „LEAD-LIKE‟ PROPERTIES 

Several reviews concerning druglikeness were published in the last years [21, 22, 23, 24]. A 

major contributor in the area of the characterization of „drug-like‟ compounds was Lipinski 

with the rule-of-five [25]. This rule is the most widely used to identify „drug-like‟ compounds 

[26]. It deals with orally active compounds that have achieved phase II clinical status. So it is 

not a method to distinguish between drugs and non-drugs, but rather a method to predict 

compounds with poor absorption or permeability. The results published by Frimurer [27] 

illustrate this idea: the rule-of-five accepts 74 % of the ACD compounds but only 66 % of the 

MDDR compounds. The inability of the rule-of-five to distinguish between drugs and non-

drugs was also demonstrated by Oprea [28]. 
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Since the first publication of Lipinski, many methods have been published to identify „drug-

like‟ compounds. Some of them are also based on limits of physical properties [3, 28, 29, 30]. 

In a more recent publication, the authors use more complex descriptors to recognize „drug-

like‟ products [31]. Counting pharmacophore points was also used to predict druglikeness 

[32]. Machine learning methods such as Support Vector Machines [33] and Neural Networks 

[34, 35] were also successfully used in this area. But even if machine learning based methods 

give good results, these methods are “black-boxes”. Simple and comprehensive rules are 

generally preferred to identify „drug-like‟ compounds and so we chose to use „drug-like‟ rules 

based on limits on physicochemical properties and on structural filtering. However, to avoid 

the drawbacks of strict cut-off, we implemented a progressive „drug-like‟ score.  

 

In the first step of this study, compounds with atoms other than C, O, N, S, P, F, Cl, Br, I, Na, 

K, Mg, Ca, or Li are flagged. Then, we have used filters described in another study from our 

laboratory to evaluate the druglikeness [2] established from publications [22, 36]: 

 100 ≤ molecular weight ≤ 800 g.mol
-1

 

 logP ≤ 7 

 HBA ≤ 10 

 HBD ≤ 5 

 rotatable bonds ≤ 15 

 no reactive functions (eliminate false positives in biochemical tests) 

 halogen atoms ≤ 7 

 alkyl chains ≤ -(CH2)6CH3 

 no perfluorinated chains: -CF2CF2CF3 

 SSSR ≤ 6 

 no big size ring with more than 7 members 
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 at least one N or O atom 

 

The following definitions are used: 

 reactive functions: modified version by Oprea [28] of the list published by Rishton 

[37]. In addition to the list, we add vinyl sulfones as reactive function. 

 HBA: nitrogen, oxygen, phosphor and sulfur, except the following cases: aromatic 

oxygen and sulfur, aromatic nitrogen connected to three other atoms, nitrogen with 

valence 5, sulfur with valence of 6 or 7. 

 HBD: heteroatom with a minimum of one hydrogen and without negative charge. 

 rotatable bonds: The definition of JOELib [8] is used “Number of rotatable bonds, 

where the atoms are heavy atoms with bond orders one and a hybridization which is 

not one (no sp). Additionally the bond is a non-ring-bond.” 

 logP: SlogP is used for all this study [38]. 

 

The „lead-like‟ concept is similar to the „drug-like‟ one, but is more restrictive for some terms. 

This idea is the result of the fact that optimization of a lead compound often results in an 

increase of molecular weight, logP and complexity [39, 40]. In consequence, a „lead-like‟ 

filter needs to select polar compounds with simple chemical structures [41]. Hann and Oprea 

recently gave rules to select „lead-like‟ molecules, established from properties based analyses 

for preclinical drug discovery [42]: molecular weight (MW) ≤ 460, -4 ≤ logP ≤ 4.2, LogSw ≥ 

-5, rotatable bonds ≤ 10, number of rings ≤ 4, H bond donors ≤ 5 and H bond acceptors ≤ 9. 

