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We have analyzed entropy properties of coherent and partially polarized light in an arbitrary number of spatial

dimensions.
of the Barakat degree of polarization.
of the degree of polarization.

We show that for Gaussian fields, the Shannon entropy is a simple function of the intensity and
In particular, we provide a probabilistic interpretation of this definition
Using information theory results, we also deduce some physical properties of

partially polarized light such as additivity of the entropy and depolarization effects induced by mixing partially

polarized states of light.

Finally, we demonstrate that entropy measures can play an important role in seg-

mentation and detection tasks. © 2004 Optical Society of America

OCIS codes: 260.5430, 030.0030, 030.4280, 100.1000.

1. INTRODUCTION AND BACKGROUND

A. Introduction to the Problem

The polarization of light is a fundamental concept in op-
tics and is of interest in several active technological fields
such as imagery, telecommunications, medicine, and in-
strumentation. Many applications use active coherent il-
lumination and analyze the variation of the polarization
state. In this paper, we analyze the entropy properties of
Gaussian partially polarized light and discuss some of its
applications to statistical image processing. Our main
goal is to show that the entropy of Gaussian, partially po-
larized light is a central concept in engineering applica-
tions and can be easily generalized to an arbitrary num-
ber of spatial dimensions.

From a practical point of view, the case of polarimetric
images is of prime importance because of the present in-
terest of the image science community in active polari-
metric imagery.!™ Polarimetric imagers are powerful
tools for improving the information content of images,
since they can measure the whole polarimetric state, i.e.,
the Stokes parameters, of the light backscattered from
each pixel of the scene.*”” Polarimetric images can thus
reveal differences between objects that have different po-
larizing properties, which differences would not appear in
conventional intensity images.?®

One can note that in a coherent polarimetric image, the
state of polarization of each speckle can be perfectly de-
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fined, since it corresponds to a given realization of the
random coherent electric field. However, this polariza-
tion state may vary from one speckle to another, so that
from a spatial or ensemble-averaging point of view, the
light may be totally or partially depolarized.

Because of the speckle effect, when one uses coherent
light polarimetric imaging necessitates specific processing
techniques. We shall discuss two kinds of problems: es-
timation and decision tasks. To illustrate the first case,
object segmentation with a polygonal snake technique
will be discussed. This technique can be useful for target
recognition or shape measurement, for example. We
shall then analyze detection of inhomogeneities (e.g., tar-
get, default, or edge detection) with the generalized like-
lihood ratio test (GLRT). We shall show that this test is
related in a simple way to the estimated mixing entropy
of the different polarization states. Furthermore, we will
see that these entropy-based algorithms depend on the
data only through the determinant of the estimated co-
herency matrix, which can be written simply as a function
of the estimated mean intensity and of the estimated Bar-
akat degree of polarization.

Although we shall consider mainly the case of polari-
metric imagery in the following, the generalization of
these concepts to temporal signals is straightforward as
long as a Gaussian, partially polarized light model is

used.
To provide a rigorous description of the properties that
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we have mentioned, various definitions have to be clari-
fied; this will be the purpose of Subsection 1.B. In Sec-
tion 2 we will introduce the definition of the entropy of
partially polarized light and discuss its relation to differ-
ent information-theoretic measures. We will then be
able to discuss additivity properties of entropy and to
analyze entropy increase induced by mixing several
states of polarized light in different ways. These results
will be useful in Section 3, where two examples of image
processing problems will be discussed. We will conclude
in Section 4 and propose some perspectives.

B. Background on Gaussian Optical Fields

Classically, in dimension two the electric field E
= (E;, E;)7T of a speckled, coherent electromagnetic ra-
diation is represented by a two-dimensional (2D) complex
random vector? with covariance matrix I, defined by’

(IE11) (ElE’z*)}
(E2ET)  (IE,|*)

where the angle brackets denote ensemble averaging.
Assuming suitable ergodicity properties, this ensemble
averaging can correspond to different types of physical
averaging depending on the application considered. For
coherent images, it can correspond to spatial average or to
averaging over different diffusers of the same kind. For
slowly varying temporal signals, it can correspond to tem-
poral averages. This covariance matrix I" defines the 2D
polarization state of the electric vector and is frequently
called the “coherency matrix.”® Since it is Hermitian, I is
completely defined by four real-valued parameters: the
average intensities u;, uy, and the complex-correlation
coefficient p.

The well-known fully developed speckle mode
leads to an electric field vector represented by a 2D circu-
lar Gaussian random vector with a probability-density
function (PDF) equal to

M1 P

*

p* ma)

(1)

11112

P(E) = exp(—E'T7'E), (2)

72 det(T)

where the symbol 1 denotes the transpose conjugate and
det (') is the determinant of T'.

