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Abstract

In this work we estimate the regression function for Poisson variables, for

a deterministic design in [0, 1]. Our final estimator, which is adaptive to the
data, is selected among a collection of maximum likelihood estimators with

respect to a penalized empirical Kullback-Leibler risk. We obtain an oracle
inequality over the Kullback-Leibler risk for any fixed size n of the design.

Moreover, we state an asymptotic lower bound for this risk over Sobolev
spaces and prove that our estimator reaches this rate. Hence, the selected

estimator is asymptotically minimax over these spaces. We also present nu-
merical experiments, including a strategy to adjust the constants involved in
the penalty function.

Keywords and phrases: Adaptive estimator, Kullback-Leibler risk, maxi-
mum likelihood estimator, minimax rate, model selection, penalization, Pois-

son regression, oracle inequality, wavelets.

1 Introduction

In many practical situations, the collected data are counts, which can be modeled
through Poisson regression. Many authors have already discussed various nonpara-
metric estimation procedures for such models. Whatever the estimation method,
the drawback is to give estimators depending on some unknown smoothing parame-
ter. Hence, this parameter should also be estimated with respect to the given data.
Among available adaptative devices we focus here on the model selection methods



developped in (Barron, Birgé & Massart 1999) and in (Birgé & Massart 2001). One
of the advantages of this approach is to provide nonasymptotic risk upper bounds
for the selected estimator. Our models are constructed using wavelet basis and we
choose the best model with respect to the Kullback Leibler risk.

We consider n independent copies (Yi, xi)1≤i≤n, where the Yi are Poisson variables
of mean µi and the (xi)1≤i≤n is a deterministic design in [0, 1]. In the nonparametric
regression context we want to explain the unknown µi as some general function µ of
the regressor xi. Since for counts the mean is positive, the model µ = exp(f) ensures
that µ remains positive and lets f be unrestricted (see for instance (McCullagh &
Nelder 1989)).

Our goal is to estimate f under mild conditions, over some subspace generated
by wavelet basis. Let us denote (φλ)λ a wavelet basis of L2[0, 1] and SΛ the subspace
of L2[0, 1] generated by the set of wavelets {(φλ), λ ∈ Λ}.

We define our models as linear subspaces of SΛ. We construct a collection of
maximum likelihood estimators within each model and we select one model, which
mimics the best one with respect to the Kullback-Leibler risk.

More precisely, for any subset m of the larger index set Λ we define

Sm = {
∑

λ∈m

βλφλ, (βλ)λ ∈ R
Dm},

where Dm is the cardinal of the subset m.
For each model, the maximum likelihood estimator on Sm is defined as

f̂m = arg min
h∈Sm

γn(h), (1.1)

where the contrast function γn is the opposite of the log-likelihood:

γn(h) = n−1

n
∑

i=1

(eh(xi) − Yih(xi)).

We compare the estimators of the collection, with respect to the Kullback-Leibler
loss between the distributions modelized by f and h, denoted by:

K(f, h) = E(γn(h) − γn(f)) = n−1

n
∑

i=1

eh(xi) − ef(xi) − ef(xi)(h(xi) − f(xi)).

Let us set f̄m the function in Sm minimizing the Kullback-Leibler loss function,

f̄m = arg min
h∈Sm

K(f, h). (1.2)

The functions K(f, ·) and γn(·) may not attain their infimum over the space Sm.
In such a case, f̄m or f̂m may be undefined. Nevertheless we prove that on a large
probability set, if one of them exists the other one also (see Lemma 6.1). Hence, in
the sequel, we only consider the models m for which |f̂m|∞ ≤ B or |f̄m|∞ ≤ B for
some given positive B.
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Like with the usual quadratic risk, we can show that:

E(K(f, f̂m)) = K(f, f̄m) + E(K(f̄m, f̂m)).

In this decomposition, the first term represents the deterministic approximation
error, whereas the second term is the estimation error within the model Sm.

Let us consider the collection of estimators {f̂m, m ∈ Mn}. The best estimator
in this collection in the sense of the Kullback-Leibler loss is f̂m∗ , where

m∗ = arg min
m∈Mn

E(K(f, f̂m)) = arg min
m∈Mn

(K(f, f̄m) + E(K(f̄m, f̂m))).

The ideal model m∗ realizes the best trade-off between the approximation and the
estimation errors. Unfortunately, this model is not available since it depends on the
unknown function f to be estimated.

Consequently, we define the penalized maximum likelihood estimator as f̂m̂ where

m̂ = arg min
m∈Mn,|f̂m|∞≤B

(γn(f̂m) + pen(m)). (1.3)

The aim of this paper is to propose penalty functions pen(·) for which we are
able to prove an oracle inequality for any given n, of the kind:

E(K(f, f̂m̂)) ' min
m∈Mn

E(K(f, f̂m)).

In (Reynaud-Bouret 2003) penalized projection estimators for the intensity of
Poisson processes are proposed. Moreover, oracle inequalities for the L2-risk are
provided for various kinds of basis (histograms, piecewise polynomials, Fourier or
wavelets). In our work we restrict to the particular Poisson regression framework
and we use penalized maximum likelihood estimators. We also furnish an oracle
inequality for the Kullback-Leibler risk of the logarithm of the mean and we only
consider wavelets basis.

