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Reversible conservative rational abstract

geometrical computation is Turing-universal
(extended abstract)

Jérôme Durand-Lose⋆

Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans,
B.P. 6759, F-45067 ORLÉANS Cedex 2.

Abstract. In Abstract geometrical computation for black hole compu-
tation (MCU ’04, LNCS 3354), the author provides a setting based on
rational numbers, abstract geometrical computation, with super-Turing
capability. In the present paper, we prove the Turing computing capa-
bility of reversible conservative abstract geometrical computation. Re-
versibility allows backtracking as well as saving energy; it corresponds
here to the local reversibility of collisions. Conservativeness corresponds
to the preservation of another energy measure ensuring that the num-
ber of signals remains bounded. We first consider 2-counter automata
enhanced with a stack to keep track of the computation. Then we built
a simulation by reversible conservative rational signal machines.

Key-words. Abstract geometrical computation, Conservativeness, Ra-
tional numbers, Reversibility, Turing-computability, 2-counter automata.

1 Introduction

Reversible computing is a very important issue because it allows on the one
hand to backtrack a phenomenon to its source and on the other hand to save en-
ergy. Let us note that quantum computing relies on reversible operations. There
are general studies on reversible computation [LTV98] as well as many model
dependent results: on Turing machines [Lec63,Ben73,Ben88] and 2-counter ma-
chines [Mor96] (we do not use these), on logic gates [FT82,Tof80], and last
but not least, on reversible Cellular automata on both finite configurations
[Mor92,Mor95,Dub95] and infinite ones [DL95,DL97,DL02,Kar96,Tof77] as well
as decidability results [Čul87,Kar90,Kar94] and a survey [TM90].

Abstract geometrical computation (AGC) [DL05a,DL05b] comes from the
common use in the literature on cellular automata (CA) of Euclidean lines to
model discrete lines in space-time diagrams of CA (i.e. colorings of Z× N with
states as on the left of Fig. 1) to access dynamics or to design. The main char-
acteristics of CA, as well as abstract geometrical computation, are: parallelism,

synchrony, uniformity and locality of updating. Discrete lines are often observed
and idealized as on Fig. 1. They can be the keys to understanding the dynamics
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like in [Ila01, pp. 87–94] or [BNR91,JSS02]. They can also be the tool to design
CA for precise purposes like Turing machine simulation [LN90]. These discrete
line systems have also been studied on their own [MT99,DM02].
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Fig. 1. Space-time diagram of a cellular automaton and its signal machine counterpart.

Abstract geometrical computation considers Euclidean lines. The support of
space and time is R. Computations are produced by signal machines which are
defined by finite sets of meta-signals and of collision rules. Signals are atomic
information that correspond to meta-signals and move at constant speed thus
generating Euclidean line segments on space-time diagrams. Collision rules are
pairs (incoming meta-signals, outgoing meta-signals) that define a mapping over
sets of meta-signals. They define what happens when signals meet. A configura-
tion is a mapping from R to meta-signals, collision rules and two special values:
void (i.e. nothing there) and accumulations (amounting for black holes). The
time scale being R+, there is no such thing as a “next configuration”. The fol-
lowing configurations are defined by the uniform movement of signals. In the
configurations following a collision, incoming signals are replaced by outgoing
signals according to a collision rule.

Zeno like acceleration and accumulation can be brought out as on Fig. 2 of
Sect. 2. Accumulations can lead to an unbounded burst of signals producing
infinitely many signals in finite time (as in the right of Fig. 2). To avoid this,
a conservativeness condition is imposed: a positive energy is defined for every
meta-signal, the sum of the energies must be preserved by each rule. Thus no
energy creation is possible; the number of signals is bounded.

To our knowledge, AGC is the only computing model that is a dynamical
system with continuous time and space but finitely many local values. The closest
model we know of is the Mondrian automata of Jacopini and Sontacchi [JS90]
which is also reversible. Their space-time diagrams are mappings from Rn to a
finite set of colors representing bounded finite polyhedra. Another close model is
the piecewise-constant derivative system [AM95,Bou99]: Rn is partitioned into
finitely many polygonal regions, trajectories are defined by a constant derivative
on each region and form sequences of (Euclidean) line segments.

In this paper, space and time are restricted to rational numbers. This is
possible since all the operations used preserve rationality. All quantifiers and
intervals are over Q, not R.



The Turing computing capability of conservative signal machines is proved
in [DL05a,DL06] by simulating any 2-counter automaton since Turing machines
and 2-counter automata compute exactly the same functions. To build a re-
versible version of the simulation, we have to cope with the inherent irreversibil-
ity of counter automaton (the result of Morita [Mor96] is not used here because
it does not fit well with our approach): branching (there is no way to guess the
previous instruction) and subtracting (0 comes from both 0 and 1).

