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Abstract

In SAC’04 Bajard et al. introduced a new system of representation for integer arithmetic
modulo a prime integer p, the Modular Number System. The multiplication in the MNS
consists of a multiplication of two polynomials and a reduction of the coefficients. In this
paper, we propose to use a Lagrange Representation to perform the polynomial multipli-
cation in the MNS Algorithm. This method provides a multiplier with a complexity of n
multiplications and n(3 log2(n) + 2) additions of computer words. In practice, our method
becomes better than usual methods when the size of the fields are larger than 500bits.

1 Introduction

For efficient implementation of cryptographic applications like Diffie-Hellman key-exchange
protocol [7] or ECC [10, 9] its is necessary to have efficient modular integer arithmetic.
Specially, for Diffie-Hellman key exchange the main operation is an exponentiation modulo
a prime integer p: this operation is generally done using a chain of square and multiply
modulo p. For ECC the main operation is the scalar multiplication which requires additions
and multiplications modulo a prime integer p.

The multiplication modulo p consists to multiply two integers A and B and after that
to compute the remainder modulo p. The methods to perform this operation differ if the
integer p has a special form or not. If p is arbitrary, the most used methods are the method
of Montgomery [11] and the method of Barrett [3]. The cost of these two methods is roughly
equal to the cost of two integer multiplications.

If we choose the integer p with sparse binary representation [15] the reduction modulo
p can be done really efficiently. This last case is, for now, the most efficient: to give a brief
idea, the cost of the modular multiplication is mainly equal to one integer multiplication,
followed by several additions/subtractions. Consequently Standards recommend this type
of prime integer [13].

Recently Bajard, Imbert and Plantard [2] proposed a new method to perform modular
arithmetic by using a new representation of the elements. An integer A modulo p is expressed
as A =

∑n−1
i=0 aiγ

i with 0 ≤ γ ≤ p satisfies γn ≡ c mod p where c is equal to ±1,±2. The
coefficients ai are small compared to p and γ.

In this representation the multiplication of A and B is done in two steps: the first step
consists to multiply the polynomials A and B modulo γn − c, the second step consists to
reduce the coefficients using a small MNS-representation of 2k.

In this paper we will present a modified version of the multiplier of [2]. Specially, the
polynomial multiplication is done modulo a small integer m such that m is bigger than
the coefficients of the product of A and B. This approach get a real benefit when the
polynomial Xn− c splits totally modulo m: using a Lagrange representation the polynomial
multiplication modulo Xn − c becomes really efficient.
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This article is organized as follows: in the section 2 and 3 we will briefly recall the AMNS
representation and the original AMNS multiplier presented in [2]. Then, in section 4 we will
recall the Lagrange representation [1], after that we will present the Lagrange form of our
algorithm, with a refined version which uses the Fast Fourier Transform. We will give a small
example to illustrate our method. Finally we evaluate the complexity of our algorithm, and
compare it with others methods, and finish by a brief conclusion.

2 Modular Number System

The efficiency of integer arithmetic is generally closely related to the system used to represent
the elements. The most natural system used to represent positive integer is the Classical
Number System.

Definition 1 (CNS). A Classic Number System, is a couple of integer (β, n), such that for
all positive integers 0 ≤ A < βn we can represent A by a vector (ai)i=0,...,n−1Zn such that

A =
∑n−1

i=0 aiβ
i

∀0 ≤ i < n, 0 ≤ ai < β
(1)

The ai are called the digits.

In the classic number system, n is the number of digits. β is the basis and also the upper
bound of the digits.

Example 1. We can verify that in the CNS (4, 3), we can represent the integer a = 22 by
the vector A = [1, 1, 2].

22 = 2× 40 + 1× 41 + 1× 42 (2)

In a recent work [2], Bajard et al. proposed a modified system of representation to
perform modular arithmetic: the Modular Number System. The Modular Number System
is a system of representation derived from the CNS which includes the modulo p used in the
modular arithmetic. In the MNS the condition ai ≤ β is modified, the basis β can be as big
as the prime p, but the ai remains small.

