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1 Introduction

Let @%[z] ~ @% be the set of monic polynomials of degree d > 2. For every f € @%[z] one defines
the filled — in Julia set K(f) as the set of points z such that the sequence defined inductively by
20 = 2, Zn+1 = f(2,) does not converge to oo. It is a non-empty compact set whose boundary,
denoted by J(f) is called the Julia set of f. The Julia set is the chaotic locus of the dynamics of f in
the sense that is is the set of points of non-normality for the family of iterates of f. It is, except for
very few exceptions, a fractal set and this makes d(f), the Hausdorff dimension of J(f), a relevant
quantity to study.

Our paper deals with the function f — d(f), @%[z] — IR. This function is of course strongly
related to the ”topological” function f — J(f), @%z] — K(C), where K(€) stands for the set
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conditions




of non-empty compact subsets of the plane, equipped with the Hausdorfl metric. Douady [1] has
proven that if fo € @%[z] has no indifferent periodic point which is either rational or linearizable
then the mapping f — J(f) is continuous at fy. In particular J is continuous on the neighborhood
of every "hyperbolic” fy, that is if all critical points of fy are attracted by attracting cycles. In
fact much more is true in this case: J(f) moves in a holomorphic motion in the sense of [11].
Concerning the function d, Ruelle [10] has shown that it is real-analytic around every hyperbolic
polynomial. Thus, as usually in dynamical systems, topological changes or discontinuities appear
at "points” fo having an indifferent cycle, a set containing as a dense subset polynomials having
a parabolic cycle. Since this phenomenon may be extremely complicated, in order to study the
nature of the discontinuities that occur, we restrict our attention to quadratic polynomials, i.e. to
the one-parameter family f(z) = 22 + ¢, ¢ € €. The set of bifurcation points is then a dense subset
of the boundary of the Mandelbrot set and we focus on the ”simplest possible” point, namely the
polynomial fo(z) = 22 + i for which 1/2 is a fixed point with multiplier 1 We first restrict ourselves
even further: to real values of c. By the preceeding discussion, the function ¢ — d(c) = d(2? + ¢)
is real-analytic on [0,1/4) U (1/4,400) and it is not difficult to see that the topological function is
continuous from the left at 1/4. In [7] it is proven that the function d is also left-continuous at 1/4,
with a vertical tangent [9]. Douady [1] has shown that the topological function is discontinuous from
the right at 1/4. Later it was shown in [6] that the dimension function is also right-discontinuous.
More precisely it is proven in [6] that

d(1/4) < lim inf d(c) < limsupd(c) < 2. (1.1)

c—rz+0 c—>340

Douady’s result is much more precise: there is a whole circle of limit points for the topological
function at %—H). The corresponding result for the dimension function is unknown: more specifically,
can the < sign be replaced by < in (1.1)? This question was raised by Douady. Even if it does
not solve this problem, the present paper aims to shed some light on it. In order to state precisely
the result, we first need to recall some facts from parabolic implosion, the phenomenon which is
responsible of the discontinuities. Then we briefly touch on some selected facts from the theory of
infinite conformal IFS in the sense of [4] which will be needed in the proof of the main theorem. We
would like to add that in fact the Julia-Lavaurs sets appear to be a mine of infinite IFS (see [6])
and our explorations go beyond the [6] case in the sense that the IFS structure is obtained here as
a refining of the construction presented there.

2 A quick overview of parabolic implosion.

(a) Fatou coordinates. We recall that fo(z) = 22 + 1. If z € € and r > 0, then B(z,r) denotes
the open ball with the center at z and with radius r. If ¢ € @, we denote by T, the translation
z — z + 0. We will also denote by 7 the canonical projection from € onto €/Z. The inversion
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conjugates fo to the mapping
1
FWZ2)=Z+1+ ———
0(2) Ttz
which is very close to the translation 7} in the two domains U, = {Rez < —M}, U;; = {Rez > M},
for large M. This conugation may actually be modified to yield an exact conjugation to 77 on Uﬂj/:[.

returning to the variable z we have more precisely:

Theorem 2.1 There exist holomorphic injective maps

¢ :V =DB(3/8,1/8) —«, o7 : VT =B(5/8,1/8) — €

such that o= (V=) D Uy, T (V') DU, for some M > 0 and such that
(i) fo is injective in V=, fo(V™) C V™ and o (fo(z)) = ¢ (2) +1, z€ V™,
(i1) fo is injective in V¥, VT C fo(VT) and o (fo(2)) = ¢T(2) + 1 if 2, fo(z) e V.

