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[1] In active mountainous landscapes dominated by
detachment-limited fluvial incision and hillslope
landslides, the scaling relations that characterize both river
profiles and planimetric organization of the river network
can be linked to provide an analytic solution to describe the
mean elevation of a watershed. This new analytical
approach directly links mountain elevation, precipitation,
bedrock erodibility and uplift rate, and yields results that are
consistent with those obtained through classic 2-D surface
process model. When applied to a growing linear mountain
range the approach provides an approximate, but much
faster, solution for 2-D or 3-D numerical models of crustal
deformation that explicitly include surface processes.
Citation: Lavé, J. (2005), Analytic solution of the mean

elevation of a watershed dominated by fluvial incision and

hillslope landslides, Geophys. Res. Lett., 32, L11403, doi:10.1029/

2005GL022482.

1. Introduction

[2] The dominant role of fluvial network in shaping
mountainous landscape has been recognized for many
years, both as an efficient downcutting agent through fluvial
incision and as the major conveyor of eroded material. The
channel profile equation of a mountain river can easily be
derived from analytic approaches [e.g., Whipple and Tucker,
1999]. However, the two-dimensional complex geometry of
the fluvial networks has precluded so far a simple analytic
description of the mean elevation or the topographic profile
of mountain ranges. Several statistical approaches, based on
databases of erosional fluxes exported from orogens, have
tried to link erosion with average or maximum elevation of
mountain ranges or with their climatic setting [e.g., Pinet
and Souriau, 1988], but have failed to converge toward a
consistent model and to incorporate physically based prin-
ciples. In the absence of a simple analytic description of the
physical erosion acting in mountainous landscape, most of
the numerical studies focusing on coupling and feedbacks
between tectonics, erosion and climate, have generally used
simple erosion laws that neglect the complexity arising from
the dendritic geometry of fluvial networks. The erosion law
chosen when modelling an active orogen can, however,
significantly influence the average topographic elevation,
and consequently the mechanical coupling between erosion
and tectonics [Godard et al., 2004].
[3] Here, we propose an analytic solution, accounting for

river network geometry, to compute the mean elevation of a
watershed dominated by detachment-limited fluvial incision

and hillslope landsliding under constant, uniform uplift rate.
An approximated 1-D approach, derived from the analytic
solution, is also proposed to compute the temporal evolution
and steady state geometry of a growing linear range. The
consistency of the analytic solution and 1-D model results is
tested by comparing with the results obtained from a classic,
but much more time-costly, 2-D surface process model
(SPM).

2. Detachment-Limited Fluvial Incision, River
Profiles, and Relief

[4] Although several different functional forms have been
proposed to model fluvial incision, we adopt a simple
detachment-limited relation that has provided satisfactory
first-order results across the Subhimalaya [Lavé and
Avouac, 2001]. This relation states that bedrock incision
rate (i) of a river can be expressed as a power function of the
fluvial shear stress or the unit stream power, or more
generally as a generic function:

i ¼ k Ag P � P0

� �b
Sa � e0

� �
ð1Þ

with A the drainage area, S the channel slope, k a
dimensional ‘‘erodibility’’ coefficient, e0 a minimum
treshold for incipient erosion, P ¼

R
A

P ~xð Þd~x the spatially

averaged precipitation over the drainage area, P0 a runoff
threshold, and a, b, g three positive exponents (see also
symbols notation in Text S1 in the auxiliary material1). The
longest stream (xl) in a fluvial network generally follows
Hack’s law: xl = kx A

d, with kx a dimensional coefficient and
d a positive exponent ranging from 0.5 to 1. From the above
equations, temporal evolution of a channel elevation (hr)
can be synthesized by:

@hr
@t

¼ u� i ¼ u� k Ag P � P0

� �b
Sa � e0

� �

¼ u� k k�g=d
x x

g=d
l P � P0

� �b
Sa � e0

� �
; ð2Þ

with u the rock uplift rate.
[5] At steady state (i = u), the channel slope is given by:

S ¼ @hr
@xl

����
���� ¼ u

k
xlð Þ þ e0

� �1=a
P xlð Þ � P0

� ��b=a
A�g=a: ð3Þ

1Auxiliary material is available at ftp://ftp.agu.org/apend/gl/
2005GL022482.
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In the case of uniform uplift, precipitation and lithology, the
equilibrium river profile becomes:

hr xlð Þ ffi h0 �
kþg=ad
x

1� g=adð ÞU
1=a
*

x
1�g=ad
l � x

1�g=ad
0

� �
if g=ad 6¼ 1

ð4aÞ

and

hr xlð Þ ffi h0 � kþ1
x U

1=a
*

ln xl=x0ð Þ if g=ad ¼ 1; ð4bÞ

with U* = (u
k

+ e0)(P � P0)
�b an external forcing

parameter that expresses the balance between tectonic,
lithologic and climatic effects, x0 the length between the
drainage divide and the headstream, and h0 the elevation
of the later.
[6] The total relief of a watershed (i.e., the difference

between the outlet elevation and the highest peaks of the
watershed) is the sum of the fluvial relief, Dhfr = (h0 � hr
(xl)) as defined above, plus the hillslope relief. In active
orogens, hillslopes are dominated by landslides [Hovius et

al., 1997]: we therefore assume in the following that hill-
slopes display a critical angle of repose, jc, and that they
react instantaneously to any local base level drop. We
consider that the headstream occurs at the a priori source
location (defined by a minimum contributing area), or at the
point where the channel slope becomes less than the
surrounding hillslope (S(x0) < tan(jc)), whichever is lower.
For simplicity, a possible transition from hillslope to fluvial
channel dominated by debris flows is neglected. The total
relief DhT expresses:

DhT xlð Þ ¼ Dhfr þ x0 tan jcð Þ: ð5Þ

The above classical analysis is useful in describing the main
river elevation in a catchment from inception to outlet, but
does not provide any analytical value of average watershed
height in a given landscape.

3. Geometric Description of a Mountainous
Watershed and 1-D Formalism for Mean Elevation

[7] The mean elevation above a point in a river network
can be expressed as the volume V(AT) of the topography
above this point divided by its contributing area AT. This
volume can be viewed as the stack of topographic slices,
each slice being the density function of elevation in the
hypsometric integral. This density strongly depends on
channel organisation and branching geometry. If this density
function can be expressed as a function of drainage area,
then it can be combined with the equilibrium river profile
(equations (3)) to provide a topographic volume and the
average fluvial relief by integration along the fluvial
network:

Dhfr ATð Þ ¼ V ATð Þ
AT

ffi 1

AT

Z AT

A0

fL Að ÞS Að ÞAdA ð6Þ

with A0 the contributing area at the head of the fluvial
channel, AT the area of the studied watershed, and fL(A) a
density function, defined by the length of fluvial network

that drains an area A (i.e.,
fnL A;AþdA½ 	

dA dA!0
����! fL (A), with

fnL[A;A+dA] the total length of fluvial network segments that

drain an area comprised between A and A + dA). For real

networks, despite finite size effects for large drainage areas,

this density function roughly follows a power law fL(A) =

kLA
�w (Figure 1c). This scaling of the density function can

be directly linked to scaling relations in Horton’s ordering

of a fluvial network (Figure 1), in which a stream segment

of order i is related to the following by Aiþ1

Ai
= RA,

Dliþ1

Dli
= R

L,
ni
niþ1

= RN, with ni, Dli and Ai the number of stream channels

of order i, their average length, and the average contributing

area respectively, and where RA, RL and RN are constant and

correspond to the area, length and bifurcation ratios. It can

be shown that the exponent of the density function can be

expressed through the relation 1 � w =
Ln RLð Þ�Ln RNð Þ

Ln RAð Þ . The

coefficient kL depends on watershed size (Figure 1c). As

long as the drainage density is roughly uniform, kL is

proportional to
AT

A1�w
0

�A1�w
Tð Þ, i.e., to the watershed size AT

when w > 1 and AT � A0.

Figure 1. (a) Trisuli fluvial network with Horton-Strahler
orders, computed for a minimum source area of A1 =
0.5 km2, and automatically extracted from a 90m DEM of
central Nepal. (b) Scaling laws characterizing this Horton’s

ordering (RN ffi 4.7, RL ffi 2.35, RA ffi 4.7 and
Ln RLð Þ�Ln RNð Þ

Ln RAð Þ =

�0.44). (c) River network length density function, dis-
played as a histogram employing logarithmic bin widths
(log10w = 1/5), for the Trisuli watershed (black dots) and for
the upper portion (shaded area in Figure 1a) of the Buri
watershed (gray circles). In the fluvial network domain (A >
0.5–1 km2), the slope exponent of the distribution is (1-w) =
�0.44 ± 0.03. See color version of this figure in the HTML.