We use a „lead-like‟ filter based on these rules. In our database a compound is regarded as 

„lead-like‟ if it is „drug-like‟, with H bond acceptors (HBA) ≤ 9, molecular weight (MW) ≤ 

460, -4 ≤ logP ≤ 4.2, rotatable bonds ≤ 10, and smallest set of smallest rings (SSSR) ≤ 4.  
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On the basis of these rules, we have evaluated the „drug-like‟ and „lead-like‟ properties using 

two methods. The first one simply counts the number of non-fitted criteria. The second 

method computes a progressive score based on these criteria. For each criterion, a penalty is 

calculated. For eight criteria this penalty varies from 0 to 1 and is computed from empiric 

functions based on the former cut-off values. These functions are described in Table 3 and an 

example is given in Figure 2. For HBD, HBA, rotatable bonds, SSSR, maximum ring size and 

halogens, we defined an intermediate zone centered on the limits of our previous „drug-like‟ 

filters. The intermediate zone covers 60 % of the limit value. For example, the „drug-like‟ 

limit for HBA is 10. So an intermediate function for HBA will stretch from 7 (10 - 30 %) to 

13 (10 + 30 %). If a molecule has less than 7 HBA, the penalty for this property will be 0, and 

if it has more than 13, the maximum penalty of 1 will be applied for this penalty. For MW and 

logP, published distributions of these properties were used. For MW, the lower intermediate 

penalty zone extends from 100 to 150 (based on the marketed drug weight distribution [43]). 

The upper intermediate penalty zone stretches from 350 to 800 for the druglikeness (500 – 30 

% and the former limit 800 is kept because it was already very permissive) and from 322 to 

588 for the leadlikeness (former cut-off: 460 [42]). 

For logP, the lower intermediate penalty zone extends from -5 to -1.5, the upper intermediate 

penalty zone stretches from 4.5 to 7.5 for the druglikeness (based on the marketed drug logP 

distribution [43]) and from 2.9 to 5.5 for the leadlikeness (former cut-off : 4.2 [42]). 

All these functions result either from the distribution of properties of known drugs or from 

previously proposed limits. We will see later that they are able to efficiently identify 

compounds which present a bad absorption or a low solubility. But they are empiric and 

future studies should allow refining them. 

This method has two advantages against the sum of the number of unsatisfied „drug-like‟ 

criteria. Firstly, threshold effects are avoided. For example, these effects may be important in 
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logP calculations by different methods. Secondly, this progressive score permits to sort 

compounds by druglikeness and leadlikeness. 

Four criteria are still used in a „cut-off way‟: 

 the presence of  a reactive function 

 the presence of  a single chain > -(CH2)6CH3 

 the presence of  a perfluorinated chain 

 no O or N atom 

The „lead-like‟ score is designed exactly like the „drug-like‟ score but using the „lead-like‟ 

properties when they differ from the „drug-like‟ ones. 

The score of compounds is obtained by the sum of these penalties. A low score (≤ 1) indicates 

a molecule which can be considered as „drug-like‟ or „lead-like‟. A score ≥ 2 means that the 

compound is not „drug-like‟ or „lead-like‟. 

The selection of compounds with nitro group is not recommended for the risk of causing 

„false positives‟ in HTS tests [36]. Although nitro group is not in our default frequent hitters 

list, all nitro compounds are flagged and can easily be removed by the software if wanted. 

We want to highlight that it there is no absolute „lead-like‟ and „drug-like‟ rules. It is strongly 

dependant of the nature of the project. Although we have chosen parameters for each of these 

rules, our system allows us to change them very easily in order to extract a new dataset of 

compounds with different properties. In addition to the classical parameters, we can eliminate 

molecules with unwanted substructures from the dataset. 

 

The two approaches, the rule-of-five (RO5) and our score have been applied to the Prestwick 

database in order to compare their results. We chose the Prestwick database for this analyze 

because 85 % of the compounds in this database are marketed drugs. Among the 876 
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compounds of the database, 92 % (804) are accepted by the RO5 and 8 % (72) are rejected. 

This result is quite normal for products which are mainly administered orally. 

Our „drug like‟ score is more restrictive; it accepts 80 % (700) of the products and rejects 20 

% (176). Among the 176 rejected compounds, 44 are rejected by rules not present in the RO5, 

mainly by the notion of reactive functions (43). These compounds can be good drug 

candidates, but they are unwanted during the HTS process. As reactive functions have nothing 

to do with water solubility or absorption, we will compare only the progressive part of the 

„drug-like‟ score to the RO5. Using this new score, 85 % (744) of the products are accepted 

and 15 % rejected (132). All the compounds accepted by the progressive part of our „drug-

like‟ score are also accepted by the rule-of-five, but 7 % of the compounds of the database are 

rejected by our score and accepted by the rule-of-five. Then, from these results, it is possible 

to create three sets of products: 

- Set A (744 products) which contains products accepted by both approaches, 

- Set B (60 products) with products accepted by the RO5 but rejected by our score, 

- Set C (72 products) with products refused by both methods. 