Moreover T are unique up to additive constant. They are called the Fatou coordinates (attracting
and repelling). We will denote by ®* the expression of the Fatou coordinates in the Z—variable.

The mapping ®* extends as an injective holomorphic function to the domain {y > = + M} U
{y < —z — M} and similarily ®* to the domain symmetric with respect to the imaginary axis.
Consequently the function h = ®~ o (@)~ = p~ o (¢T)7! is well defined in {y > |z + M|} U {y <
—|z + M|}. Since h(Z + 1) = h(Z) + 1 whenever both Z and Z + 1 belong to the domain of h, we
can define two maps h*, h' holomorphic in {y > M + 1}, {y < —M — 1} respectively, "fixing” the
point at oo, and satisfying h*'(Z + 1) = h*1(Z) + 1. These maps are the horn maps associated to
fo.

Finally it can be shown that ¢~ has an extention to K(f;) as an holomorphic function still
satisfying the functionnal relation in (i), while U = ()7, a priori only defined on Uj;, can be
extended as an entire function satisfying UT(Z + 1) = fo(¥*(Z)). These two functions are called
extended Fatou coordinates.

(b) Lavaurs maps.
Definition 2.2 A Lavaurs map for fy is a map from K(fo)to @ of the form
Jo = \IJ+oTUo<p_.
It follows easily from properties of the Fatou coordinates that
9o © fo = fo0 9o = got1-

The "raison d’etre” of the preceeding definition is the following important theorem of Douady:



Theorem 2.3 Let ¢, be a sequence of complex numbers with positive real part converging to 0 in
such a way that there exists a sequence of integers N, — +00 such that

s

NG

(the square root is the one with positive real part), then, if

+N,—oel

1
fe(z) :ZQ+Z+63

fgxn converges converges uniformly on compact subsets of K(fy) towards the Lavaurs map g,.

(¢) Dynamics of (fy,g,). For K >0, [ > 0, we define

kil _ ¢l k
9o _fﬂog(f

on some domain depending on k£ and o, while if £ > 1, [ < 0, there exists a domain depending on &

and o on which one can define
1

95t = goriogh "
We call the pair (k,1) admissible if Kk = 0,1 > 0 or if k > 1,1 € Z. We (totally) order the set of
admissible pairs by lexicographic order, and the usual vocabulary of iteration extends to this setting.
The situation is only slightly complicated by the fact that the maps g?’l are not everywhere defined.
This leads to the following.

Definition 2.4 A point z € € is said to escape by (fo,gs) if there exists m > 0 such that gJ*(z) is
well defined but belongs to C\K (foy) (in particular points in C\K (fo) escape, simply take m =0).

Definition 2.5 The filled-in Julia-Lavaurs set K (fo,g,) is the set of non-escaping points. It is a
compact set with

J(fo) C K(fo,95) C K(fo)-
The Julia-Lavaurs set J(fo, g,) is the boundary of K(fo,gs)-

By the properties of the dynamics of (fy, g,), notice that these sets depend only on 7(c). Douady
[1] has shown that J(fo,g,) is the closure of the set of points z for which there exists m > 0 such
that ¢g'*(z) is well-defined and belongs to J(fo). It is also true that J(fo,gs) is the closure of the set
of periodic repelling points; the proof for the classical case goes through without changes.

