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Application of optimal design and control strategies to the
forming of thin walled metallic components

J.C. Gélin, C. Labergere

Laboratoire Mécanique Appliquée R. Chaléat, UMR CNRS 6604, 24 rue de I'Epitaphe, 25030 Besan¢on, France

The paper focuses on approaches for the optimal process control in hydroforming. The main objective is to find by numerical simulation and
optimisation the loading curve versus process parameters that minimise the thickness variations and that give the shape for the final part. Different
approaches are proposed typically based on optimisation strategies and requiring a sensitivity analysis, or based on a local approximation of the
tube thickness versus process parameters using optimisation procedures based on evolution strategies. The results obtained proved the ability of
the proposed approach in the analysis of tube hydroforming processes and its potential to handle the numerical process control.
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1. Introduction

The use of FE simulations in sheet metal forming as well
as in flanges or tubes produced by hydroforming processes is
now strongly increasing in industry [2,7]. Such approaches
are an economic way for virtual prototyping of parts and
dies. The demand for extending the capabilities of actual FE
software towards optimal process design and even control of
processes is becoming very strong.

This paper focuses on the development and possibilities of
optimisation [5] as well as control approaches in the simula-
tion of sheet forming and flange/tube hydroforming pro-
cesses. The developments are based both on optimisation
methods and process control ones. The difficult problem
concerning the formulation of the objective and constraint
functions is first emphasised depending on the parameters to
optimise. Then the paper deals with optimisation approaches
where the gradients of the objective and constraint functions
are evaluated from accurate sensitivity analyses. Different
examples are provided illustrating the effectiveness of the
proposed developments.

The second aspect concerns the control of processes
where the problem consists of finding not only some process
parameters but also how these parameters are evolving with
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time or with processing. This is the case when one tries to
adjust the inner pressure versus axial feed in tube hydro-
forming [9]. In that case the optimisation techniques are not
sufficient. An algorithm is proposed that first expresses the
main driving variables as a function of the control ones by
adjusting the local response to the control variables. Then
the resulting objective functions for the control variables and
constraint ones are determined step by step by optimisation.
This process really permits control of the process variable
versus processing time. Different cases have been already
tested, such as the control of inner pressure versus axial feed
in tube hydroforming in order to get the final part without
defects and the results are fairly good.

2. Validation of the FEM solver

This validation example concerns the hydroforming of a
T-shaped tube from a cylindrical one as it shown in Fig. 1.
The initial outer diameter of the tube corresponds to
56.8 mm, whereas the initial tube thickness is 2.1 mm.
The experimental investigations where carried on an alu-
minium alloy and the corresponding material properties
are £ = 72,000 MPa, v = 0.32, g, = 40.74 MPa and ¢y =
241(£% 4 0.00383)"* MPa.

The initial tube is put in the die cavity and axial symme-
trical displacements are applied to both extremities of the
tube. The required T-shape is reached under the inner
pressure in Fig. 2. The simulation is carried out by imposing
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Fig. 1. Final geometry corresponding to the hydroforming of a T-shaped tube.
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Fig. 2. A comparison between external shapes corresponding to the T-shaped tube obtained from experiment and from simulation.

both the axial displacements symmetrically to the tube
extremities and the inner pressure. The deformed shapes
corresponding both to experiment and simulation are com-
pared in Fig. 2, that shows good agreement between simula-
tion and experiment.

In order to accurately compare thicknesses obtained from
experiments and from simulations, the lower and upper
profiles of the T-shaped tube have been selected as indicated
in Fig. 2. The thickness variation along both profiles are
given in Fig. 3 and it can be noticed that the agreement
between experiments and simulations is quite good even if
the thickness variation amplitude is amplified along the
lower profile and on the contrary decreased along the upper
profile.

From the validation example, one can conclude that the
ability of the direct solver is demonstrated for the simulation
of tube hydroforming and that it can be used for the direct
response calculations in the further developments.

3. Problem formulation
As extensively mentioned in the literature for tube hydro-

forming processes [1], the main problem in such processes
is related to the adjustment of the loading path (inner

pressure p(f) versus axial feed u(f)) to get the component
with the required shape and thickness. So the process para-
meters vector could be formulated as q(¢) = {p(¢), u(¢)} and
the optimal control problem for tube hydroforming exp-
ressed as follows. Find p(¢) the inner pressure and u(f) the
axial feed, so that the objective function with constraints are
fulfilled:

miny (1), (1) with g(p(1). (1) < s 0
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Fig. 3. A comparison of experimental and predicted thickness variation
along upper profile and lower one for hydroforming of a T-shaped tube.