The issue is to determine if our „drug-like‟ score has identified compounds, the ones of set B, 

with potential solubility or absorption issues not identified by RO5, or if it is just too 

restrictive. As we didn‟t have the experimental values of these properties for these 

compounds, we chose to use predicted water solubility [44] implemented in MOE 2005.06, 

and Topological Polar Surface Area (TPSA) introduced by Ertl et al. [45] for the prediction of 

absorption. We considered that compounds with water solubility < 1µM [4] have a low water 

solubility, and that compounds with TPSA > 140 A² have a poor absorption. The TPSA limit 

is based on the work of Palm et al. who established a good sigmoidal correlation between 

dynamic PSA and passive drug transport (r² = 0.94) [46].  
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Using these criteria, 7% of set A are rejected; which proves that this set is mainly made of 

compounds with good properties. For set C, 96% are rejected, a proof of bad properties of the 

products of this set. 

The set B contains 68% of products rejected. It shows that the products of this set are mainly 

products with bad properties and then, our score can be a better way to filter products than the 

simple application of the RO5. Thanks to the progressive limits, it is able to detect products 

which have many properties just under the limits of the RO5. These products will probably 

have problems of solubility or absorption. 

The importance of the progressive limits can be illustrated with an example. In our current set 

B, the compound with the highest value (then the worst) of our progressive „drug-like‟ score 

(2.6) is neamine (CAS number 3947-65-7). This compound is very polar (logP = -5.1), but it 

only has one criterion of the rule-of-five that is not validated (HBD = 8), and one criterion 

that is at the limit value (HBA = 10). In consequence the rule-of-five is validated for this 

compound but the probability that it will have absorption issues is high (TPSA = 210). 

Actually neamine is a component of neomycin, a topical and gastrointestinal antibiotic. 

Neomycin is known to have a bad intestinal permeability. This is a good example of how a 

compound, that just passes the binary filters of a rule, can be identified with progressive 

limits. 

 

RESULTS AND DISCUSSION 

DISTRIBUTION OF THE SUM OF THE PROVIDERS‟ DATABASES 

The origin of the 3.8 million compounds is given in Table 2. The four providers with the 

greatest number of available compounds are ChemDiv, InterBioScreen, ChemBridge and 

Enamine. However, the originality of the structures of each provider must also be assessed in 

order to compare them.  
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INTERNAL DUPLICATES 

Before the creation of the fused database, a first step is the removal of internal duplicates. The 

databases Sigma-Aldrich (9.3 %), NCI (6.0 %), MDPI (5.3 %) and Arkive (3.6 %) have the 

highest percentages of internal duplicates (Table 4). No duplicates were found in the 

databases of ACB Blocks, AnalytiCon Discovery, BioFocus and Tripos. The size of the 

library is definitively not linked to the number of internal duplicates. The best example being 

the ChemDiv library which is the biggest library. It has only 0.02 % of internal duplicates. 

 

PROPORTION OF UNIQUE COMPOUNDS 

The proportion of unique structures in a provider‟s database, i.e. the products only present in 

this database and not in the other providers‟ one, may vary in a great extend. These values are 

given in Table 4. 

We must notice that our corporate database “ICOA” is not represented here because it is 

included in the french “Chimiothèque Nationale” (Chem. Nat.). Biofocus (100 %), Analyticon 

Discovery (100 %), ACB Blocks (98 %) and Tripos (97 %) have the highest percentages of 

original compounds. Except for the huge databases, there is no direct relationship between the 

databases sizes and the percentages of original compounds. Indeed, Analyticon Discovery is 

relatively small with 5438 compounds, but ACB Blocks and Tripos are larger with 61237 and 

82370 compounds. The four biggest databases have between 36 and 85 % of unique 

compounds.  