(d) Fatou-Julia-Lavaurs-Sullivan classification. Lavaurs in [1] has extended to this new
dynamics the Fatou-Julia-Sullivan classification of components of the Fatou set. He has extended



Sullivan non-wandering theorem proving that every component of K(fy) is eventually periodic in
the sense of the new dynamics. Classical examples of periodic components have their counterpart in
the new setting: attracting or parabolic basins, Siegel disks. But there are new examples of periodic
components. In order to observe them, we notice that ®~ conjugates the Lavaurs map G, into the
two horn maps hy' = h*'oT, and this in the domains {y > M},{y < —M} for large enough M.
Using change of variable u = exp(+2inZ), the horn map is transfered to a germ of holomorphic
function fixing 0. It thus makes sense to say that |1 oo is attracting, repelling or indifferent and if
one of the ends is attracting or parabolic or linearizable irrationnally indifferent, it leads to periodic
components of K (fy) containing the parabolic fixed point 1/2 on its boundary. We say in this case
that 1/2 is virtually attracting, parabolic or linearizable at | oo or 1 co and the corresponding basin
is called virtual. Lavaurs has shown in [1] that all periodic components of K(f) are of one of the
types just described.

(e) Limiting shapes of Julia sets. We may now state (recall that fc(z) = 22 + 1 + ¢) the
following.

Theorem 2.6 (Douady, Lavaurs [1], [1]). If o € € is such that (fo,9,) has no parabolic cycle and
no linearizable irrationnally indifferent cycle (including virtual components) and if €, converges to
0 as in theorem 2 then J(fe,) — J(fo,95) in the Hausdorff metric. Furthermore,

J(fo) C# J(fo.90) C# K(fo)-

The phenomenon described by this theorem is called parabolic implosion. Actually if o is an excep-
tional point in Theorem 2.6, then J(fo, g,) is still a limiting point of some sequence J(f,) but one
must precise the way ¢, converges to 0. If one is not carefull enough, then a new parabolic implosion
occurs, with new phase space, and this makes the set of limiting points very complicated to describe.

(f) The phase space. As in the classical study of the parameter space for the quadratic
family, one can define a parameter space for the dynamics of (fo,g,). We denote by & the set of
o € € such that the critical point 0 escapes by (fo,g,) and by M (for Mandelbrot) the complement
of £. Since the dynamics of (fy,g,) really depends only on 7(c), one defines the phase space as
C/Z divided into m(€) and 7(M). If one transforms the parameter plane of ¢’s by the mapping
0:cr— —cjrﬁ and define M,, = (M) N [—(n + 1), —n] x IR then it is conjectured that w(M,)
converges in the Hausdorff topology to some translate of w(M). If the Fatou coordinates have been
chosen so that they preserve the real axis, ons can show that M D{y > II} U{y < —x}, union
of two half-planes corresponding to the parabolic fixed point being attracting or indifferent at the
corresponding end (and this corresponds by the mapping € to the main cardioid). The set £ is the
union of the £/ s,n > 0 where

En = {0 € € g7 (0) € C\K(fo)}-



With the above choice of Fatou coordinates we have IR C & and we may describe the whole compo-
nent & as follows: From the formula defining g, it appears that

& = (T)7HO\K (fo))-

This a a one-periodic strip bounded by two Jordan curves that are symmetric wrt the real axis. If
o € & then ,since the critical point escapes by g,, one cannot have a parabolic point nor a Siegel
disk; it follows that theorem 3 applies for points in &, Moreover the method of [6] goes through in
this case; the Hausdorff dimension of J(f,,) converges to the Hausdorff dimension d(o) of J(fo, 9,)
if €, — 0 as in theorem 3.

As a natural extention of Douady’s question one can ask the following: is d(o) constant on £?
A further argument for the pertinence of this question is the twin paper [UZ1] where it is proved
that d(o) is real-analytic in &.

Since the function d is also sub-harmonic in &y, it is natural, to study this question, to investigate
the boundary behavior of the function in &.

We define radial approach to & € (&) as approach along the curve w(¢™(T',)) where z €
0K (fo) N B(2,3), T, is the external ray landing at 2z and & = 7(p™ (2)).