To cope with this we add stacks to store information for reversibility. A stack
over an alphabet {1, 2, . . . , l} is encoded by a rational number σ such that: 1

l+2

encodes the empty stack, otherwise 1

l+1
<σ<1. After pushing a value v on a stack

σ the new stack is v+σ
l+1

. The top of the stack is ⌊(l+1)σ⌋ and (l+1)σ−⌊(l+1)σ⌋
encodes the rest of the stack. This more or less corresponds to a base l+1 decimal
number manipulation as can be found in e.g. [Bou99].

This simple memory scheme can be implemented inside a reversible conser-
vative rational signal machine. We then finish the simulation by adapting the
construction from [DL05a,DL06] by adding the storing of current line number
before passing to the next and of the previous value of a counter whenever it
reaches 0.

The definition of signal machines can be found in Sect. 2. Section 3 deals with
2-counter automata and their enhancement with stacks. Section 4 shows how the
stacks are implemented. In Sect. 5, the different pieces are gathered in order to
achieve the simulation. Section 6 gives a short conclusion.

2 Abstract geometrical computations

Abstract geometrical computations are defined by the following machines:

Definition 1 A rational signal machine is defined by (M, S, R) where M (meta-

signals) is a finite set, S (speeds) a mapping from M to Q and R (collision rules)
a partial mapping from the subsets of M of cardinality at least 2 into the subsets
of M (speeds must differ in both domain and range).

Each instance of a meta-signal is a signal. The mapping S assigns rational
speeds to meta-signals. They correspond the slopes of the segments in space-time
diagrams. The collision rules, denoted ρ−→ρ+, define what happens when two
or more signals meet.

The extended value set, V , is the union of M and R plus two symbols: one
for void, ⊘, and one for an accumulation (or black hole) ❊. A configuration, c,
is a total mapping from Q to V such that the set { x ∈ Q | c(x) 6= ⊘} is finite.

A signal corresponding to a meta-signal µ at a position x, i.e. c(x) = µ,
is moving uniformly with constant speed S(µ). A signal must start (resp. end)
in the initial (resp. final) configuration or in a collision. These correspond to
condition 2 in Def. 2. At a ρ−→ρ+ collision signals corresponding to the meta-
signals in ρ− (resp. ρ+) must end (resp. start); no other signal should be present
(condition 3). A black hole corresponds to an accumulation of collisions and
disappears without a trace (condition 4).



Let Smin and Smax be the minimal and maximal speeds. The causal past,
or light-cone, arriving at position x and time t, J−(x, t), is defined by all the
positions that might influence the information at (x, t) through signals, formally:

J−(x, t) = { (x′, t′) | x− Smax(t−t′) ≤ x′ ≤ x− Smin(t−t′) } .

(x, t)

J−(x, t)

Fig. 2. Light-cone, a simple accumulation and three unwanted phenomena.

Definition 2 The space-time diagram issued from an initial configuration c0

and lasting for T , is a mapping c from [0, T ] to configurations (i.e. a mapping
from Q× [0, T ] to V ) such that, ∀(x, t) ∈ Q× [0, T ] :

1. ∀t∈[0, T ], { x ∈ Q | ct(x) 6= ⊘} is finite,
2. if ct(x)=µ then ∃ti, tf∈[0, T ] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:

– ∀t′ ∈ (ti, tf ), ct′(x + S(µ)(t′ − t)) = µ ,
– ti = 0 or cti

(xi) ∈ R and µ ∈ (cti
(xi))

+ where xi = x + S(µ)(ti − t) ,
– tf = T or ctf

(xf ) ∈ R and µ ∈ (ctf
(xf ))− where xf = x+S(µ)(tf − t) ;

3. if ct(x)=ρ−→ρ+ ∈ R then ∃ε, 0<ε, ∀t′∈[t−ε, t+ε]∩ [0, T ], ∀x′∈[x− ε, x+ ε],

– ct′(x
′) ∈ ρ−∪ρ+ ∪ {⊘},

– ∀µ∈M , ct′(x
′)=µ ⇒

∨

{

µ ∈ ρ− and t′ < t and x′ = x + S(µ)(t′ − t)) ,
µ ∈ ρ+ and t < t′ and x′ = x + S(µ)(t′ − t)) ;

4. if ct(x) = ❊ then

– ∃ε > 0, ∀(x′, t′) /∈ J−(x, t), ( |x−x′|<ε and |t−t′|<ε ) ⇒ ct′(x) = ⊘ ,
– ∀ε > 0, { (x′, t′) ∈ J−(x, t) | t−ε<t′<t ∧ ct′(x

′) ∈ R } is infinite.

In the illustrations of space-time diagrams, time increases upwards.