 

DIVERSITY 

The chemical space covered by a database is an essential information. We used the 

dissimilarity step of the SCA algorithm with SSKey-3DS fingerprints to compute the number 
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of clusters for the whole database and for each provider (Figure 3 and Table 4). The NCI 

database is clearly the most representative of the chemical space and covers 59 % of the 

chemical space of the whole database. However this database can‟t be considered as a 

commercial database. After the NCI, Enamine (37 %), ChemDiv (36 %), InterBioScreen (35 

%), Sigma-Aldrich (35 %) and ChemBridge (34 %) are the databases which are the most 

representative of the global diversity. The less representative database is ArrayBioPharma 

(0.5 %), but it is also the smallest database (517 compounds). 

We have also studied the relationship between the number of compounds in a database and 

the diversity (number of clusters) of this database. We can see, in Figure 4, a rapid linear 

increase for the databases with less than 100 000 compounds but, for the databases of more 

than 150 000 compounds, the increase of the diversity is slower. The NCI with 10 623 

clusters for 250 000 compounds is once more specific, with a very high diversity.  

 

FRAMEWORKS  

The whole database contains 87 000 frameworks (the structures are available as 

supplementary materials). Figure 3 shows the percentage of the frameworks of the whole 

database for each provider. Unlike the results obtained by the diversity study, the NCI is not 

the most representative of the whole database and comes in fifth position (19 %). Enamine is 

the first (33 %) followed by ChemDiv (26 %) and InterBioScreen (23 %). Among the 

commercial databases, the three with the most important number of frameworks are also the 

most diverse in the cluster approach. 

The less representative databases are obviously the small databases: ArrayBioPharma (0.02 

%), Chemical Block (0.29 %) and Prestwick (0.39 %). We can see in Figure 5 that the number 

of frameworks is highly correlated to the size of the databases (r² = 0.89) ; this correlation 

explains the previous results. 
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„DRUG-LIKE‟ 

We have studied the „drug-like‟ properties of the bases using two approaches. A classic 

method computes the number of violations of the limits of the rules for each product. The 

second one uses the score presented in a previous section. 

For each provider, the numbers of molecules with 0, 1, 2 and more than 2 „drug-like‟ failures 

are available as supplementary materials (Figure 1 and Table 1). 

All the libraries have a high ratio of molecules with 0 or 1 „drug-like‟ failure. The library with 

the lowest percentage of molecules with none „drug-like‟ failure are AnalytiCon Discovery, 

NCI and MDPI with 71 %. Biofocus (97 %) and ChemBridge (95 %) are the libraries with the 

highest percentages of compounds without „drug-like‟ failure. 

Among the libraries, only Array BioPharma has no molecules with 2 or more „drug-like‟ 

failures. 

It is interesting to note that Prestwick has not a specific low number of „drug-like‟ failures (79 

%), although it is a library containing mainly marketed drugs. It shows that „drug-like‟ notion 

is not an absolute rule to filter potential drugs. 

The other method to estimate „drug-like‟ properties is the „drug-like‟ score (Figure 6 and 

supplementary materials Table 2). If we consider as „drug-like‟ the compounds with a „drug-

like‟ score ≤ 1, the providers with the largest percentage of „drug-like‟ compounds are 

ChemBridge (93 %), Aurora (92 %) and Chemical Blocks (90 %). There are 2.1 million (83 

%) „drug-like‟ compounds in the whole database according to this score.  The distribution of 

the „drug-like‟ scores in the whole database is shown in Figure 7. 

This score is the result of the sum of various criteria. The relative importance of the criteria is 

shown in Table 5. Much of the compounds (6 %) are removed because they contain reactive 
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functions. For virtual screening purposes, these reactive functions have no meaning and can 

be easily ignored by the software. 

 

„LEAD-LIKE‟ 

At the beginning of a drug discovery project it is more convenient to have „lead‟ compounds. 

A lead compound has a molecular weight and a logP smaller than a final drug compound 

which allows it to be optimized by adding chemical groups. As the criteria to select „lead-like‟ 

compounds are more stringent than for „drug-like‟ ones, the „lead-like‟ space is smaller than 

the „drug-like‟ space. 