The main result of this work is the following

Theorem 2.7 The function d is continuous radially at every point of Ow(&y)). Moreover d(c) >
if ¢ = (T (2)) where z is a preparabolic point for fo (i.e. fil(z) = i for some n > 0).

[SHI

(g) Phase dependence of Julia-Lavaurs sets. In this section we prove the following theorem
which is the topological ingredient needed needed to prove Theorem 2.7.

Proposition 2.8 The function o — J(fo,g,) is continuous from &gy to K({).

And indeed, Douady’s results from [1] extend without changes to the Julia-Lavaurs situation. In
particular Proposition 2.8 follows from the following.

Proposition 2.9 If o € &, then K(fo,9,) = J(fo,90)-

Proof. By the preceeding overview of parabolic implosion, in order to prove Proposition2.9, it is
sufficient to demonstrate that all periodic points are repelling except for the parabolic fixed point
1/2 which is virtually repelling at both ends if o € £y. The fact that the parabolic point is virtually
reppelling at both ends follows from the fact that £y lies entirely inside the strip {|y| < «} while
o’s with virtual indifferent or attracting ends have {|y| > 7w}. To prove that all periodic points
are repelling, one simply observes that the critical orbit (under (fo, g,)) accumulates only on J(fo).
Let z be a periodic point: if z € J(fy) then it is a periodic point of fy and thus it is repelling or



equal to 1/2. If z € Uy = 7774+ K (777, (fo)) it is then fixed by some G = gt and z e W = Uo\P,
where P denotes the critical orbit under (fy,g,). But then one can build an inverse of G from the
universal cover of W into itself fixing z; by Schwarz lemma, this points must be attracting and thus
z is repelling for G. B

3 A quick overview of conformal infinite IFS

Let S = {¢ : X = X}ier, X C IR? for some d > 1, be a conformal (infinite) iterated function
system (abbreviated as IFS) in the sense of [4]. For every n > 1 and w € I"™, put

¢w:¢w1o¢w2°"'o¢wn-

Let || - || denote the supremum norm over X. Following [4], given ¢ > 0 we set
w(t) = D lleill’
i€l
and

o 1 gt
P(t) = lim ~log > _ I |l"-
weln
The number P(t) is called the topological pressure of the parameter . Let

0 =05 = inf{t : (t) < oo} = inf{t : Y _ diam’(¢;(X)) < 00} > 0
el
and Let hg = HD(Jg) be the Hausdorff dimension of the limit set Js. The following result has been
proven in [4].

Theorem 3.1 tifs1 It holds
HD(Jg) = inf{t > 0: P(t) < 0} = sup{hr} > g

where the supremum is taken over all systems generated by the cofinite subsets of I.

Given t > 0 a Borel probability measure m is said to be ¢-conformal provided m(Jg) = 1 and for
every Borel set A C X and every ¢ € I

m(i(A)) = /A 164t dim (3.1)
and
m((X) N (X)) =0, (3.2)

for every pair 4,5 € I, 1 # j.
The following result has been proved in [4].



Theorem 3.2 A t-conformal measure exists if and on
exists at most one t-conformal measure.

The rest of the paper is devoted to the proof of Theore:
on X = w(&). The starting point of the proof is the s
IFS (Markov partition) of the Julia-Lavaurs set that 1
new feature is that the [6] partition is not sufficient her
the Julia-Lavaurs set if 7(c) € 0¥ implies that the [6] :
must thus refine the partition, and this refinement de
to illustrate the situation; they show what the Julia-
along two different kinds of external rays that will apea
approaches.

Values of the phase






4 The partition of J(fy,g,)

We start with the partition defined in [6], and that we will call DSZ. It is defined for Julia-Lavaurs
sets corresponding to @ € ¥ in the following way: we start with Ag, the piece which lies between
the external angles 1/3,2/3 and define Ap, as being the successive preimages of Ao that are in
the upper half-plane and Ay _, = Ap,. We then cut the upper wing of the butterfly at o« = 1/2
by taking A1 = g, '(Ao,o) and then Ay, = fI(A10), ¢ € Z; we continue on the other layers of
the wing building A, ,, »p > 0, ¢ € Z. Finally we do the same in the lower wing to get all the
Apq, P,q € Z. This partition can be performed in the closed annulus ¥ by continuity.