L11403 LAVÉ: ANALYTIC SOLUTION OF THE MEAN ELEVATION OF A WATERSHED L11403

2 of 5



[8] Introducing the relation (3a) into equation (6) leads to
the following expression for fluvial relief:

Dhfr ATð Þ ¼ ffr AT ;U*
� �

¼ 1

2� w� g=að Þ
kL

AT

U
1=a
*

� A
2�w�g=a
T � A

2�w�g=a
0

� �
if wþ g=a 6¼ 2 ð7aÞ

and

Dhfr ATð Þ ¼ kL

AT

U
1=a
*

Ln AT=A0ð Þ if wþ g=a ¼ 2 ð7bÞ

[9] The mean topographic elevation of a watershed
reflects the sum of this mean fluvial relief and the hillslope
component. In theory, the average hillslope relief could be
computed following the same approach as above by inte-
gration of the critical slope S = tan(jc) up to the crests as
long as w  2. However, the power law behaviour of the
length density function breaks at the hillslope/channel
transition (Figure 1c) and thus prohibits simple integration
of equation (6). Another approach considers that the average
distance, d0, between the crests and the fluvial network is
roughly equal to the drainage area divided by 2 times the
cumulated length of channel network in this basin, i.e.,
fnL A0;AT½ 	 ffi

R AT

A0
fL (A)dA. The average hillslope relief thus

corresponds to Dhhs =
d0
�
2 tan (jc) =

AT
�
4fnL A0;AT½ 	

tan (jc).

Nevertheless, this formulation is valid as long as the fluvial
network is not too steep and the meander wavelengths are
larger than the hillslope dimension. Here, the studied cases
require an empirical adjustment of d0 by a factor �1.3.
[10] Equation (7) is valid as long as the length density

function does not depend on uplift rate. It has been shown,
however, that the scaling relations in fluvial networks, in
particular the Horton’s organization, are not very sensitive
to the geometry of the network [Kirchner, 1993], and do not
depend significantly on uplift rates [Hurtrez et al., 1999]. To
test this, we computed the synthetic topography from the

upper Buri river network (shaded area in Figure 1)) using a
classic 2-D SPM [e.g., Beaumont et al., 1992] with the same
parameters and erosion laws, i.e., a detachment-limited
model for mountain river incision, and hillslope erosion
governed by landsliding through a critical angle of stability.
For different values of the external forcing parameter U*,
the analytic solution and SPM results display very consis-
tent results and dependency to U*, both for the fluvial relief
and the whole topography (Figure 2). This supports our
initial hypothesis that river network geometry, scaling
characteristics and, to a lesser extent, the empirical correc-
tion factor for the hillslope relief calculation are relatively
insensitive to the uplift rates.

4. Application of the 1-D Model to a
Cylindrical Range

4.1. Cross-Range Profiles at Steady State

[11] Although real river networks or those produced in
SPMs are relatively insensitive to uplift rate, they can be
strongly influenced by the spatial uplift patterns. In many
mountain ranges, the river network tends to be oriented
perpendicular to the uplifting structure or range axis. Such
drainages are characterized by regular outlet spacing
[Hovius, 1996], and parallel rectangular basins. Each basin
comprises a major linear river perpendicular to the mountain
axis, characterized by Hack’s exponent d closer to 1 than to
0.5, and a series of tributaries feeding the major river,
characterized by a more dendritic channel network. To fully
compute the topography of such settings, relation (4) is used
to describe the profile of the major rivers, i.e., of the local
base level for the tributaries, whereas equation (7) yields the
fluvial relief associated with these tributaries.
[12] To test this approach both in terms of steady state

mountain profiles and of transitory response, a synthetic,
symmetric low elevation topography was created with 6
roughly similar watersheds (Figure 3b). The different rela-
tionships and scaling characteristics of these basins were
first computed (see details in Text S2 and Figure S1 in the
auxiliary material) and introduced into relations (4) and
(7) in order to compute the minimum, mean and maximum
elevation of the cross range profile at steady state. Follow-
ing the approach above, the SPM was used to compute the
corresponding profiles, and, as observed for the upper Buri
watershed, provides results consistent with the 1-D solution
(Figure 3).

4.2. Transient Response During Waxing Phase: An
Inverse Method to Generate and Erode a 1-D
Topography

[13] In the above example, the landscape initially
presents a nearly flat undulated topography close to the
base level elevation. In response to the tectonic uplift (fixed
at 2 mm/yr), an intense backward wave of erosion prop-
agates along the main stream and its tributaries. From the
uplift initiation to steady state attainment, the landscape is
thus characterized by a transient response. Whereas equa-
tion (7) applies only to steady state regimes, we speculate
that it could provide a satisfying first order approximation to
the relationship between average elevation of the tributary
watershed and denudation rate provided the geomorphic
system is not too far from the equilibrium. To test this, we