Definition 2 (MNS [2]). A Modular Number System (MNS) B, is a quadruple (p, n, γ, ρ),
such that for all positive integers 0 ≤ A < p there exists a polynomial Ap(X) such that

Ap(γ) = A mod p
deg(Ap) < n
‖Ap‖∞ < ρ

(3)

The polynomial Ap is a representation of A in B. We note that Ap = AB. In the sequel we
will generally use the same notation for the integer A and its MNS representation Ap.

Example 2. In the table 1, we prove that the quadruplet (17, 3, 7, 2) is a MNS.

0 1 2 3 4 5
0 1 −X2 1−X2 −1 + X + X2 X + X2

6 7 8 9 10 11
−1 + X X 1 + X −X − 1 −X −X + 1

12 13 14 15 16
−X −X2 1−X −X2 −1 + X2 X2 −1

Table 1: The elements of Z17 in B = MNS(17, 3, 7, 2)

In particular, we can verify that if we evaluate (−1 + X + X2) in γ, we have −1 +
γ + γ2 = −1 + 7 + 49 = 55 = 4 mod 17. We have also deg(−1 + X + X2) = 2 < 3 and
‖ − 1 + X + X2‖∞ = 1 < 2.

2



The third definition below specializes a sub-family of the Modular Number Systems.
Specially Bajard et al. use the possibility to choose freely the basis γ to have advantageous
properties for the modular arithmetic. That’s why we say that this system is adapted to
the modular arithmetic: this is the Adapted Modular Number System.

Definition 3 (AMNS [2]). A Modular Number System B = (p, n, γ, ρ) is called Adapted
(AMNS) if there exists a small integer c such that

γn = c mod p (4)

We call E the polynomial Xn − c. γ is a root of the polynomial E in Z/pZ:

E(γ) ≡ 0 (mod p) (5)

We also note (p, n, γ, ρ)E the Modular Number System (p, n, γ, ρ) which is adapted to the
polynomial E.

3 AMNS Multiplication

In this section, we recall the AMNS multiplication algorithm proposed in [2]. This algorithm
consists first to perform the product C = A × B mod E, and after that to reduce the
coefficients ci of C to get ci < ρ.

Algorithm 1: AMNS Multiplication
Input : B = (p, n, γ, ρ)c a AMNS

A,B two polynomials such that A,B ∈ B
Output: R a polynomial such that R ∈ B and R(γ) ≡ A(γ)B(γ) (mod p)
begin

C ← A×B mod E;
R← RedCoeff(C);

end
After the first step of the algorithm we get a polynomial C with degree (n − 1) such

that C(γ) ≡ A(γ)B(γ) (mod p). Indeed, by definition (Definition 3), we know that E(γ) ≡
0 mod p and that C(X) = A(X)B(X) + Q(X)E(X). Thus we have

C(γ) = A(γ)B(γ) + Q(γ)E(γ) ≡ A(γ)B(γ) (mod p).

But the polynomial C has coefficients which are bigger than ρ. Specially we know that
‖A‖∞, ‖B‖∞ < ρ, thus the coefficients of C are such that ‖C‖∞ < |c|nρ2. That’s why we
have to reduce its coefficients to get the ci smaller that ρ. We propose a simplified version
of the Algorithm RedCoeff of Bajard et al. [2].

Algorithm 2: RedCoeff
Input : B = (p, n, γ, ρ)c a AMNS

C a polynomial such that deg C < n
Data : ξ ∈ B such that 2k ≡ ξ(γ) (mod p) with 2k ≥ ρ, |c|‖ξ‖1
Output: R a polynomial such that R ∈ B and R(γ) ≡ C(γ) (mod p)
begin

R← C;
while ‖R‖∞ ≥ ρ do

R = L + 2kU with ‖L‖∞ < 2k;
R← L + ξ × U mod E;

end
end

The basic idea of the algorithm consists to replace the “big” coefficient 2k by an equivalent
polynomial ξ (i.e., ξ(γ) ≡ 2k (mod p)).
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R = L + 2kU −→ L + ξ × U mod E. (6)

This is interesting when ξ has small coefficients: in this case the coefficients of the
polynomial in the right part are smaller than the original polynomial R. And if we repeat
this process a number of times sufficiently large, we get a polynomial R with coefficients
smaller than ρ.