One can generalize the previous discussion to
d-dimensional electric vectors. In this case, the PDF is

1
P.(E) = exp(—E'T'E). 3)

e det(T")

Considering dimensions greater than two can be useful
for nonplane optical waves.!®> One can also consider the
situation in which the reflected electric field is analyzed
when a scene is illuminated with two orthogonal polariza-
tion states. For each incident polarization state one
measures the backscattered field in two orthogonal polar-
izations states, thus leading to a four-component vector.
In some cases and because of symmetry properties, one
can consider that there are only three independent mea-
sures that form a three-dimensional random electric
vector.'* One can also define d-dimensional electric
fields when simultaneous measurements at different fre-
quencies are performed. For example, let us consider
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that a partially polarized light with an electric field
E(¢)exp(iwt) is split into two waves, one of them undergo-
ing a frequency shift Sw. Assume that the polarization
states of these two parts are independently modified so
that one obtains the electric field E™W(¢)exp(iwt)
+ E@(t)exp[i(w + dw)t]. It can be useful to define a
four-dimensional vector E(t) = [EV@), EX @),
E(f)(t), E;Z)(t)]T and to study its entropy and degree of
polarization. Indeed, postulating a four-dimensional
vector is the standard approach in mathematics to consid-
ering possible correlations between the different mea-
surements.

2. ENTROPY OF PARTIALLY POLARIZED
LIGHT AND INFORMATION-THEORETIC
MEASURES

A. Shannon Entropy in Dimension d for Gaussian
Light
In this paper we consider light with a Gaussian PDF,
which will also be denoted Gaussian light. We shall
come back to this assumption in Subsection 2.C.

In dimension d the Shannon entropy is defined by'® S
= —[In[Pr(E)]Pr(E)dE, where [dE stands for complex
d-dimensional integration. In the 2D case one thus has

Sy = log[ w2 det(I")] + J'(ET‘lE)Pr(E)dE,

but since [(ET'E)P.(E)dE = 2, one gets S,
= log[7%e?det(I')]. The degree of polarization is defined
as Py = [1-4 det(D)/tr(I")%]2,° where tr(I) is the trace of
I', which represents the total intensity I,. One thus has
Sy = log[ 722l 2(1 — Py2)/4].

In dimension d the PDF of the electric field is given by
Eq. (3), and one can easily obtain the following property®:

Property A: The entropy of partially polarized light in
dimension d is

S, = log[ m%? det(")]. 4)
Defining the dimensionless parameter 6 = det(I)/tr(I")?,

one gets S, = log(7%?,?5). One can develop this ex-
pression to get three terms:

Sy = dlog(wl,) + log(8) + d. 5)

The first term on the right-hand side is representative of
the dependence of the entropy on the disorder in each
channel, which is a function of the energy. The second
one is linked to disorder due to decorrelation of the vari-
ous components of the electric field vector.

Different alternatives exist!®'%17 for the definition of
the degree of polarization in dimension d and are still a
subject of studies and discussion. We will show in this
paper that the Barakat definition'” is linked in a simple
way to the statistical properties of the Gaussian vector
field. Let us first write the entropy as a function of the
eigenvalues of the covariance matrix A, Ng,..., g

Milg... Ay

Sg=d + dlog(wl,) + log .
(N + Ag + -+ A

By analogy with the 2D case, let us consider a
d-dimensional definition of the degree of polarization: 1
— P = uhhg... \g/(A\; + Ay + -+ + A\p)%.  Since one
wishes that P; = 0 when Ny = Ny = -+ = N4, it is clear
that one needs to choose u = d¢. Since det[I'] and tr[I']
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are invariant by any unitary transform, P, is also invari-
ant by any unitary transform. At that level, no simple
choice of n has been proposed and one may arbitrarily
choose n = 2. When d = 3 one obtains the Barakat
definition!” of the degree of polarization 7% = 1
— 27det(I)/tr(I")3; this denomination will also be used
for arbitrary dimensions. In dimension d the entropy is
thus obtained with the following corollary of Property A.

Corollary A.1: The expression of the entropy of par-
tially polarized light in dimension d as a function of the
intensity and of the Barakat degree of polarization is

S, =d|1 + log + dlog(Iy) + log(1 — P2). (6)

In dimension three the entropy is thus S5 = 3[1
+ log(m/3)] + 3 log(y) + log(1 — P2).

B. Additive Property of Entropy

Let us consider the three-dimensional vector field model
in the case where the actual vector field lies within a
plane, i.e., is (2D). One eigenvalue is then equal to 0 (let
us assume that it is A3) and entropy goes to —o°, which
can be a problem in practical cases. This divergence is
due to the fact that one considers a PDF instead of a prob-
ability law. In other words, this divergence is due to the
representation of the electric field with continuous vari-
ables. In reality, several arguments lead to a nonzero
lower bound € for A\3. One can, for example, consider
quantum indetermination for the spatial frequency vec-
tors % or residual noise on detectors. One thus gets

€
Ss =3 + 3log(wly) + log ——
3 g(ml) g O+ )
NNy
+ log| ———|,
(N1 + Ng)?

and finally S5 = 1 + log(me) + Sy, which corresponds to
the additive property of the entropy of independent sub-
systems.