If we consider the molecules without „lead-like‟ failures as „lead-like‟, ChemicalBlock (80 %) 

and Array BioPharma (73 %) are the most „lead-like‟ libraries. Analyticon Discovery (21 %) 

is the database with the lowest proportion of „lead-like‟ compounds (supplementary materials 

Figure 2 and Table 1). These results are coherent with the „lead-like‟ score presented in 

Figure 8. 

If we consider the compounds with scores ≤ 1 as „lead-like‟, the conclusions are similar. 

ChemicalBlock (82 %) and Array BioPharma (76 %) have the largest percentage of „lead-

like‟ compounds and Analyticon Discovery (10 %) has the fewer „lead-like‟ compounds. The 

high percentages of „lead-like‟ compounds in ChemicalBlock and Array BioPharma can be 

explained by the fact that they are building blocks databases. In the whole database, one 

million compounds (38 %) have a „lead-like‟ score ≤ 1. 

We can see in Figure 9 that the distribution of the „lead-like‟ scores is linearly progressive on 

the whole database. As a consequence this function can be very useful to sort compounds by 

leadlikeness. 
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As for the „drug-like‟ score, the criteria have not the same influence. The Table 6 shows that 

the logP filter is the most selective of the „lead-like‟ filters and removes 42 % of the 

compounds. 

 

DIVERSITY IN THE „LEAD-LIKE‟ SPACE 

We have compared in a previous section the chemical space covered by each database, using 

the number of clusters created by diversity in this database. However, the diversity in a 

database can be increased by compounds which are not good drug candidates. We present 

here a second analysis of the diversity space coverage, but this time we have limited our study 

to the „lead-like‟ space (Figure 10). Then each result is the percentage of the „lead-like‟ space 

of the whole database covered by the „lead-like‟ compounds of a provider. 

The NCI (58 %) is first of this ranking, then Chembridge (39 %), InterBioScreen (38 %), 

Enamine (38 %) and ChemDiv (37 %). In Figure 3 the order was NCI, Enamine, ChemDiv, 

InterBioScreen, Sigma-Aldrich and Chembridge. So we can see that the sorting of the 

databases by diversity is dependent of the chemical space studied. It appears that NCI is 

clearly the most diverse database, even in the lead-like space. The last database is Analyticon 

Discovery with 0.5 %, which is simply due to the nature of this database (we have used the 

NatDiverse database of Analyticon Discovery, in which one natural product scaffold can be 

used to synthesize 500-1500 compounds). 

 

CONCLUSION 

We have developed a platform to manage and analyze chemical databases. This system allows 

to combine easily databases and to analyze them. Furthermore we used progressive „drug-

like‟ and „lead-like‟ scores to limit threshold effects of the classical rules based on criteria 

counts. We have gathered chemical libraries from 32 providers to obtain a database of 2.6 



 20 

millions compounds. Among these unique compounds, 2.1 million compounds are found to 

be „drug-like‟ and one million „lead-like‟ according to our scores. The chemical libraries of 

each provider were analyzed in terms of druglikeness, leadlikeness, fingerprints based 

diversity and frameworks. The results can be very useful for the choice of a database at the 

beginning of a drug-discovery project. 

Several improvements of our chemical database management system are in progress, such as 

the introduction of „warheads‟ and „promiscuous aggregating inhibitors‟ filters and the 

identification of privileged structures. „ScreeningAssistant‟, the software used for this study, 

is freely available online [7]. 
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FIGURE LEGENDS 
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Figure 1. Visualization of our framework algorithm: 1) hydrogens are removed, 2) atoms 

with only one bond are removed, 3) step 2 is repeated until it only remains atoms with two 

bonds or more, 4) all atoms‟ types are set to C, and all bonds‟ types except aromatic are set to 

single. 
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Figure 2. Graphic representation of the „drug-like‟ and „lead-like‟ penalties functions for 

MW.  
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Figure 3. Diversity of each database compared to the diversity of the global database. 