Let us check that the Algorithm 2 works properly. We will show that the algorithm stops
and that the output R satisfies ‖R‖∞ < ρ. For this we use the norm ‖A‖1 =

∑n−1
i=0 |ai| of a

polynomial A. We will show that when ‖R‖∞ ≥ ρ and if we apply the reduction described
in equation (6) the norm ‖R‖1 strictly decreases. This means that there is a finite number
of loop WHILE, because there is only a finite number of value between 0 and ‖C‖1.

So we suppose that ‖R‖∞ ≥ ρ. In this situation, we have U > 0 since, by assumption,
ρ ≥ 2k. We compare the norm of L + 2kU and L + ξ × U mod E to show that this norm
decreases. First, we evaluate ‖L + 2kU‖1

‖L + 2kU‖1 = ‖L‖1 + ‖2kU‖1 = ‖L‖1 + 2k‖U‖1

Next, we evaluate the norm of ‖L + ξ × U mod E‖1

‖L + ξ × U mod E‖1 ≤ ‖L‖1 + ‖ξ × U mod E‖1 ≤ ‖L‖1 + |c|‖ξ‖1‖U‖1.

By assumption the polynomial ξ satisfies 2k ≥ |c|‖ξ‖1, this implies that

‖L + ξ × U mod E‖1 < ‖L‖1 + 2k‖U‖1 ≤ ‖L + 2kU‖1
This means that the norm ‖R‖1 strictly decreases as required.

In practice, we choose ξ which has a small number of non-zero coefficients, and such
that these coefficients are equal to ±1. With such ξ, we have only to perform two passing
through the loop WHILE of the Algorithm 2.

4 Improved AMNS Algorithm

The AMNS multiplication (Algorithm 1) requires one polynomial multiplication modulo
E = Xn−c. There is different strategy to perform this operation efficiently: the polynomial
multiplication can be done with Karatsuba or FFT algorithm, followed by a reduction
modulo E.

Here we will study a modified version of Algorithm 1 by using a Lagrange representation
of the polynomials. Our method performs the polynomial multiplication and the reduction
modulo E at the same time. We begin by a brief review on Lagrange Representation [1].

4.1 Lagrange Representation

The Lagrange representation consists to represent a polynomial by its values at n points,
the roots of E =

∏n
i=1(X − αi) modulo an integer m. In an arithmetic point of view, this

is related to the Chinese remainder theorem which asserts that the following application is
an isomorphism.

Z/mZ[X]/(E) −→ Z/mZ[X]/(X − α1)× · · · × Z/mZ[X]/(X − αn)
A 7−→ (A mod (X − α1), . . . , A mod (X − αn)) .

(7)

We remark that the computation of A mod (X − αi) is simply the computation of
A(αi). In other words the image of A(X) by the isomorphism (7) is nothing else that the
multi-points evaluation of A at the roots of E.
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Definition 4 (Lagrange representation). Let A ∈ Z[X] with deg A < n, and α1, . . . , αn the
n distinct roots modulo m of E(X).

E(X) =
r∏

i=1

(X − αi) mod m

If ai = A(αi) mod m for 1 ≤ i ≤ k, the Lagrange representation (LR) of A(X) modulo m
is defined by

LR(A(X),m) = (a1, . . . , an). (8)

The advantage of the LR representation to perform operations modulo E is a consequence
of the Chinese remainder theorem. Specially the arithmetic modulo E in classical polynomial
representation can be costly if E has a high degree, in LR representation this arithmetic is
decomposed into n independent arithmetic units, each consists of arithmetic modulo a very
simple polynomial (X − αi). But arithmetic modulo (X − αi) is the arithmetic modulo m
since the product of two degree zero polynomials is just the product modulo m of the two
constant coefficients.

4.2 Improved AMNS algorithm using Lagrange representation

Let us go back to the Algorithm 1 et let us see how to use Lagrange representation to
perform polynomial arithmetic in the AMNS multiplication Algorithm.

In view to use Lagrange representation, we select an integer m such that the polynomial
E = (Xn − c) splits in Z/(mZ)[X]

E =
n∏

i=1

(X − αi) mod m.

We can then represent the polynomials A and B in Lagrange representation, and in
the Algorithm 1, we can do the multiplication C = A(X) × B(X) mod E in Lagrange
representation.