Let us discuss this property a little further. Let us as-
sume that we have a pure, vertically polarized light with
intensity  aql,. Then its entropy is S;=1
+ log(ma;ly). Now if one considers a pure, horizontally
polarized light with intensity asl,, one obtains the en-
tropy S; = 1 + log(mayly). Since both cases are as-
sumed independent, the entropy of the union of both sys-
tems should be the sum of the entropies; thus Sy, = 2
+ 2log(wl,) + log(ajas). One can note that the union of
both systems is nothing but a 2D partially polarized light.
If we add a third orthogonal component, we obtain S;
= 3 + 3log(wl,) + loglayagas). In other words, one
finds the classical result that for independent systems,
our definition of the global entropy corresponds to an ad-
ditive combination of the entropies of each subsystem,
which is not always the case with other definitions of the
entropy.!® In particular, when \; reaches its inferior
limit value €, the entropy reduces to S3 = 1 + log(me)
+ S,.
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C. Probabilistic Interpretation

Many different definitions of entropy have been
proposed.’® One can thus wonder why the Shannon defi-
nition should be preferable to others, such as the Renyi
entropy, for example, which has also been found useful for
image processing problems.?’ In fact, the Shannon en-
tropy has a simple probabilistic interpretation that is the
origin of its great success in information theory.!’® Let us
consider an experiment in which we observe N indepen-
dent measurements of the electric field of a partially po-
larized light. Let us also assume that the measurements
are performed with a precision g with ¢2?¢ < det(I"), so
that one can consider PDFs instead of the probability
laws obtained after quantification; or, in other words, one
can consider integration instead of summation.

We thus obtain a series of N complex vectors from
which we can determine the number of times N(E) the
value E is observed with precision ¢ on each component.
The ratio N(E)/N is the frequency F(E) of the realization
of the value E in the observed series of length N. We will
write this frequency F(E) with the density Q(E) defined
by Q(E) = F(E)/q??. Tt is well known that Q(E) con-
verges to the probability density P(E) when N — +oo,
Let us address two questions when N becomes large but is
still finite:

1. What is the probability of observing the frequency
F(E) = Q(E)q%%?

2. How many different series exist with Q(E)
= P(E)?

The answer to the first question is easily obtained if we
introduce the Kullback measure:

®) Q(E)dE (7
P(E) '
When N is large and ¢2¢ < det(I'), the probability
Prn(Q|P) of observing the frequency F(E) ig?!

PN(Q|P) = exp[ —NK(QIIP)]. (8)

Since K(QIP) is positive if @ # P'® and K(QIP) = 0 if
® = P, Eq. (8) is of course in agreement with the fact
that when N — +oo, series for which @ = P have a prob-
ability of unity of being observed, while other series have
a negligible probability.

A direct calculus® allows one to show that the Kullback
measure between two Gaussian distributions Pr (E) and

Prb(E) is given by
j log

[det(l“b)
%8 det(T,)

When Pra(E) and Py b(E) correspond to PDFs of states of
light with the same intensities, and when Pr, (E) is the
PDF of a totally depolarized light, one gets

K(Pr IPr,) = —log(1 — P2) (10)

K(QIP) = f log

Py (E)

K(Py |Py,) = Py (E)dE

Py, (E)

+ (LI, —d, (9

where P, is the Barakat degree of polarization of the light
of PDF Pra(E)~ One thus obtains the following property:



Refregier et al.

Property B: In a series of N measurements, the prob-
ability of observing the frequency Pr (E) g%? that corre-
sponds to a light with intensity I, and Barakat degree of
polarization P, when the light is in fact totally depolar-
ized with intensity I, is

Py(Pr |Pr,) = (1 = PHON. (11)

Let us now address the second question, which pertains
to series for which @(E) = P(E). When N is large and
q%? < det(I'), the number My of different series is
simply?! My = exp{N[S; — 2d log(q)]}, where S, is the
entropy of P(E). This interpretation makes it clear that
Shannon entropy is a measure of the potential disorder of
partially polarized light. Let us compare two states of
light with the same intensity I, but with respective de-
grees of polarization P, and P,. One gets from Eq. (6)
the following property:

Property C: Considering two lights of the same inten-
sity and with degrees of polarization P, and P, , one has

AN
= ) (12)
My Ao m
where M@ (respectively MY) is the number of different

series of length N of the light of degree of polarization P,
(resp. P,) for which the frequency of observing E is
Py (E) q%¢ [resp. Prb(E)qw] when ¢2? < det(T).

Since to assign a number to M objects, one needs at
least logy(M) bits (where log, is the base-2 logarithm), one
finds that the minimum number of bits to encode N inde-
pendent measurements of the electric vector E will be
logy(MEy), and thus N [S; — 2d logy(q)], where S is the
entropy defined with the base-2 logarithm. This well-
known result in information theory can be rigorously
proved and is the subject of one of the Shannon
theorems.?? Property C thus allows one to see that en-
coding N realizations of a partially polarized light with a
degree of polarization equal to P; will require N logy(1
— P%) fewer bits than to encode N realizations of a totally
unpolarized light with the same intensity. 1 — P2 is
thus a measure of the information disorder of the light or,
equivalently, the Barakat degree of polarization is a mea-
sure of the information order of the light.

In the previous sections we assumed that the PDF of
the electric field of the light was Gaussian. This assump-
tion was made following the initial arguments of Good-
man and Dainty on the theory of speckle.'? The previous
discussion allows us to obtain a new insight into this as-
sumption. We have seen that the number of different se-
ries My that can be observed with a frequency of observ-
ing the electric vector E equal to Pr(E)q2? diverges as
exp{N[S,; — 2d log(¢)]}.2! Thus for a given coherency ma-
trix I', the PDF of the light that maximizes the entropy is
the most complex one in the sense that it leads to the
largest number of different possible series My when N
becomes large.