Diversity is estimated by counting the clusters generated by the SCA algorithm (red) and the 

frameworks (orange). 
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Figure 4. Increase of the diversity with the size of the databases. 
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Figure 5. Relation between the number of frameworks and the number of compounds (linear 

r² = 0.89). 
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Figure 6. Percentage of „drug-like‟ scores for each provider‟s database. 
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Figure 7. Cumulative „drug-like‟ scores distribution. 
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Figure 8. Percentage of „lead-like‟ scores for each provider‟s database. 
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Figure 9. Cumulative „lead-like‟ score distribution. 
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Figure 10. „Lead-like‟ space of the whole database covered by each provider. 
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TABLES 

Functionality InChI MOE OEChem Marvin 

Sp3 stereoisomerism X X X X 

Sp2 stereoisomerism X X X X 

Simple tautomerism C(O)-[NH] X    

Keto-enol tautomerism     

NO2 representation: N(=O)=O and [N+](=O)-[O-] X X   

Moveable positive charge detection * X    

 

* example taken from InChI documentation: 

N
+

N

O H

N N N

O H

N
+

N N
H

O

N
+

 

Table 1. Comparison of the unique codes of four softwares. 

 



 37 

 

Provider Web site Imported compounds Origin 

ACB Blocks http://www.acbblocks.com 61 237 Organic synthesis 

Akos http://www.akosgmbh.com 161 316 Organic synthesis 

AnalytiCon 

Discovery 

http://www.ac-discovery.com 

5 438 

Pure and semi-

synthetic natural 

products 

Arkive http://ark.chem.ufl.edu/pages/arkive.htm 28 504 Organic synthesis 

Array BioPharma http://www.arraybiopharma.com 

517 

Organic synthesis 

focused primarily 

in cancer and 

inflammatory 

disease 

Asinex http://www.asinex.com 348 203 Organic synthesis 

Aurora http://www.aurora-feinchemie.com 25 295 Organic synthesis 

BioFocus http://www.biofocus.com 

23 836 

Organic synthesis 

focused primarily 

in kinase, GPCR 

and ion channel. 

Chembridge http://www.chembridge.com 387 859 Organic synthesis 

ChemDiv http://www.chemdiv.com 

451 205 

Organic synthesis 

and combinatorial 

chemistry 

Chemical Block http://www.chemical-block.com 1 993 Organic synthesis 

ChemStar http://www.chemstar.ru 60 066 Organic synthesis 

Chem. Nat. http://chimiotheque-nationale.enscm.fr/ 

 14 946 

Organic synthesis 

and natural 

products 

Enamine http://www.enamine.relc.com 385 175 Organic synthesis 

ICOA http://www.univ-orleans.fr/icoa/ 2 811 Organic synthesis 

IFLab http://www.iflab.kiev.ua 100 392 Organic synthesis 

InterBioScreen http://www.ibscreen.com 421 058 Organic synthesis 

Key Organics Ltd http://www.keyorganics.ltd.uk 42 414 Organic synthesis 

Maybridge http://www.maybridge.com 71 041 Organic synthesis 

MDPI http://www.mdpi.org 8 853 Organic synthesis 

MSDiscovery http://www.msdiscovery.com 

1 982 

Known drugs, 

experimental 

bioactives, and 

pure natural 

products 

Nanosyn http://www.nanosyn.com 65 184 Organic synthesis 

NCI http://dtp.nci.nih.gov 

244 321 

Organic synthesis 

and natural 

products focused 

in anticancer and 

anti-AIDS 

Pharmeks http://www.pharmeks.com 83 992 Organic Synthesis 

Prestwick http://www.prestwickchemical.com 
876 

Marketed drugs 

and others 

Sigma-Aldrich http://www.sigma-aldrich.com 

162 171 

Organic synthesis 

and natural 

products 

Specs http://www.specs.net 

178 492 

Organic synthesis 

and natural 

products 

TimTec http://www.timtec.net 

122 238 

Organic synthesis 

and natural 

products 

TOSLab http://www.toslab.com 21 004 Organic synthesis 

http://www.acbblocks.com/
http://www.akosgmbh.com/
http://www.ac-discovery.com/
http://ark.chem.ufl.edu/pages/arkive.htm
http://www.arraybiopharma.com/
http://www.asinex.com/
http://www.aurora-feinchemie.com/
http://www.biofocus.com/
http://www.chembridge.com/
http://www.chemdiv.com/
http://www.chemical-block.com/
http://www.chemstar.ru/
http://chimiotheque-nationale.enscm.fr/
http://www.enamine.relc.com/
http://www.univ-orleans.fr/icoa/
http://www.iflab.kiev.ua/
http://www.ibscreen.com/
http://www.keyorganics.ltd.uk/
http://www.maybridge.com/
http://www.mdpi.org/
http://www.msdiscovery.com/
http://www.nanosyn.com/
http://dtp.nci.nih.gov/
http://www.pharmeks.com/
http://www.prestwickchemical.com/
http://www.sigma-aldrich.com/
http://www.specs.net/
http://www.timtec.net/
http://www.toslab.com/
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and semi-natural 