We now fix ¢ € 9% that we assume first not to correspond to a preparabolic point. We first cut
Ao into DSZ-cylinders of order 2 keeping all of them except the one containing g,(w) and its two
neighbours. We cut these three pieces into DSZ-cylinders of order 3, keeping all of them except the
one containing ¢,(w) and its three neighbours, and so on. The case g,(w) preparabolic is slightly
different. The procedure is the same until we reach the step for which g,(w) is the main cusp (the
one coresponding to « in the cylinder). We then simply cut the cylinder into DSZ-cylinders of the
next generation and stop the process. In both case we denote by {A4,} the partition of Ao we have
just described. Next we transfer this partition into all the DSZ-cylinders of order 1 inside the wings
of the butterfly at «, as {Ap g, p,q € Z, p# 0, n € IN}. Finally, denoting by s(z) = —z, we define
a partition of X = Ago as {B;} = {s(4oyg), ¢€ Z, |q| >2}U{s(Apgn), PEZ, p#0, g€ Z, n€
IN}. We claim that we can obtain in this way an infinite IFS. More precisely one can construct an
open simply connected neighborhood U of X such that for every i there exists an admissible (k,[)
and a neighborhood U; of B; such that g(l,f’l : U; — U is a conformal homeomorphism. This is due
to the fact that the B;’s have been constructed in such a way that their diameter is small compared
to their distance to the set of critical points of g,’ﬁ’l. The inverses of the maps g(’f-’l form our conformal
IFS. To finish let us mention that the ”partition” we have constructed is strictly speaking not a
real one since the pieces overlap. We maintain the abuse of notation since the overlap consists of
no more than one point and furthermore this point will appear to be not charged by any measure
we will consider. Finally the limit set of the IFS union its image by fo will be J(fo,g,) minus the
preparabolic points and the precritical points.

5 Determination of the -number of the IFS on 0Y

Recall from the previous section that the #-number of the IFS we have just constructed is the
infinimum of the numbers ¢ > 0 such that

> diam(B;)" < +o0. (5.1)

In 3, due to the fact that there is only one petal associated to the parabolic fixed point «, the
f-number for the DSZ-partition is equal to 1. Since the new partition is a refinement of DSZ the
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series (5.1) will be convergent if and only if ¢ > 1 and
> diam(A1 )" < +oo. (5.2)
n

Since A0 = g5 (An), dist(g,(w), An) > cdiam(A,), and since w is a critical point of order 2 of
g, we have
1
diam(A; o) = dist(g,(w), A,) 2diam(A4y,)

for all n, from which it follows that the §-number of the IFS is the infinimum of the set of positive
t’s such that

pt) = 3 dist(g, (w), An) ™ 2diam(Ay)" < +oc. (5.3)

Proposition 5.1 For all points on 0% 6€[1,4/3]. Moreover § = 1 if
liminf, ,|f5'(gs(w) —1/2] >0
while = 4/3 if g,(w) is preparabolic.

Proof: Assume first that g,(w) is not preparabolic. If we denote by C,, the DSZ-cylinder of order
n containing g,(w), then, C, 41 = Cr Ay, for some k,, € Z which indicates how close to the main
cusp we are inside Cy,. The contribution of the A/ s in (5.3) which are contained in C,, but not in
Cp+1 or its two neighbours is

1 _

2 2\—t
— — +
i (r*+4q°)

pult) ~ (diamCp) 2 3

P.9EZ

An easy computation shows that the quantity ¢, (t)/(diamC,,)"? is of the same order as