The problem at hand is thus to determine Pr(E) for
which S = —[ In[P(E)]P(E)dE is maximal with the
constraints that (EfE;) = T;; and [ P(E)dE = 1. The
solution to this problem is well known?* and in fact leads
to the PDF of Eq. (3). The light that maximizes the en-
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~ 1 EY with proba. 1 — &
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Semireflecting plate

E()

- >
E@ = /a E® +/1T—ae¥ EO

E®
Fig. 1. Illustration of two different types of mixing: top, ran-
dom choice between E*) and E®; bottom additive mixing of E®
and E©®.

tropy with a given coherency matrix thus corresponds to
Gaussian light; in other words, the Gaussian assumption
is equivalent to assuming maximal complexity from the
entropic point of view.

D. Mixing Entropy and Chernoff Distance

We propose in this subsection to analyze the evolution of
the entropy in two kinds of experiments involving mixing
of Gaussian, partially polarized states of light. The first
one corresponds to mixing due to random choice between
Gaussian partially polarized states of light, the second to
the addition of independent Gaussian partially polarized
light. In particular, we will show that the mixing en-
tropy of the addition of independent Gaussian partially
polarized states of light is equal to the Chernoff distance,
which is a well-known information measure in statistics.
We will show in Section 3 that these results are useful in
practical engineering problems.

Let us first consider a mixing that corresponds to dis-
order introduced by a random choice between electric
fields E“ and E® [see Fig. 1(a)l. More precisely let us
assume that the measured electric field E is E with
probability « and E®) with probability 1 — a. The cova-
riance matrix of E is al’', + (1 — o)y, but E is not a
Gaussian field even if E® and E® are Gaussian. Since
among random fields of covariance matrix ol', + (1
— a)I'y Gaussian fields have the largest entropy, the en-
tropy Sf of E satisfies the inequality

SE < 8, = log{n%e?det[al, + (1 — a)[,]}. (13)

Noting that the entropy of E (respectively E®) is
S(a) = log[ 7% det(T',)] (respectively S(b)
= log[n%? det(T',)]), one can define the mixing entropy as
ASE = 8% — [aS(a) + (1 — a@)S(b)]. Let us establish
the following property:

Property D: The mixing entropy ASf = Sff — [aS(a)
+ (1 — @)S(b)] of a random choice between electric
fields E*’ and E® is positive.
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To demonstrate this inequality, let us introduce the
PDF P, (E) of E, which is equal to aPr (E) + (1
— a)Pr,(E), where Py (E) and Py, (E) are the PDFs cor-
respondmg to the Gau551an fields @ and E®). The en-
tropy of E is S, = —[H[P,E)]JdE where H[z]
= zlogz. HJz] is convex, and thus —H[z] is concave.
So one can deduce that

~H[aP (E) + (1 - a)P;(E)]
= —aH[P; (E)] - (1 — o)H[P (E)];

thus S¥ = aS(a) + (1 — a)S(b).

This property means that if a partially polarized light
is diffused without energy absorption, its entropy cannot
decrease, which corresponds to the following corollary:

Corollary D.1: If partially polarized light with Bar-
akat degree of polarization P, is diffused without energy
absorption, then the diffused light cannot have a higher
Barakat degree of polarization P (i.e., P; < Py).

Let us us now consider the second example, in which
two independent Gaussian electric fields E/* and E®
with respective PDFs Py _(E) and Pr, (E) are merged so as
to  obtain E©@ = ()VE® + (1 — o) exp(ip)E®),
where ¢ accounts for a possible phase difference between
the two terms [see Fig. 1(b)l. The entropy 8‘2 of this
mixed field E'® is easily obtained since it is a Gaussian
field with covariance matrix al', + (1 — @)y, and thus
SA = log{ne? det[al, + (1 — a)T,]. One can now estab-
lish the following property:

Property E: The mixing entropy AS4 corresponding to
E@ = (o)?E@ + (1 — &) exp(i¢)E?,
where E and E® are independent and have respective

PDFs Py (E) and Pr,(E), is

det[al', + (1 — a)T']
ASA = log : (14)
det(T",)* det(T',) 1~
One can see that if I', = 'y, then AS? = 0.
easy to show the following property:

It is now

Property F: The mixing entropy AS‘;‘ corresponding to

E@ = JaE@ + (1 — o) exp(i)E®),

where E® and E® are independent and have respective
PDFs Pr _(E) and Pr (E), is nonnegative.

Indeed one has S2 = S® and thus AS4 = ASE .

The particular case of this property when det(I,)
= det(I',) shows that the entropy of the mixed field E‘® is
higher than the entropy of each individual field E‘ or
E), which leads to the following corollary:

Corollary F.1: When one adds independent Gaussian
partially polarized lights with the same Barakat degree of
polarization P;, the Barakat degree of polarization P of
the mixed light cannot increase (i.e., P; < P,).