The objective function accounting for nodal thickness
variation during the hydroforming process can be written
as [3]

N hi_hon

Fplr),u(0) = (Z -

i=1

/n
> , n=12o0roc0 2)

where N stands for the total number of nodes used for the
simulation, &g the initial thickness, &; the final thickness at
node i and n is the power law parameter and is generally
chosen to be 2, but it can be taken to 4 or 8 in some cases.

The constraint function g(p(t),u(z)) can be expressed in
the following form:

2(p(t), u(t)) = 1 — < Choum

VOltube
where Vol is the inner volume of the tube obtained from
simulation, whereas Vol.. is the inner volume desired.
From this definition, it results that g measures the difference
of required volume after hydroforming and the current one
obtained by FEM simulations.
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4. Optimisation
4.1. Sensitivity analysis

A methodology for sensitivity analysis of metal forming
problems has been developed on the basis of direct differ-
entiation of the solution procedure for the mechanical
problem [5]. The increment of displacement Au,.; is
obtained when the equilibrium is satisfied, following the
explicit relationships:
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The sensitivity of the displacement vector is obtained in the
explicit case by solving the following equations:
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The sensitivity of the acceleration vector relative to the
process parameter vector clearly depends on the internal
load vector (5a) that is related to the sensitivity of the current
stress tensor. So the following section describes the way to

calculate this sensitivity. The yield criterion employed is the
Hill quadratic one expressed as

flo,g,)=316:P:6 —10}(2,,) (6)

From Eq. (6), the increment of the plastic strain given by
0
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where P is the orthotropic plastic tensor. The algorithm that is
used corresponds to a predictor—corrector one when first an
elastic stress state is calculated as 67, | = = C°: Ag,y1, where
C is the elasticity operator and A8n+1 is the strain increment.
Then the plastic multiplier A/ is obtained from the plastic
yield condition f(a, &, ;) = 0. The sensitivity of the plastic
multiplier using a direct differentiation method is given by
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where o is given through a Swift hardening law.
This leads directly to the determination of the equivalent
plastic strain sensitivity expressed as
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Having the sensitivity of the effective plastic strain, one can
then obtain the sensitivity of the stress tensor at each
integration point expressed as
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4.2. Approximation of command laws for hydroforming

The adapted strategy consists of building an approxima-
tion for process parameters evolution laws versus time. This
approximation could be formulated using a polynomial
approximation or a more complex one depending on the
complexity of the command law. To illustrate the proposed
approach, one chooses a piecewise linear form for the
pressure curve expressed as

qi+1 — qu_ qiliv1 — qiv1li
fiv1 — & fiv1 — &

p(r) = 1)

where ¢g; are the process parameters and ¢ is the normalised
process time.



By differentiating such a function with respect to the
parameter g;, one get the following relationship:
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One can remark that the sensitivity vector clearly depends on
the time step that has to be derived relatively to the process
parameters vector.

4.3. A local optimisation method

In a first optimisation approach, one can choose an FSQP
[6] method to solve the optimisation problem associated
with Eq. (1). This method respects the constraints all along
the optimisation path, avoiding non-realistic values for
process parameters. The sensitivity analysis previously pre-
sented is used in this analysis.

The initial approximation of the pressure evolution law
permits a definition of the initial conditions for the optimi-
sation algorithm. If one takes {x°} as the vector for the initial
interpolation parameters (g;) used in Eq. (11), the optimisa-
tion algorithm generates a set of points {x°}, {x'}, ..., {x}
that normally converges to a local minimum of the objective
function f (ps(¢), u(t)) defined by Eq. (2). At each iteration k,
the next value is obtained from the previous one by

{1y = X} + o {d"} (13)

where {d*} is the descent direction and o is the scalar
module in the direction {d*}.

The optimisation algorithm determines the direction {d*}
that permits a decrease in the objective function where o*
gives the module in that direction.

4.4. Application

The first application concerns the control for the problem
corresponding to the expansion of a circular tube with a
diameter equal to 40 mm and a thickness equal to 2 mm
depicted in Fig. 4. Due to symmetry conditions, only one
quarter of the problem is meshed with three nodes triangular
shell elements. The material properties correspond to a
mild carbon steel with E = 2.1 x 10° MPa, v =0.3, g, =
250 MPa and 6o = 551.44(c4 + 0.0621)"*** MPa.

Fig. 5 relates the initial pressure versus axial feed curve
before and after optimisation. One clearly see that the initial
values are changed through the optimisation algorithm. In
that example, the pressure and displacement are imposed for
a normalised process time in the range 0—1, whereas the
pressure and displacement values are unknown at the middle
point t = 0.5.

In order to evaluate the sensitivity of the cost function and
constraint one, the direct differentiation method (DDM) has
been used and validated by performing comparisons with a
standard finite difference method (FDM) that is easy to
implement. The results concerning the sensitivity at the
initial stage are given in Fig. 6 for the cost function and

Fig. 4. Die geometry corresponding to the expansion of a circular tube.

in Fig. 7 for the constraint function. It has to be noticed that
DDM and FDM give similar results but it has also to be
underlined that DDM is faster and generally more accurate
than FDM.