3, [lknl 3
|kn |22 / r2' 3 dr. (5.4)
1

If ¢+ > 4/3 then (5.4) is equivalent to a constant so that () = 3 ¢, (t) < C Y diam(Cp)"?joc
since diam(Cy,) decreases at least as fast as a geometric series. Moreover infy|f}(g,(w) —a| > 0
& (kp) € 1% and it follows that under this condition, for any ¢ €]1,4/3] we have, using (5.4),
on(t) < Clkp|> 3% < C"if t < 4/3 or p,(t) < Clog |ky,| < C" if t = 4/3. Finally in the preparabolic
case it is easy to see that ¢(t) < oo iff

>

D,9€Z, (p,q)#(0,0)

—t/2

1
P+ @) <ot >4/3.

p+iq

11



6 Radial approach.

We recall that 7, € ¥ converges radially to o9 € 0% if there is a lift o, of 7, such that g,, (w)
converges to gy, (w) along an external ray of J(fo). Moreover we may assume that zy = gy, (w) € Ag-

The purpose of this paragraph is to show that the external ray ending at zy does not pass too
close to the pieces A,,.

Proposition 6.1 There exists a constant C > 0 such that if z belongs to the external ray landing
at zo then

Vn > 0, dist(z, Ay) > Cdiam(Ay,).

Proof: The property is obvious if A, C Uy since already dist(A,,, J(fo)) > cdiam(4,). If 4, N
J(fo) # 0 we argue by contradiction. Suppose there is an n such that dist(z, A,) < ediam(A,). here
is a k such that A, C Cj but not in Cy4 or its two neighbours;

By bounded distortion, applying fy sufficiently many times and using the fact that fy maps
external rays on external rays, one may assume that A, = Agp and that the external angle is
between —7/6 and w/6. We get an obvious contradiction if € is small enough.

7 Scheme of the proof of theorem 1.

Leth be the Hausdorff dimension of J(fo, go,)- Let hy, be the Hausdorff dimension of J(fo, g5, ) and
my, the unique h,-conformal measure on the limit set. Taking subsequences, we may assume that

m, converges weakly to a measure m supported on J(foy,g,) and that h, converges to some number
l.

Lemma 7.1 | > h.

In order to prove this lemma we first observe that if two pieces of the DSZ-partition intersect, the
intersection consists in at most one point which cannot be charged by m since it is a preperiodic
repelling fixed point of (fo, g,). It then follows from [4] that m satisfies (3.1) Since

YLl < Y K m(pa(X)) < K,

|w|=n |w|=n

we get P(l) < 0 which implies that [ > h. The reasonning is now a bit weird: if [ = h, then there
is of course nothing to prove. We will then assume [ > h, from which we will deduce the crucial
formula

m({w}) = 0. (7.1)
We know already by the results of [6] that m({a}) = 0. If 7.1 is true, then the measure m is
supported on the limit set of our IFS so that, in view of Theorem 3.2 it must be the unique such
measure and [ = h which is a contradiction!

12



8 Proof of 7.1.

We assume that [ > h and we want to prove 7.1: it is enough to prove that there exists a function
Y: R, — Ry, (r) — 0, r — 0, such that

Vn 20, mn(B(0,7)) < (r). (8.1)

Due to the fact that 0 = w is critical of order 2 we may write

mn(B(0,r)) <C Y dist(gon (), Ak(0q)) /2 diam(Ay (0,))" (8.2)
keI(n,r)

where I(n,r) = {k; g,(B(0,7) N Ag(0oy,) # 0} and Ag(oy,) is the analogue of Ay = Ag(0p) for oy,.

Lemma 8.1 There exists C > 1 such that for every k > 0 and n large enough,
1
diam(4(on)) < Cdiam(Ay), dist(go, (0), Ak(on)) 2 Fdist(9o, (), Ak)

Proof: The first property is invariant by images under iterates of fy so we may assume that Ay is
a cylinder of order 1 of the DSZ partition. For the same reason we may even assume that

g0 (A) = Aoy
for some N > 0. The property then follows from the fact that

diam(Ag(0,)) ~ diam(Ax(00)) ~ (N +1)72.
In order to prove the second property we assume first that Ay is the cylinder of order 1 in DSZ such
that g¥ (Ag) = Agp for some N > 0. Fix (p as the extremity of Agg (i.e (o = —1/2=44) which is the

furthest to gy, (w) and let ¢, (, be the corresponding points in Ag(og), Ak (op)-
We claim that

|¢ — (u| < CNlog — op|diam(Ag(09))- (8.3)