The previous probabilistic interpretation of entropy is
interesting for information processing applications. Let
us consider a two-hypothesis testing (or detection) prob-
lem between two different partially polarized states of the
light with PDF given by Eq. (3) but with different covari-
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ance matrices I', and I', . It has been shown?! that the
probability of error can be approximated by the Chernoff
bound. Indeed, for decision problems on series of N mea-
surements, only some specific series will have nonnegli-
gible influence on the probability of error. These corre-
spond to series for which the frequency of realization of
the electric field vector E is equal to @* (E)g2¢ such that
Pn(Q*|Pr) = Pn(Q*|Pr,). Since Pn(Q|Pr))
= exp[-NK(QIPr )] and PN(Q|PF ) = exp[~NK(QIPr,)],
®* is obtained by writing K(Q*IIPr ) = K(Q*IIPr,). It
can be shown?! that

[Py (E)]' '[P (E)]*

Q*(E) = — ot
ITPr (B)]* [Py, (E)]*" dE
where s* is the value of s that minimizes
J[Pr, (E)]~ *[Pr,(E)]°dE.  The Chernoff distance be-
tween the PDFs Pr (E) and Pr,(E) is defined?! as a func-
tion of s by

Cls) = —log{ f [Py, (B)]' [Py, (E)]dE|.

It can be proved (see Appendix A) that C(s) =
dC/ds(0) = K(Pr IPr,), and dC/ds(1) = —K(Pr |IPr ).
Furthermore, K(Q* Py ) = K(Q*IPr,) = C(s*).

One can obtain (see Appendix B) a physical interpreta-
tion of C(s) as a function of the entropy of the different
partially polarized states:

Property G: The Chernoff distance C(«) between the
Gaussian PDF's Pr (E) and Pr (E) is equal to the mixing
entropy AS, correspondmg to E@ = (o)V?2E@ + (1

)2 exp(i<p)E(b ), where E@ and E®® are independent
and have respective PDFs Pr (E) and Py, (E).

Let us now analyze the particular case where partially
polarized light with a degree of polarization P is diffused
into a new state of light so that a part « of that light has
been totally depolarized. In this case the final state of
the light, with a degree of polarization P(«), can be con-
sidered as an additive mixing of the initial state with to-
tally depolarized light with coefficient @. The entropy of
this light can be denoted S, ; let S; correspond to the en-
tropy of the initial light. Let us assume that only a small
amount of light is totally depolarized so that « < 1. One
has S, = AS, + [aS, + (1 — a)S;], where S, is the en-
tropy of the totally depolarized (or unpolarized) part of
the light. Since AS, = C(a) and a < 1, one has S,
= 9Clda(0)a + [aS, + (1 — a)S;]. We have seen that
dC/3a(0) = K(Pr |IPr,), where I', is the coherency ma-
trix of the initial light and I', is the coherency matrix of
the totally depolarized part of the diffused light with the
same intensity I, for both states. We have also seen, in
Subsection 2.C, that K(Pra”PFb) = —log(1 — P?), where
P is the Barakat degree of polarization of the initial light.
Furthermore since S, = d[1 + log(#/d)] + dlog(l;,) and
S; = d[1 + log(w/d)] + dlog(,) + log(1 — P?), one gets

S,=8; — 2alog(l — P?), (15)

which can also be written with the degrees of polarization
as
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log[1 — P(a)?] = (1 — 2a)log(1 — P?), (16)

which is a simple relation for the evolution of the Barakat
degree of polarization.

3. APPLICATION TO STATISTICAL
PROCESSING

In the present section we discuss statistical algorithms
that can solve a variety of problems in coherent polari-
metric images.

Automatic detection and recognition of objects by
means of passive imaging systems, such as passive IR
sensors, suffer from limitations, and it can be interesting
to increase the contrast between targets and their back-
grounds. Polarimetric imaging is one of the possible
techniques to increase this contrast. Since our purpose
in this paper is to illustrate applications of the previous
concept of entropy of partially polarized light, and not to
analyze the general problem of image processing and au-
tomatic target recognition, the reader may refer for ex-
ample to Ref. 25 for a general introduction to this topic
and to Ref. 26 and references therein for applications to
polarization imaging.

We will define an image model and consider two pro-
cessing tasks, segmentation and detection, which corre-
spond, respectively, to an estimation and a decision prob-
lem.

A. Image Model and Maximum-Likelihood Processing
Image segmentation consists of partitioning an image
into a number K of regions having homogenous proper-
ties. For the sake of simplicity, we will consider here
only the case of K = 2 regions. We thus assume that the
considered image, or subimage, E(x, y) with (x, y)
e [1,N,] X[1,N,] can be divided into two homoge-
neous regions (7 and Q) modeled as follows:

E(x, y) = E,(x, y)wi(x, y) + Ey(x, y)wi(x, y) an
17

where the w? (1 = a or b) are the binary masks that de-
fine the regions Qf, that is, w’(x, y) = 1 in region Qf
and 0 elsewhere. The polarimetric vectors representa-
tive of the electric field in each region Q/ are assumed to
form a sample E, (x, y) distributed with a spatially un-
correlated, homogeneous, Gaussian circular PDF as de-
fined in Eq. (3). Please note that for the sake of simplic-
ity, we define the image E(x, y) in terms of the electric
field, although it is not the electric field, but quadratic
values corresponding to the coefficients of the coherency
matrix that are measured in optical polarimetric imaging
systems. However, we will see in the following that the
only needed information to process the images can be de-
termined with the coefficients of the coherency matrix. 6
is the vector of parameters that depend on the task to be
performed. For segmentation of a single object over a
uniform background, 6 specifies the shape of the mask
and can be defined in several ways depending on the
model of the object contour. In the following a polygonal
model will be considered and 6 will thus contain the coor-
dinates of each node of the polygon. For target detection
applications, # is a binary value that is 1 if a target of
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shape w(x, y) is present and zero if it is absent. In other
words, in hypothesis 1, w;(x, y) = w(x, y) and wll,(x, y)
= 1 — w(x, y), and in hypothesis 0, w’(x, y) = 0 and
wix, y) = 1.