During processing the sensitivity of the objective function
varies with normalised process time and with process para-
meters. This is indicated in Fig. 8 where the zone in dark
indicates that the constraint function is not satisfied. The
values of process parameters corresponding to the optimisa-
tion path are also plotted in Fig. 8 and it clearly appears
that the computation converges towards to a local minimum
of the objective function.

Fig. 9 corresponds to the thickness contours after opti-
misation for the optimal process parameters.
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Fig. 5. Inner pressure vs. normalised time and axial feed vs. normalised
time curves obtained from optimal control.
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5. Optimal command procedure
5.1. The nodal thickness approximation

The procedure described in the previous section consists
of a search of a set of process parameters describing the
inner pressure versus axial feed curve in order to minimise
the cost function expressed in terms of current tube thickness
[4] over the domain under consideration. An alternative and
a new way is proposed that consists of building an approx-
imation of the current thickness (k) versus pressure (p) and
axial feed (u), see Fig. 10.

A spline formulation is used for the interpolation of the
local thickness versus pressure and axial feed u and it is
expressed with coefficients A s that accounts for intermedi-
ate values from the minimal and maximal range for process
parameters:

h(u,p) = (1 — a)*[(1 = B)*hiy, + a(1 — B)B + *hiy]
+o(l —a)b(1 = B)’ +c(1 — BB+ dp?]
+ (1= B)hiy + e(1 — B)B + f7hi,] (14)

where o and f§ are determined from
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In order to ensure continuity for the nodal approximation
of thickness, the set of coefficients (a, b, c,d,e) are deter-
mined from the corners and midpoint values in the corre-
sponding space to the Spline definition space [0, 1] x [0, 1]:

a= 4%(1/2) - h60 - hfnv b= 4h21/2)0 - hf)o - hi107

d:4h€1/z)1 — hy, *hgl, "’:4}’1;(1/2)*”’;1 *ham
¢ = 16h( 512y — (hoo + hoy + By + 1)
—(@+b+d+e) (16)

Then after the evaluation of the thickness at each node of the
FE mesh, a genetic type optimisation algorithm [8] is used that
provides the optimal process parameters. One can get the
pressure versus axial feed optimal path from such an approach.

5.2. The constraint function

The constraint function has an important role to get the
required shape of the part after processing as the aim of the
process is to get the outer shape of the tubular component as
defined by the inner shape of the die cavity at the end of the
hydroforming stage. The optimisation method proposed
above requires the use of a constraint function to satisfy
such a condition that could be expressed as

i 0
i _ i M~ Vp. 0
g'(u,p) =V, - N V| e
Vi, = VY —u x area (17)

where the superscript i stands for ith optimisation step, V),
the outer tube volume, V), the inner die cavity volume, N the
number of necessary optimisation steps to reach the mini-
mum and &g, is the fixed tolerance value. In using such a
constraint function, one assumes that the outer volume
increases during the simulation process.
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Fig. 9. Thickness contours corresponding to the optimal process path.
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5.3. Multistage radial expansion of a cylindrical tube

The proposed example is associated with the optimisation
and control problem related to the radial expansion of a
circular cross section tube with an initial inner diameter
equal to 60 mm and an initial thickness equal to 2.1 mm, the
geometry of the final part is given in Fig. 11 and the material
properties are: E = 72,000 MPa, v = 0.32, 6, = 40.74 MPa
and o = 241(¢% + 0.00383)"** MPa.

In that example, one searches to get the optimal pressure
versus axial feed optimal curve. The optimisation is a step by
step one that leads to the optimal control path related in Fig. 12.

The thickness variation along the tube axis corresponding
to optimal inner pressure versus axial feed path is reported in
Fig. 13 in comparison with an a priori determined loading
curve issued from an a priori set of parameters issued from
user experience.

It is demonstrated that the use of the proposed control
procedure really leads to decreased thickness variation
during processing.

6. Conclusions

Two distinct procedures have been proposed for the opti-
misation and control of the hydroforming process. The first
one is directly related to optimisation in the sense that the
control is defined in terms of process parameters and these
parameters serve as optimisation ones. A sensitivity analysis is
required to apply a gradient-based optimisation method and
the optimisation of the control curve is then realised. This
procedure gives accurate results as described in the paper but
necessitates numerous computations. The second strategy is a
step by step one that consists of an approximation to the main
quantity entering in the cost function (thickness) versus
process parameters and then to get at the end of the process

the control curve. It has been shown that this approach gives
accurate results and corresponds well to the requirements
associated with process control in hydroforming. The results
obtained are very encouraging and show that numerical
control can help the process designers.
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