To see this inequality we write b = ¢To(p~)~!, the horn map. The theory of parabolic implosion
shows that h'(Z) = 1+ O(e™Y). We have ;" (¢) = (¢7) LAY (¢1(¢)) and a short computation
shows

d d

0 () = (14 =X THOW (G (E) +0)

from which (8.3) follows since h'(AY~1(£) + o) = 1+ ey with 3 |en| < oo. Inequality (8.3) proves
the property for N < K|o, — 0| ~!: indeed recall first that diam(Ag(0,)) < Cdist(go, (w), Ax(on));
we may then write

13



dist(go, (w), Ak) < dist(go, (w), Ax(on)) + diam(Ag(on)) + |¢ — Cals
from which the result easily follows, using the first part. If N > K|o, — 0g|™!, then

dist (9o, (@), Ak (0n)) 2 |90, (W) = 1/2| = K{go, (w) = gorp (w))]

while
dist(goy, (w), Ak) < 9o, (@) = 1/2| + Clgo,, (W) — oo ()]

from which we can conclude if K is chosen big enough. During this proof we have used the fact
that |gs, (W) — goy(w)| ~ |on — 0o| and this fact follows from Koebe theorem and the fact that
Y*(0) = flowt (o — 1) which is univalent in a neighborhood of oy for large enough I.

In general there is a power fé (N € Z) mapping Ay to an Ay as before and it suffices to apply
the preceeding to og + [,0p +I. The lemma is proved.

We are led to estimate

> dist(go, (w), Ax)~"/?diam(Ag)". (8.4)
I(n,r)

We split (8.4) in two parts:
The first consists of the sum over those k’s for which

. 1 .
dlSt(gan (w)a Ak) > EdlSt(gao (w)a Ak‘)

which is bounded from above by the similar sum with o, replced by oy.
The rest consists of those k € I(n,r) that also belong to

1
&= {k € Z; diSt(gon (0)7Ak) < EdiSt(gao(O)aAk)}'
It follows from the definition that k£ € £ =dist(ge, (w), Ax) < %|go—0 (W) — 9o, (W)| = k € I(n,r) for
n large enough. Also k € £ =>dist(go, (w), Ak) < §|9on (W) — oo (W)]-

Suppose k € &£; let Ni be the unique integer such that Ay is a cylinder of order N +1 in Cl;,.
An important observation is that if ¥’ is another element of £ then Ny = Nj.

Lemma 8.2 For n large enough

han hu . 2-3h,
3" dist(go, (), Ap)~ F diam(4y)" < Cdiam(Cy) ¥ M, 2" (8.5)

ke

and
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hn hn _3 n
3" dist(gop (w), Ax) ¥ diam(Ag) > ediam(Cy) ¥ My 2™, (8.6)
ke&

where N = Ny, M, = diam(Cn)/|gs, (w) — g5, (w)|-

Before proving the lemma, let us show why it implies the result. By the lemma the quantity in (8.4)
is bounded from above by

Zdlst oo (@), A) M2 diam(A)"

where N, = inf I(n,r) — oo, r — 0, and this remainder converges to 0 by the discussion about
f0—number.

In order to prove (8.5) and (8.6) we may first, by bounded distortion, assume that N = 0 and
we put M = M,,. Then

) dist(go, (w), Ak)” iy * diam(A4y)" < C Z ‘

ke& p+iq M

where Ayy = {(p,9) € 2% |53 — 1 < owr b

<Cf Jeg

which proves (8.5). The proof of (8.6) is similar:

-4

1 3
ut | dudu < CM?* 2P

hn hy
S dist(gog (), A) ™ F diam(4) ¥ > ¢ 3 ‘
&

ApM.N

)
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