In the following statistical algorithms, it will be neces-
sary to determine the likelihood of each region Q! with
u=a,bofN 3 pixels. Its mathematical expression is

L(T,) = —N?log 7w — N log[det(T',)]
- X Ex yT,'Ex,y). (18)

(x.)e0f

In most applications the coherency matrices I', and I'y
are unknown. One thus estimates them from the sample
in the maximum-likelihood sense and injects these esti-
mates back into the expression of the log-likelihood. A
nontrivial but classic calculus shows that the ML esti-
mate of the coherency matrix in each region is simply the
empirical covariance matrix of the sample?”:

ri--L ¥ Ea yEw )" (19)

Ni (xy)0f

This estimate of the covariance matrix is sufficient statis-
tics for the problem at hand.?® This means that it gath-
ers all the information about the sample that is useful to
estimate the polarization state. Injecting this estimate
of I', in Eq. (18) one obtains the following “profile” likeli-
hood:

2,(6) = —~N"log{det(T?)] — dN’(1 + log m). (20)

Only the first member on the right-hand side of Eq. (20) is
of interest, the second member being a constant. It is im-
portant to note that what is needed to determine the pro-
file likelihood is just the determinant of the estimate of
the coherency matrix of the sample, which can be com-
puted from the measures provided by polarimetric imag-
ing systems. In other words, if one denotes P;(u) as the
estimated Barakat degree of polarization in region Q’

with P,%(u) = 1 — d¢ det()/(tr T?)¢, one obtains

L,(6) = —Nz{dlogdu) + log[1 — Py2(u)]

e
+d log(%)}, (21)

where I . = tr T'? is the empirical mean value of the in-
tensity in region Q7. This result shows that the profile
likelihood is a simple function of two empirical values 1 “
and Py(x). One can also remark, with Eq. (6), that the
likelihood is proportional to the entropy but with esti-
mated values of the intensity and of the Barakat degree of
polarization.

B. Minimum Entropy-Based Snake Segmentation

Let us first consider object segmentation applications.
As seen previously, the parameter vector 0 parametrizes
the shape of the object, and we will use a polygonal model
for the contour of the object: The parameter vector 6 is
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constituted of the coordinates of each node of the polygon.
A technique based on the minimum description length
(MDL) principle introduced by Rissanen?® has been devel-
oped in Ref. 30 and consists of finding the shape param-
eter vector 4 that leads to a description of the image with
a minimum number of bits. This technique is analogous
to those developed in Refs. 31 and 32 and allows one to
estimate the shape and the number of nodes of the poly-
gon used to perform the segmentation. This approach
leads to a segmentation technique based on the minimi-
zation of a criterion without free parameters. Since the
image is composed of three parts (the target, the back-
ground, and the contour), A is the sum of three terms:
the length A, of the description of the target gray levels,
the length A, of the description of the background gray
levels, and the length A, of the description of the param-
eter 0 that defines the polygonal shape. Let us first pro-
vide an approximation of A,. The number of possible lo-
cations for one node is N. Thus for £ nodes, the number
of different locations is N*, and we will consider that it is
an approximation of the number of different polygons.
The number of bits sufficient to describe the polygon (if
they are assumed equally likely) is thus approximately
logo(N®) (where log, is the base-2 logarithm). As men-
tioned in subsection 2.C, the mean number of bits needed
to describe N, random variables distributed with PDF
Pr (x) is A, = N,[S, — 2d logy(q)], where S, is the en-
tropy in bits of the PDF and is given by S,
= —f Pr (E)logy[Pr (E)]dE, and where ¢ is the quanti-
zation precision. Since the contribution of logy(q) will
consist only of adding a constant term to the description
length, it will not be taken into account in the following.
The mean number of bits sufficient to describe the back-
ground region is thus A, = NS, , and the total descrip-
tion length (in nats; i.e., using natural logarithms) is
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A =N,S, + NS, + klog(N). (22)

The entropy can be approximated by using the empiri-
cal mean instead of the statistical mean; one obtains
N,S, = -3, ca? log[Pra(Ei)], where the pixel set Q7 is de-
fined by w; = 1, i.e., it is the interior of the polygon w.
Furthermore when the coherency matrices I', and I', are
unknown, one can estimate them from the sample in the
maximum-likelihood sense as discussed previously. It is
thus easy to see that an approximation of —N,S,
— NS, is given by the profile log-likelihood £,(6)
+ L3 (6) of the hypothesis that, in the image, the shape of
the target is defined by the parameters 6. This is nothing
but the statistical expression that was minimized in Ref.
33. One can thus see that the MDL principle leads to the
minimization of

Agpp = N2 1og{I[1 — PA(@)]} + N{log{Ii[1 — P2(b)]}
+ klog(N) — Cst, (23)

where Cst = dN log(en/d). It can be noted that since it
is based on the estimation of the entropy of the image,
this segmentation technique mainly relies on two statis-
tics: the empirical Barakat degrees of polarization
P,2(1) and the mean intensities I . estimated in each re-
gion.