Using this strategy, we have to deal with some troubleshooting: it is not possible to
perform the reduction of the coefficients in Lagrange representation. Consequently we have
to reconstruct the polynomial form of C and then reduce the coefficient. So if we call
LRtoPol and PoltoLR the two subroutines which performs the change of representation
between Polynomial and Lagrange representation, we get the following modified form of the
Algorithm 1.

Algorithm 3: Lagrange-AMNS Multiplication
Input : LR(A,m), LR(B,m) the Lagrange representation modulo m
Output: LR(R,m) such that R ∈ B and R(γ) = A(γ)B(γ) mod p
begin

LR(C,m)← LR(A,m)× LR(B,m);
C ← LRtoPol(LR(C,m));
R← RedCoeff(C);
LR(R,m)← PoltoLR(R);

end

4.3 The PoltoLR routine

We deal with the computation of the Lagrange representation LR(A,m) from the polynomial
representation of A. Recall that E = Xn − c, consequently the roots αj of E modulo m are
of the form αj = Ωωj where Ω is an arbitrary roots of E modulo m and ω is a primitive
n-th roots of unity.

To compute A(Ωωj) for j = 1, . . . , n we first determine

Ã(X) = A(ΩX) =
n−1∑
i=0

aiΩiXi.
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After that we get

LR(A,m) = (Ã(1), Ã(ω), . . . , Ã(ωn−1)) = DFT (m,n,A, ω).

So the PoltoLR works as follows

Algorithm 4: PoltoLR
Input : A(X) a polynomial
Data : A root Ω of E = Xn − c and ω a primitive n-th roots of unity in Z/mZ
Output: LR(A,m)
begin

Ã← A(ΩX);
LR(A,m)← DFT (Ã);

end

4.4 The LRtoPol routine

For the reverse problem which consists to reconstruct the polynomial A(X) from its Lagrange
representation LR(A,m) we simply reverse the previous process:

1. we first compute Ã = DFT−1(m,n,A, ω),

2. and after that A(X) = Ã(Ω−1X) =
∑n−1

i=0 ãiΩ−iXi.

Algorithm 5: LRtoPol
Input : LR(A,m)
Data : A root Ω of E = Xn − c and ω a primitive n-th roots of unity in Z/mZ
Output: A(X)
begin

Ã(X)← DFT−1(LR(A,m));
A(X) = Ã(Ω−1X);

end
Finally the cost of each change of representation is mainly reduced to the computation

of the DFT or the reverse DFT−1. This is really interesting when the integer n is a power
of 2 since in this case we can use the Fast Fourier Transform.

4.5 Fast Fourier Transform.

We briefly recall how the FFT works. The Fast Fourier transform is a recursive algorithm
which computes the DFT of a polynomial A at the n = 2` roots of unity mod m. Let us
denote ω a primitive n-th root of unity, and âi = A(ωi) the i-th coefficient of the DFT of
A. The FFT is thus based on the following property

âi = A(ωi) = A1((ω2)i) + ωiA2((ω2)i),
âi+(n/2) = A(ωi+n/2) = A1((ω2)i)− ωiA2((ω2)i),

(9)

where the polynomial A1(X) is the even part of A and A2(X) is the odd part of A

A1(X) =
n/2∑
i=0

a2iX
i, A2(X) =

n/2∑
i=0

a2i+1X
i.

The computation of A1((ω2)i) and ωiA2((ω2)i) are thus common to âi and âi+(n/2).
Consequently to compute FFT (m,n, ω, A) we recursively compute FFT (m,n/2, ω2, A1)

and FFT (m,n/2, ω2, A2) and after that we deduce FFT (m,n, ω, A) by using the rela-
tions (9). The FFT algorithm is given in appendix (Algorithm 6).
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Brassard et al. in [4] used such algorithm to multiply two integers using a modified
version of the Schonhage-Strassen Algorithm. The major improvement of Brassard et al.
was to use roots of unity in Z/mZ instead of complex roots of unity to perform the FFT.