Figure 2. Comparison between the analytic solution
(lines) and SPM results (symbols) for different values of
the external forcing variable U* applied to the upper Buri
watershed. The fluvial incision parameter values are derived
from Lavé and Avouac [2001]: a = 0.7, g = 0.37, and the
other geometric parameters are AS = 0.5 km2, AT =
3500 km2, kx = 1.34 km�0.07, d = 0.54, kL = 868 km1.88,
w = 1.44, j = 40�. See color version of this figure in the
HTML.
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consider the average denudation in a watershed, which can
be computed from inverting equation (7a):

E* � f �1
fr Dhfr ¼ h� d0

�
2 tan jcð Þ � hR

� �

¼ 2� w� g=að ÞAT

kL

Dhfr

A
2�w�g=a
T � A

2�w�g=a
0

� �
0
@

1
A

a

ð8Þ

with h the mean elevation of the lateral tributary watershed,
hR the elevation of the confluence of this tributary with the
cross-range river, E* = (e

k
+ e0) (P � P0)

�b and e the average
erosion rate in the tributary basin. Practically, because d0
depends on the erosion rate, the inversion has to be
performed iteratively. The steady state is similarly attained
in both approaches after �1.5 Myr (Figure 4). More
importantly, the minimum, maximum and average elevation
cross-range profiles at the different time steps (Figure 4a)
and the mean denudation curves (Figure 4b) are remarkably
consistent: the relative difference between the two denuda-
tion curves lies between 0 and 25%, and the difference in

terms of topographic profiles is still less pronounced. The
1-D model tends, however, to slightly overestimate the
denudation rates in the first half of the transient response.

5. Discussion

[14] In the above analytic approach, the mean elevation
of a watershed at steady state (equation 7) and the profile of
its longest stream (equation 4) are governed by the same
dependency to fluvial incision law and external forcing
parameters. It thus provides a more physical framework to
the approaches that try to link denudation with relief, mean
elevation, lithology, and/or climate. It particularly shows
that deriving a general relation from various watersheds in
which uplift rate, lithology or precipitation are not uniform
can lead to substantial scatter.
[15] In theory, the results are restricted to river networks

driven by detachment-limited incision. However, for river
profiles at steady state, equation (3a) has also been found to
be consistent with incision laws other than detachment-
limited cases, that explicitly include the role of sediment
supply (transport limited. . .) [Whipple and Tucker, 2002].
Consequently, the proposed analytical solution (7) is directly
applicable to any incision law that can be cast as a power
function of slope and drainage area. The method, however,
is invalid for low uplift rates because of the increasing role
of the chemical erosion and dependence of the hillslope
angle to the uplift rate.
[16] Our final synthetic example also suggests that the

1-D analysis provides a reasonable method to describe the
transient response of a growing mountain range. Its direct
application to describe topographic evolution of a mountain
range during its waning phase could be limited, however, by
an eventual shift of geomorphic systems from detachment-
limited to transport-limited conditions [Whipple and Tucker,
2002], which would require a concomitant shift of the
erosion parameters. In any case, this new approach offers
potential improvements for computing erosion and mean
surface elevation in numerical models. In the 2-D case, it

Figure 3. (a) Comparison between the cross-range steady
state profiles predicted by the 1-D model (solid lines) and
SPM (dashed lines) for a synthetic cylindrical mountain
range (b) in terms of mean topography and fluvial landscape
profiles, river and ridge profiles. In the 1-D analysis, the
evolution of the main river in each transverse rectangular
watershed is controlled by equation (2) but replacing xl by
X = xl/s, with X the cross range abscissa taken from the
drainage divide and s the average sinuosity of this main
stem (here s = 1.43). Above their confluence with the main
stem, the parallelogram shape tributaries are governed by
equation (7), with AS = 0.5 km2, AT = 31 km2, kx =
1.55 km�0.07, d = 0.54, kL = 6.5 km1.3w = 1.15, j = 40�.
The fluvial incision parameter values are similar to previous
test of Figure 2, and U* = 0.55, b = 0.33, (P-Ps) = 1.45 m/
yr, k = 3.65. See color version of this figure in the HTML.

Figure 4. Comparison between the 1-D model (solid lines)
and SPM (dashed lines) during the waxing phase of the
mountain range of Figure 3b. (a) Cross-range profiles at
different time steps. (b) Evolution of the landscape
denudation rate.
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helps both to dissociate the fluvial incision along cross-
range rivers from the topographic denudation, and to
compute minimum, maximum and mean topography. For
3-D models, where 2-D SPM are required to model erosion
and topography, this formalism may help to improve the
spatial resolution. For example, a large scale deformable
mesh, where the cell size is much larger than the hillslope
length, could account for the evolution of the fluvial
network in terms of highest order streams, whereas the
proposed analytic solution describes tributary response and
hillslope relief between the distant mesh nodes.
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