The optimal value of shape parameters °* is thus ob-
tained by simultaneously determining the values of 2 and
¢ that minimize A,,,. This double optimization problem
is nontrivial, and the adopted strategy may have strong
influence on the quality and relevance of the application
of the MDL principle. The simplest strategy will consist
of determining the segmentation #*) that optimizes the

Fig. 2. Segmentation of a polarimetric image extracted from an image acquired with the NASA-JPL AIRSAR system: (a), (b), (¢
modulus squares of each channel of the polarimetric image; (d) segmentation result on the intensity channel (a) with the MDL polygonal
snake (a gamma PDF has been assumed); (e) segmentation result on the 3-complex channel polarimetric image with the MDL polygonal
snake. For both segmentation examples, the initial contour was the white square represented in (a).
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MDL criterion A, for different fixed values of £ and then
selecting the value of £ that leads to the minimum value
of Aypp-

An efficient technique has been proposed in Ref. 30,
and it can be generalized to polarimetric data. We have
used it to segment a polarimetric synthetic-aperture ra-
dar image in Fig. 2. Such images consist of three chan-
nels (d = 3) with complex values, in which the noise due
to speckle is distributed in first approximation with a
Gaussian circular PDF as in Eq. (3).>* We have repre-
sented in Fig. 2 the modulus squares of the three chan-
nels and the result of the segmentation of the object of in-
terest in the center with the snake. We have applied the
snake to a single intensity channel [see Fig. 2(d)] and to
the fully polarimetric, 3-complex channel image [see Fig.
2(e)]. It can be seen in this example that using the pola-
rimetric information can help in distinguishing the object
of interest from the background.

C. Maximum-Likelihood-Based Detection

In image processing applications, one often needs to de-
tect the presence of a target at any position in an image:
This is a combined detection—localization problem. In
practice, the scene can be scanned with a binary mask F,
for example a square region of dimensions M, X M, that
is larger than the mask w defining the target, to detect—
localize. Let w denote the complementary of w in F.
The generalized likelihood ratio test (GLRT) is a standard
technique for detecting features such as targets, inhomo-
geneities, and edges. For each position of the mask, the
GLRT consists of computing the ratio of the profile likeli-
hoods of the following two hypotheses:

e H,: There is a target in F, and the samples in w
and w have different coherency matrices I', and I';, .

e H,: There is no target (only background) in F, and
the samples in w and w have the same statistical distri-
bution.

It can be shown that the expression of the GLRT is%

R = —N, log{det(T,)] — N, log[det(T})]
+ Nplog[det(I's)], (24)

where N = N, + N, and where fa , fb , and fp are the
estimates of the covariance matrices in w, w, and F. De-
tection is performed by comparing the value of the test
statistic R with a threshold for deciding if the target is
present or not at the current location.

Since f‘F =N, /NFf‘a + N, /prb one can write

. det[al, + (1 — a)T}]
R = (N, + N)log . . , (25)
det(T",)*det(T,) 1~

with @ = N,/(N, + Ny). R can thus be interpreted as
the empirical mixing entropy AS « of AS, defined in Eq.
(14). R is thus also related to the Chernoff distance C(«)
between the PDFs Py (E) and Pr,(E) through Property
E. Since the profile log-likelihoods of the gray levels in
these regions are given by Eq. (21), one finally gets
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R = —N,d log[I,] — Nudlog[l,] + Nyd log[1z]
~ N,log[1 — P,%(a)] — Nylog[1 — P,2(b)]
+ Nplog[1 — PAF)], (26)

where I, = tr T’ and P,%(F) = 1 — d? det(T'i)/(tr T'5).
Thus here again the detection technique is based mainly
on two statistics: the empirical Barakat degree of polar-
ization P,%(z) and the mean intensities I . estimated in
each region.

In practice it is useful to characterize the detection per-
formance as a function of the contrast between the target
and the background. This contrast obviously depends on
the difference between the statistical distributions of the
gray levels of the two regions. There are several ways to
express this difference; one can use, for example, the
Kulback—Leibler measure defined above [see Eq. (7)].
Through the Stein’s Lemma,?! the Kulback—Leibler mea-
sure describes the asymptotic behavior (for large N) of the
probability of detection or of false alarm. However, the
distributions Pye(x) and Pys(x) do not play symmetric
roles in the Kulback—Leibler measure, which may be an
undesirable property for a contrast parameter. We will
thus consider the Kullback divergence, which is a symme-
trized version of the Kullback—Leibler measure and is de-
fined as

D = K[PllPy] + K[PplPpl. @7

We have chosen dimension d = 2, and we have consid-
ered many different configurations of ', I'y, N, and «
= N,/N, + N,. For each configuration we have esti-
mated the detection performance in terms of the AUC,
which is the area under the receiver operating
characteristic.>® The AUC varies between 0.5 and 1, and
it increases with the detection performance: AUC = 0.5
corresponds to the worst possible detection performance
(random choice) and 1 to the best possible one (probability
of detection of 1 whatever the probability of false alarm).
We have then plotted the AUC corresponding to each con-
figuration of I';,, I';, N,, and « as a function of the cor-
responding Kullback divergence multiplied by the num-
ber of pixels of the target; that is, N,D. It can be seen in
Fig. 3(a) that the relation between the AUC and N,D ob-
viously depends on N, and on a. For a given value of
N,D, the AUC is larger both when N, is larger and when
a is smaller (that is, N, becomes larger). Since different
values of the AUC can be obtained with the same value of
N,D, the Kullback divergence does not represent the con-
trast between the target and the background.