2.1 Conservativeness

The three space-time diagrams on the right of Fig. 2 provide examples un-
compatible with Def. 2 at the time of accumulation. In each case, the number of
signals is bursting to infinity and black holes are not isolated. To prevent this,
the following restriction is imposed.

Definition 3 A signal machine is conservative iff there exists an energy from
meta-signals to positive integers, E : M → N∗, such that the total energy of the
system, i.e. the sum of the energies of all present signals, is constant.



One can check easily that the total energy is constant iff for each rule the
sum of the energies of incoming meta-signals and the sum of outgoing ones are
equal. It follows automatically that given a conservative signal machine and an
initial configuration, the number of signals in any following configuration, as
well as the number of accumulations, is bounded (by the total energy divided by
the least atomic energy). A simple sub-case of conservativeness is when all the
meta-signals have the same energy and the numbers of in and out meta-signals
are always equal.

2.2 Reversibility

A dynamical systems is said to be reversible when from any configuration it
is possible to generate all the previous configurations. Moreover, the inverse
dynamical system should be of the same nature.

Concerning signal machines, the “inversion” of an isolated signal is the same
signal with opposite speed. Regarding collision, one has to guess its position and
the in-coming signals from the out-going ones. Collisions resulting in nothing are
impossible to guess going backward, and they cannot be conservative. Collisions
resulting in only one signal are also impossible to predict. Reversibility holds if
and only if the (partial mapping) M is one-to-one and always yields 2 or more
out-going meta-signals. The inverse signal machine is the same with the rules
reversed.

Definition 4 A signal machine is reversible if and only if R is one-to-one and
maps only on sets of cardinality at least 2.

Let us point out this is true as long as there is no accumulation! The way an
accumulation disappears is like a (second order) collision resulting in nothing.
Moreover if its location could be guessed, there are infinitely many way to scale
it since there is no absolute scale for space nor time.

3 2-counter automaton with stack

A 2-counter automaton is a finite automaton coupled with two counters, A and
B. The possible actions on any counter are add/subtract 1 and branch if non-
zero. Such an automaton can be described with a six-operations assembly lan-
guage with branching labels as on the left part of Fig. 6 (see [Min67] for more
on 2-counter automata). The configuration of a 2-counter automaton is defined
by (n, a, b) (the line number and the values of the counters).

Two-counter automaton are intrinsically irreversible: subtracting 1 yields 0
for both values 0 and 1 and before a labeled instruction the instruction can be
the one on the previous line or a branching to this label.

To achieve reversibility two stacks are added: one, Σi, records the instruction
number (i.e. it records the values of the instruction counter) and another one,
Σz, record the previous value (0 or 1) of any counter that holds zero after a
subtraction. We write x.Σ to indicate pushing x on S or that x is the top of the
stack. The dynamics is described on Fig. 3 for instructions on A. The ones for



B are similar. Discarding the stacks, one gets the usual dynamics. The inverse
dynamics is automatic (as long as the sequence was generated legally, otherwise
things like undoing adding 1 from a zero counter might happen).

Instruction at line n Associated action

A ++ ( n, a, b, Σi, Σz ) ⊢ ( n + 1, a + 1, b, n.Σi, Σz )
A -- ( n, a + 2, b, Σi, Σz ) ⊢ ( n + 1, a + 1, b, n.Σi, Σz )
A -- ( n, 1, b, Σi, Σz ) ⊢ ( n + 1, 0, b, n.Σi, 1.Σz )
A -- ( n, 0, b, Σi, Σz ) ⊢ ( n + 1, 0, b, n.Σi, 0.Σz )
IF A != 0 m ( n, 0, b, Σi, Σz ) ⊢ ( n + 1, 0, b, n.Σi, Σz )
IF A != 0 m ( n, a + 1, b, Σi, Σz ) ⊢ ( m,a + 1, b, n.Σi, Σz )

Fig. 3. Dynamics of a 2-counter automata with memory stacks.

4 Stack implementation

Since we are dealing with rational numbers, it is very easy to implement an
unbounded stack of natural numbers 1 to l in the following way: 1

l+2
encodes the

empty stack. Let σ be a rational number encoding of a stack (0<σ<1). After
pushing a value v on top of a stack σ, the new stack is v+σ

l+1
. This ensures that, as

soon as the stack is not empty, 1

l+1
<σ<1 and distinct from i

l+1
, i ∈ {1, 2, . . . , l}.

The top of the stack ⌊(l+1)σ⌋ and rest of the stack is (l+1)σ − ⌊(l+1)σ⌋.
To implement this in a signal machine, a scale is defined (because the space

is continuous and scaleless) and then the push operation is implemented. We are
not interested in the pop and test of emptiness because our 2-counter simulation
only pushes values. The pop corresponds to the inverse of push and is thus
implicitly built.