Moreover they proposed to use special m, typically they set n = 2` and they proposed
to take m as a Fermat number m = 2n/2 +1. They showed that using such m, Z/mZ admit
n-th roots of unity which are ωi = 2i for i = 0, . . . , n.

The use of such m is interesting since the multiplication of any integer a by these roots
consists of a simple shift of the binary representation of a. Consequently, the multiplications
modulo m by the roots of unity in the FFT algorithm 6 can be done as follows

c = aωi mod m
= ((a ↑ i) mod 2n/2)− ((a ↑ i)/2n/2),

where (a ↑ i) is the integer a shifted by i places. Consequently any multiplication by ωi has
cost which is equal to one addition.

Consequently in this situation, every multiplication in the algorithm of FFT is replaced
by an addition, and we get a real improvement of the efficiency of the FFT.

5 Example

In this section we present a complete example of the Lagrange-AMNS multiplication. This
example concerns the multiplication in the AMNS B:

B = (p = 72057595648540673, n = 4, γ = 54044296180953088, ρ = 214)

In this AMNS, we have c = −1:

E = X4 + 1

with E(γ) ≡ 0 (mod p).
In the algorithm RedCoeff (Algorithm 2), we use the polynomial ξ = X + X2 + X3 with

214 ≡ ξ(γ) (mod p) and in the Lagrange-AMNS multiplication (Algorithm 3), we use the
moduli m = 232 + 1. In this situation the polynomial E splits as

E =
n−1∏
i=0

(X − Ωωi) mod m

where Ω = −28, ω = 216. We will apply the Lagrange-AMNS multiplication to the two
polynomials below expressed in this AMNS

A = 8932 + 13274X − 1171X2 − 2557X3,
B = −10984 + 11764X − 9934X2 + 11677X3.

We compute the Lagrange representation of A and B

LR(A,m) = [4164503771, 714940440, 4271963375, 3733530033],
LR(B,m) = [1006887238, 849360966, 1985988843, 452686314].

Now, we can begin the Lagrange-AMNS multiplication algorithm (Algorithm 3).

1. First, we compute LR(C,m), we perform the multiplication of LR(A,m) and LR(B,m)
in Lagrange representation:

LR(C,m) = [756168373, 3163466426, 341208378, 3390444409].

2. In a second time, we compute the polynomial C using the LRtoPol algorithm (Algo-
rithm 5), we get

C = −234661752− 52453039X + 110145201X2 − 13254508X3.
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3. Now, we reduce the coefficients of C using the RedCoeff algorithm (Algorithm 2). We
decompose

C = L + 214U with L = 6280 + 8529X + 11953X2 + 148X3

and U = −14323− 3202X + 6722X2 − 809X3

We compute ξU mod E

ξU mod E = (X + X2 + X3)(−14323− 3202X + 6722X2 − 809X3) mod (E)
= −20236X − 16716X2 − 10803X3 − 2711 mod (E).

We obtain

R = L + ξU mod E
= (6280 + 8529X + 11953X2 + 148X3) + (−2711− 20236X − 16716X2 − 10803X3)
= 3569− 11707X − 4763X2 − 10655X3

We can stop the reduction of the coefficients because we have ‖R‖∞ = 11707 < ρ =
16384.
We can verify that the result is exact. We have

A(γ) = 32371859214075011 mod p,
B(γ) = 65633143240000727 mod p,
R(γ) = 57944334546866439 mod p,

and R(γ) ≡ A(γ)B(γ) (mod p)

4. The Lagrange-AMNS algorithm finish by computing the Lagrange representation of R
using the PoltoLR algorithm

LR(R,m) = [2358429896, 3452218564, 1312248603, 1467051807].

6 Complexity

In this part, we evaluate the complexity of the Lagrange-AMNS multiplication (Algo-
rithm 3). In the table 2, we give the cost of the different steps of our method. The cost of
this algorithm is expressed in term of multiplications and additions of computer word.

Let n the degree of the polynomial E, we evaluate the number of word operation on
word which have the length of m. In the previous example, m is about 232.