compounds 

Tripos http://leadquest.tripos.com 82 370 Organic synthesis 

VitasMLab http://www.vitasmlab.com/ 193 993 Organic synthesis 

Worldmolecules http://www.worldmolecules.com/ 33 259 Organic synthesis 

 

Table 2. List of providers with number of molecules present in the database (gathered before 

March 2005, internal duplicates are not evaluated). 

http://leadquest.tripos.com/
http://www.vitasmlab.com/
http://www.worldmolecules.com/
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 „Drug-like‟ penalties „Lead-like‟ penalties 

HBD 
≤ 3.5: 0 

> 3.5 and < 6.5: 0.3333 * P – 1.1667 

≥ 6.5: 1 

- 

HBA 
≤ 7: 0 

> 7 and < 13: 0.1667 * P – 1.1667 

≥ 13: 1 

≤ 6.3: 0 

> 6.3 and < 11.7: 0.1852 * P – 1.1667 

≥ 11.7: 1 

Rotatable bonds 
≤ 10.5: 0 

> 10.5 and < 19.5: 0.1111 * P – 1.1667 

≥ 18.5: 1 

≤ 7: 0 

> 7 and < 13: 0.1667 * P – 1.1667 

≥ 13: 1 

Number of SSSR 
≤ 4.2: 0 

> 4.2 and < 7.8: 0.2778 * P – 1.1667 

≥ 7.8: 1 

≤ 2.8: 0 

> 2.8 and < 5.2: 0.4167 * P – 1.1667 

≥ 5.2: 1 

Maximum ring size 
≤ 6: 0 

> 6 and < 9.1: 0.3226 * P – 1.9355 

≥ 9.1: 1 

- 

Number of halogens 
≤ 4.9: 0 

> 4.9 and < 9.1: 0.2381 * P – 1.1667 

≥ 9.1: 1 

- 

MW 

≤ 100: 1 

> 100 and < 150: -0.02 * P + 3 

≥ 150 and ≤ 350: 0 

> 350 and < 800: 0.0022 * P – 0.7778 

≥ 800: 1 

≤ 100: 1 

> 100 and < 150: -0.02 * P + 3 

≥ 150 and ≤ 322: 0 

> 322 and < 588: 0.0038 * P – 1.2105 

≥ 588: 1 

LogP 

≤ -5: 1 

> -5 and < -1.5: -0.2857 * P – 0.4286 

≥ -1.5 and ≤ 4.5: 0 

> 4.5 and < 7.5: 0.3333 * P – 1.5 

≥ 7.5: 1 

≤ -5: 1 

> -5 and < -1.5: -0.2857 * P – 0.4286 

≥ -1.5 and ≤ 2.94: 0 

> 2.94 and < 5.46: 0.3968 * P – 1.667 

≥ 5.46: 1 

P is the considered property; - means that the „lead-like‟ penalty is equal to the „drug-like‟ penalty. 

 

Table 3. Functions used in „drug-like‟ and „lead-like‟ scores. 
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Provider 

 

Comp
a
 Dup

b
 

(%) 

Uniq
c
  

(%) 

Clusters
d
 

(%) 

Number of 

clusters 

Fw
e
 

(%) 

Number 

of fw
f
 

„Lead-like‟ 

clusters
g
 

(%) 