Now we can use the fact that the GLRT is proportional
to an estimation of the Chernoff distance between the
PDFs Pr (E) and Pr,(E), as seen in Eq. (25). Thus in
first approximation, the detection performance of the
GLRT should depend mainly on the actual Chernoff dis-
tance, or, more precisely, on (N, + N,)C(a). This conjec-
ture is verified in Fig. 3(b), where we have represented
the AUC for the same configurations as in Fig. 3(a) as a
function of (N, + Ny)C(a). It can be seen that all the
points gather around a master curve. In other words,
when one knows the value of (N, + N,)C(a), one can ap-
proximately deduce the detection performance that will
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Fig. 3. AUC in function of (a) N,D and (b) (N, + Ny)C(a),
where C(a) is the Chernoff distance and « = N,/(N, + Np).
Each point corresponds to a different configuration of parameters
(I'y, I'y, N, @). The AUC for each configuration has been es-
timated on 10* Monte Carlo trials.
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Fig. 4. AUC in function of (N, + N,)C(«) for different values of
aand N, = 20. Inset, same results for N, = 4.

be obtained. This result is, of course, quite interesting in
practice, although the relation is not completely bijective,
since the GLRT is only an approximation of the Chernoff
distance based on the data. The approximation is better
when N, and N, are larger. This is verified in Fig. 4,
where we have considered the cases of N, = 20 for differ-
ent values of @ and of N, = 4 (see inset). It can be seen
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that the relation between the AUC and (N, + N,)C(«) is
better described by a bijective relation for the larger tar-
get.

4. CONCLUSION

In this paper we have analyzed entropy properties of co-
herent and partially polarized light in an arbitrary num-
ber of spatial dimensions. We have shown that the
Shannon entropy is a simple function of the intensity and
of the Barakat degree of polarization in the case of Gauss-
ian light, which corresponds to the maximum complexity,
i.e., which leads to the maximum number of different
measurement series. We have provided probabilistic and
information-theoretic interpretations of the entropy and
thus of the Barakat definition of the degree of polariza-
tion. We have deduced physical properties of partially
polarized light, such as additivity of the entropy and de-
polarization effects of mixing partially polarized states of
light. Finally we have demonstrated how the entropy
measure can be applied to segmentation and detection
tasks.

Further developments can be envisaged. In particular
it would be interesting to study how one can establish
links with image processing techniques based on the
Mueller matrix. It would also be useful to analyze the re-
lations of the present study with other definitions of the
entropy'® and of the degree of polarization.®

APPENDIX A
Let us introduce U(s) = fPra(E)l*SPrb(E)sdE. One
has

Py (E)

d
—U(s) = J' log P (E)

ds

v, (B)' Py (E)*dE;

thus

d Prb(E)_
&U(O) = f log_Pra(E)_Pra(E)dE = —K(Pr |Pr,),

[ Pr,(E)

d
—U1) = f log P, (E)dE = K(Py Py ).
ds b b a

| Pr (E) |
Furthermore

1 d
—Uls),

a, a,
G T TGl = T &

and U(0) = U(1) = 1; thus d/dsC(0) = K(Pra”Prb) and
d/dsC(1) = —K(PFbHPFa). One can also obtain

d2
—2U(s): j log

Py (E)lfsprb(E)sdE,
ds ¢

P (E)
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which shows that (d%/ds?)U(s) = 0; one thus sees that
U(s) is convex on [0,1]. Since U(0) = U(1) =1 and
U(s) is convex on [0, 1], one has U(s) < 1 and thus
C(s) = 0 since C(s) = —log[U(s)].

APPENDIX B
One has
Pr (E) = ————exp(—ET,'E),
‘ 7% det(T',)
1
P (E) = exp(—E'T,'E).

7w det(T',)

The mixing entropy is

det[al', + (1 — a)T}]
det(T',)@ det(T',) 1~ |

AS, = log[

Let us determine the Chernoff distance C(s)
_IOg{f[Pra(E)]lfs[Prb(E)]SdE}. If one defines U(s)
= [[Pr (E)]' [Py (E)]dE, one has

U(s) = (1/A)J exp{—E'[(1 — s)[';! + sT,'|E}dE
with A = 7% det(I',)'* det(I',)*. One can easily obtain
det[(1 — s)I',; ' + sy ]!

det(I",)'~* det(T'y)*

Using standard properties of determinants, one gets

U(s) =

det(I",)® det(I',)* ¢
) = Getl(1 = s)T, + sT.]°
and thus, since C(s) = —log[U(s)],

det[(1 — s)I'y + sT',]
det(T,)® det(T'y)1~¢
which proves that C(a) = AS,.

C(s) = log
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