Table 2: Complexity of Lagrange-AMNS multiplication

Operation #Mult. #Add.
Pol. Mult. n n
LRtoPol - (n/2)(3 log2(n)− 1)
RedCoeff - n‖ξ‖1
PoltoLR - (n/2)(3 log2(n)− 1)

Total n n(3 log2(n) + ‖ξ‖1)

In practice ξ is such that ‖ξ‖1 ≤ 3, i.e., really small.
Let us compare our method to usal methods to perform arithmetic modulo a prime

integer p. There is two strategies:

1. First, there exists some generalist algorithm like Montgomery [11] or Barrett [3] meth-
ods which perform integer multiplication modulo an arbitrary prime p. These two
techniques for modular multiplication have a cost bigger than two integer multiplica-
tions.
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2. In the other hand, there exists some particular moduli like Mersenne number [8],
pseudo Mersenne number [6], generalized Mersenne number [15], and More generalized
Mersenne number [5]. The multiplication modulo this type of prime number is done
by first computing the multiplication of two integer, and after that by computing the
remainder modulo p. The modular reduction have at least the cost of one addition
due to the special form of p.

Consequently, all these techniques require to perform at least one integer multiplication.
This integer multiplication can be done using the following classical techniques

• Classical school book method,

• Karatsuba,

• Schonhage-Strassen.

The Schonhage-Strassen-like method ([14, 4]) use the Fast Fourier Transform. Specially,
if the integer are stored in n computer words, the Schonhage-Strassen-like method require to
evaluate two polynomials at 2n points with a FFT. Which is exactly twice bigger than in our
method where we evaluate two polynomials at only n points. Consequently the cost of these
methods [14, 4] is equal to 2n word multiplications and 2n(3 log2(n)+‖ξ‖1) word additions.
Our method is thus two times better than any method which uses a Schonhage-Strassen-like
Algorithm to perform integer multiplication.

Consequently the complexity of our method is very competitive: we know that bigger
his the length of moduli, better is the cost of our method compared to other methods.

Now, the important point is to know when our method become better than classical
methods when they use Classical method or Karatsuba to perform integer multiplication.

To compare our method to these methods we evaluate the complexity for different size
of prime. We used the algorithm proposed in [2] to build efficient AMNS for the Lagrange-
AMNS algorithm. With this Algorithm, we find several efficient AMNS. In the the ap-
pendix B, we give a complete definition of different AMNS that we propose for modular
arithmetic. In the tables 3 and 4, we compare the cost of the modular multiplication in
these different AMNS to the cost of a classic integer multiplication. In [12], the GNU MP
proposed to use classic algorithm for multiplication on n computer words when n < 10 and
Karatsuba Algorithm when 10 ≤ n < 300.

Table 3: Cost of Lagrange-AMNS multiplication with m = 232 + 1

Lagrange-AMNS Classic Multiplication
Multiplication Classic Method Karatsuba Method

|p| #M32 #A32 #M32 #A32 #M32 #A32

111 8 88 16 32 9 44
207 16 224 49 98 25 150
416 32 576 169 338 71 475
768 64 1344 576 1152 189 1333

We can see in the tables 3 and 4 that when p is about 2400 our method becomes faster
than any other methods. We know that this advantage grow when the length of p become
bigger.

7 Conclusion

In this paper we have presented a novel Algorithm to perform integer modular arithmetic.
Primarily we gave a polynomial formulation of our algorithm which use the AMNS [2] rep-
resentation of integer and a Montgomery-like method to reduce the coefficients. Secondly
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Table 4: Cost of Lagrange-AMNS multiplication with m = 264 + 1

Lagrange-AMNS Classic Multiplication
Multiplication Classic Method Karatsuba Method

|p| #M64 #A64 #M64 #A64 #M64 #A64

223 8 88 16 32 9 44
240 8 96 16 32 9 44
464 16 240 64 128 27 165
926 32 544 225 450 256 542

we modified this algorithm in view to use a Lagrange representation to speed up the polyno-
mial multiplication part of the algorithm. We obtain an algorithm which has a complexity
of n and n(3 log2(n) + ‖ξ‖1) additions of computer words. This complexity is twice better
than classical method which use Schonhage-Strassen to perform integer multiplication. In
practice, our method should be better than usual method for prime p bigger than 2500.
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A Appendix: FFT

The Algorithm below is the Algorithm given in the paper of Brassard et al. wich performs
the Fast Fourier Transform of a polynomial in Z/mZ[X].