ACB Blocks 61 237 0.0 97.9 2.6 480 0.9 829 3.6 

Akos 161 316 0.6 19.5 24.4 4 437 10.6 9 306 26.7 

AnalytiCon 

Discovery 
5 438 0.0 100.0 0.9 164 0.7 633 0.5 

Arkive 28 504 3.6 72.3 14.8 2 691 3.0 2 597 15.9 

Array 

BioPharma 
517 0.2 79.3 0.5 94 0.0 15 0.8 

Asinex 348 203 0.0 51.1 31.1 5 659 19.9 17 371 33.7 

Aurora 25 295 0.2 21.4 8.1 1 477 1.4 1 213 9.3 

BioFocus 23 836 0.0 100.0 1.7 306 2.3 2 039 1.5 

Chem. Nat. 14 946 2.3 87.3 11.0 1 997 2.2 1 886 11.7 

Chembridge 387 859 0.0 36.6 34.3 6 224 17.1 14 956 38.9 

ChemDiv 451 205 0.0 38.3 35.5 6 447 25.6 22 400 37.1 

Chemical Block 1 993 0.5 22.6 2.9 520 0.2 213 3.9 

ChemStar 60 066 0.3 32.3 17.6 3 206 6.3 5 496 18.4 

Enamine 385 175 0.1 84.6 36.7 6 663 32.5 28 423 37.6 

ICOA 2 811 1.3  3.4 626 0.6 539 3.7 

IFLab 100 392 0.1 31.7 14.3 2 593 7.7 6 704 15.3 

InterBioScreen 421 058 0.1 56.2 35.3 6 418 22.5 19 684 37.8 

Key Organics 

Ltd 
42 414 0.0 89.2 13.4 2 433 2.9 2 528 16.6 

Maybridge 71 041 0.2 77.2 22.6 4 108 5.2 4 572 27.0 

MDPI 8 853 5.3 74.2 8.5 1 538 1.4 1 190 8.5 

MSDiscovery 1 982 0.9 46.1 3.5 628 0.5 437 3.7 

Nanosyn 65 184 0.1 15.8 18.7 3 393 5.5 4 833 20.1 

NCI 244 321 6.0 85.1 58.5 10 623 18.8 16 428 58.3 

Pharmeks 83 992 0.2 41.7 17.7 3 223 8.8 7 714 17.7 

Prestwick 876 0.5 25.6 2.2 406 0.3 288 2.4 

Sigma-Aldrich 162 171 9.3 51.0 34.8 6 328 9.4 8 180 33.6 

Specs 178 492 0.0 36.2 30.2 5 480 16.2 14 203 30.9 

TimTec 122 238 0.4 17.5 28.5 5 172 11.8 10 293 29.8 

TOSLab 21 004 0.1 50.2 7.7 1 401 3.4 2 966 7.6 

Tripos 82 370 0.0 97.0 9.0 1 639 6.7 5 875 9.1 

VitasMLab 193 993 0.1 26.6 22.4 4 064 11.1 9 686 24.4 

Worldmolecules 33 259 0.2 27.8 14.7 2 672 7.3 6 372 14.3 

         
a
 Number of compounds. 

b
 Number of duplicates. 

c
 Number of unique compounds (not present in any other database), 

ICOA is not analyzed because it is contain in Chem. Nat.. 
d
 Coverage of the chemical space of the total database 

(fingerprint diversity clusters). 
e
 Percentage of the frameworks of the total database represented. 

f
 number of 

frameworks of the database. 
g
 Coverage of the „lead-like‟ space of the total database (fingerprint diversity clusters). 

 

Table 4. Analysis of the 32 databases. 
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Filters Accepted compounds 

total 2 582 944 

„drug-like‟ 2 141 031 

no reactive functions 2 477 248 

rotatable bonds ≤ 15 2 504 385 

SlogP ≤ 7 2 510 652 

HBA ≤ 10 2 537 713 

SSSR ≤ 6 2 563 999 

no single chains 2 565 839 

O and N atoms ≥ 1 2 569 747 

max ring size ≤ 7 2 571 725 

100 ≤ MW ≤ 800 2 574 611 

HBD ≤ 5 2 575 045 

halogens ≤ 7 2 578 167 

no perflurinated chain 2 581 301 

 

Table 5. Influence of „drug-like‟ filters. 
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Filters Accepted compounds 

total 2 582 944 

„lead-like‟ 994 154 

-4 ≤ SlogP ≤ 4.2 1 498 794 

rotatable bonds ≤ 10 2 038 011 

MW ≤ 460 2 047 891 

SSSR ≤ 4 2 241 841 

„drug-like‟ 2 141 031 

Hba ≤ 9 2 486 377 

 

Table 6. Influence of „lead-like‟ filters. 

 