The rational σ is encoded with a zero-speed signal mem. The scale is defined
with zero-speed signals mark0, mark1,. . . , markl. They are regularly positioned,
never move and defined positions 0, 1, . . . , l. Thus the normal position of mem

is between mark0 and mark1. To push v, mem is translated by v (lower part of
Fig. 4). Then this position is scaled by 1

l+1
(upper part of Fig. 4) to get σ+v

l+1
.

The process starts at the arrival of
←−−−
storev.

Translating is very easy: −−→mem and
−−−→
storev are parallel. Their distance encodes

σ. Their movement stops when the first one,
−−−→
storev, reaches markv. The signal

catch is then issued to stop −−→mem as in the middle of Fig. 4. This collision is dis-
tance v away from the original position of mem. This is ensured by the definition
of speeds (we leave to the reader to verify this linear equation system based on the
speeds given in Fig. 4). When this point is reached, a scaling remains to be done.
Scaling by 1

l+1
, to go from σ+v to σ+v

l+1
, fix has to travel (σ+v)− σ+v

l+1
= (σ+v) l

l+1

units, and ←−−mem and −−→mem have to travel (σ+v) + σ+v
l+1

= (σ+v) l+2

l+1
units. Thus

if the speeds of ←−−mem and −−→mem have the same absolute value then the speed of
fix must be l

l+2
times the one of ←−−mem (notice in Fig. 4 that −2 = −3 4

4+2
).

If the stack is empty, then backward collision between ←−−mem and fix happens
between mark0 and mark1. So that there is a (backward) collision between −−→mem
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marki 0
←−−
mem −3
mem 0
−−→
mem 3
←−−−
storei −3
−−−→
storei 3
catch 1
fix −2
ack 3

Rules

{mem,
←−−−
storev}→{

←−−
mem,

−−−→
storev}

{mark0,
←−−
mem}→{mark0,

−−→
mem}

{
−−−→
storev , markv}→{markv, catch}
{−−→mem, catch}→{←−−mem, fix}
{−−→mem, fix}→{mem, ack}

{marki,
←−−−
storev}→{

←−−−
storev , marki}

v < i, {−−−→storev , marki}→{marki,
−−−→
storev}

{−−→mem, marki}→{marki,
−−→mem}

{marki,
←−−mem}→{←−−mem, marki}

{marki, fix}→{fix, marki}
{ack, marki}→{marki, ack}

Fig. 4. Implementation the stack for l = 4 and push(3).

(regenerated from mark0 and ←−−mem) and catch. There no such a rule, it can be
defined to have, for example, mem fixed and catch exiting on the left.

It is easy to check that the rules are invertible.
Let us note that, with slight modifications,

←−−−
storev and ack could come from/be

sent left or right. It is also possible to carry extra information (like a next line
number) through the storing process. This is done by having a special set of
←−−−
storei,

−−−→
storei, catch, fix, and ack for each possible piece of information.

5 Reversible computation

The idea is to use the construction provided in [DL05a] to simulate any 2-counter
automaton with a conserving signal machine (which cannot be detailed here).
Figure 5 shows how the counters are encoded using two fixed signals zero and
one as a scale. A signal amounting for the current line zigzags between these
signals. Figure 6 presents the code of a simple 2-counter automaton and some
simulations. When a simulation stops, a signal stop appears and bounces between
zero and one. In the reversible version, it exits the configuration on the right.
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Fig. 5. Encoding positions of counters.



A != 0 notZ
A++

glob B != 0 loop

A != 0 fin
loopB--

A++

A != 0 glob

notZ A--

B++

fin stop

6

a=0 b=0

6

a=1 b=0

6

a=0 b=1

6

a=2 b=0

Fig. 6. A 2-counter automaton and its simulations for three different initial values.

Figure 7 show how everything is interconnected. Before going to the next
configuration, the number of the just carried out instruction is stored on the
left while recording the next instruction number. Each time there is a subtract
1 generating a 0, the previous value of the counter is stored on the right (cases
(1, 0) and (0, 1)) whatever counter is concerned.

6 Conclusion

As far as there is no accumulation, reversible conservative rational abstract ge-
ometrical computation has exactly the same computing capability as Turing
machines (because rational numbers can be implemented exactly).

Two-counter automaton are exponentially slower than Turing machines. This
is not important since we are only interested in computational issues. Neverthe-
less, it is easy to simulate reversibly (but without conservativeness) Turing ma-
chine in such a way that the number of collisions is proportional to the number
of TM iterations. It would be interesting to do so to study the complexity.

It is possible to apply the iterated shrinking construction of [DL05a,DL06]
which preserves reversibility so that the black hole models can now be embedded
in a reversible setting. We do not do it here for lack of room on one side and
on the other side this would provoke an accumulation which is clearly not a
reversible phenomena.
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