Algorithm 6: Fast Fourier Transform [4]
Input : Two integers m and n = 2`, ω a primitive nth root of unity modulo m, and

A = [a0, a1, . . . , an−1] the coefficients of a degree n− 1 polynomial in Z[X].
Output: Â = (â0, . . . , ân−1) the DFT of A in {1, ω, ω2, . . . , ωn−1}
if n = 0 then

FFT (m,n, ω, A)← A
else

A1 ← [a0, a2, . . . , a2(n−1)];
R1 ← FFT (m,n/2, ω2, A1);
A2 ← [a1, a3, . . . , a2n−1];
R2 ← FFT (m,n/2, ω2, A2);
for i = 0, . . . , n/2− 1 do

λ← ωiR2[i] mod m;
R[i]← (R1[i] + λ mod m);
R[i + n/2]← (R1[i]− λ mod m);

end
end

B Appendix: AMNS

In this section we give a list of practical AMNS basis associated to prime integer.

B.1 AMNS with 32bits digit

B.1.1 111bits modulo

1. p = 2596148467953040258123756591841281

2. n = 8

3. γ = 843098519535283501051839473081071

4. ρ = 214

5. ξ = X1 + X4

6. m = 232 + 1

B.1.2 207bits modulo

1. p = 205688094185080687937563657719079685397477172542110018664726529

2. n = 16

3. γ = 33405783449899356776149843245645372735825774648390014355904674

4. ρ = 213

5. ξ = X3 + X8

6. m = 232 + 1
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B.1.3 416bits modulo

1. p = 168570521293320685225250332101994914278690400043010070371320270686591074038166717
778527995073687025652394187385473000450301697

2. n = 32

3. γ = 12183383297382652977507173143762653012579999412699546698925230782116818275434354
3022269944460500148144895599792045902749257456

4. ρ = 213

5. ξ = 1 + X + X11

6. m = 232 + 1

B.1.4 768bits modulo

1. p = 152844561450046858090486331989628783016245328788248849880240943409507021526800203
80319610970955414241155234310968443203350666061182823780226538614163471839309481960680923
08562581955233599493524985201150647914501644280986333326432897

2. n = 64

3. γ = 82725146504067189517059365492278617553301471359303770926495232123660385976784633
40936975233485032911826289270682583307396257784132220925200614270710115610165244490167268
92693682176321088384219159099445808437600756053427538701149540

4. ρ = 212

5. ξ = 1 + X4 + X27

6. m = 232 + 1

B.2 AMNS with 64bits digit

B.2.1 223bits modulo

1. p = 13479973333575319897333507543509820529115276003593724674453077491713

2. n = 8

3. γ = 566385478070800442705852402027281060151850784783130045358570508872

4. ρ = 228

5. ξ = X2 + X5

6. m = 264 + 1

B.2.2 240bits modulo

1. p = 1766847064778384347973243991133584861321400079366468863334345809164500993

2. n = 8

3. γ = 110427941240116917154820642115569949581402602648218323880853675119214591

4. ρ = 230

5. ξ = X + X4 + X7

6. m = 264 + 1

B.2.3 464bits modulo

1. p = 476341012158300296208621682932821057556196476279544379403225322850924005619267209
15998717049019099569317280130886403257810221345915535360353

2. n = 16

3. γ = 31542517027403014066417528267028921483016427821180391814108284697435654076733860
711490716086285296654080381210090811917083778003753647210094
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4. ρ = 229

5. ξ = 1 + X + X10

6. m = 264 + 1

B.2.4 926bits modulo

1. p = 567251933470833993071770667324028228809837418235547813055332893110634100784456014
0782044656738877680169125253687934426249377788783613590020974075682233241815300476309
8696952514972549418254907314012592849936514122572047774879547817657433625792302790004
9994657435907751094807166977

2. n = 32

3. γ = 38976392291401862683587844546009404668285230879381807092106844587555496189663348
8078937734088605335358740207012516892824980453864650862890491757748288902180850469644
9722267771816724609143355893596276673384126482345899590378663907501455853750777559666
42952039259808565559105440273

4. ρ = 229

5. ξ = X + X11

6. m = 264 + 1

13