In a recent paper (Baraud & Birgé 2005), histograms type estimators for non-
negative random variables are studied, including Poisson variables and oracle in-
equalities are given for the Hellinger risk.

In (Kolaczyk & Nowak 2004) and (Kolaczyk & Nowak 2005) complexity penalized
likelihood estimators are proposed in frameworks that include the Poisson model.
Adaptivity and minimax near-optimality of the Hellinger risk are also stated in these
works.

A quite complete presentation of wavelets methods for estimating the intensity of
a Poisson process is given in (Besbeas, De Feis & Sapatinas 2004). The performances
of the proposed estimators are evaluated by numerical experiments. Among these
methods, one can cite the Anscombe transformation used in (Donoho 1993) and the
Fisz transformation used in (Fryzlewicz & Nason 2004), which are applied on the
data set to recover almost Gaussian observations and then allow the use of standard
wavelets methods.

In (Kolaczyk 1997), (Kolaczyk 1999b) and (Nowak & Baraniuk 1999) wavelet
shrinkage techniques are proposed to be applied directly to the given Poisson
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process. Bayesian procedures have been also proposed in (Kolaczyk 1999a) and
(Timmermann & Nowak 1999). Such methods have been also applied to a larger
family of distributions containing the Poisson one in (Antoniadis & Sapatinas 2001),
(Antoniadis, Besbeas & Sapatinas 2001) and (Sardy, Antoniadis & Tseng 2004)).
However the procedures used in the previous papers give asymptotic results and are
based on penalized or shrinked estimators minimizingLp risks (mainly the quadratic
one).

The paper is organized as follows: In Section 2, we give the main definitions
and tools about wavelets and Besov spaces and we describe the specific properties
of wavelets that are required to obtain the oracle inequality presented in Section 3.
Then in Section 4 a lower bound for the Kullback-leibler risk is studied, over a ball
of Hölder or Sobolev Space when an equispaced design is considered. These results
provide the usual minimax rate for our final estimator over Sobolev balls. Section
5 is devoted to the numerical experiments and in Section 6 we give the proof of
the oracle inequality and of the lower bound. Technical lemmas are proven in the
Appendix.

2 Wavelets and Besov spaces

2.1 Orthogonal wavelets on [0, 1]

We start this section by briefly reviewing some useful facts from basic wavelet the-
ory, which will be used to derive our estimators. A general introduction to the
theory of wavelets can be found in (Chui 1992), (Daubechies 1992), (Walter 1994)
and (Vidakovic 1999). The construction of orthonormal wavelet bases for L2(R)
is now well understood. There are many families of wavelets. Throughout this
paper we will consider compactly supported wavelets such as Daubechies’ orthog-
onal wavelets. For the construction of orthonormal bases of compactly supported
wavelets for L2(R), one starts with a couple of special, compactly supported func-
tions known as the scaling function ϕ and the wavelet ψ. The collection of func-
tions ψj,k(x) = 2j/2ψ(2jx − k), j, k ∈ Z, then constitutes an orthonormal basis
for L2(R). For fixed j ∈ Z, the ϕj,k(x) = 2j/2ϕ(2jx − k), k ∈ Z form an or-
thonormal basis for a subspace Vj ⊂ L2(R). The spaces Vj constitute a multires-
olution analysis. The subspace generated by ψj,k(x) = 2j/2ψ(2jx − k), k ∈ Z usu-
ally denoted Wj is the orthogonal complement of Vj in Vj+1 and permits to de-
scribe the details at level j of the wavelet decomposition. Indeed, when denoting
Pjf =

∑

k∈Z
< f, ϕj,k > ϕj,k the orthogonal projection of f on the approximation

space Vj , we have Pj+1f = Pjf +
∑

k∈Z
< f, ψj,k > ψj,k.

The multiresolution analysis is said to be r-regular if ϕ is Cr, and if both ϕ
and its derivatives, up to the order r, have a fast decay. One can prove that if
a multiresolution analysis is r-regular, the wavelet ψ is also Cr and has vanishing
moments up to the order r (see Corollary 5.2 in (Daubechies 1992)).

The smoother wavelets provide not only orthonormal bases for L2(R), but also
unconditional bases for several function spaces including Besov spaces (see (Triebel
1983)).

Let us consider now orthogonal wavelets on the interval [0, 1]. Adapting wavelets
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to a finite interval requires some modifications as described in (Cohen, Daubechies
& Vial 1993). To summarize, for J0 such that 2J0 ≥ 2r, the construction in (Cohen
et al. 1993) furnishes a finite set of 2J0 scaling functions ϕJ0,k, and for each j ≥ J0,
2j functions ψj,k, such that the collection of these functions forms a complete or-
thonormal system of L2[0, 1]. With this notation, the L2[0, 1] reconstruction formula
is

f(t) =

2J0−1
∑

k=0

αJ0,kϕJ0,k(t) +
∑

j≥J0

2j−1
∑

k=0

βj,kψj,k(t). (2.1)

2.2 Besov spaces

In the following we will use Besov spaces on [0, 1], Bν
p,q which are rather general and

very well described in terms of sequences of wavelet coefficients. In particular for a
suitable choice of the three parameters (ν, p, q) we can get Sobolev spaces or Hölder
spaces. For the definition of Besov spaces, properties and functional inclusions
we refer to (Triebel 1983). Let us just point out that the usual Sobolev space of
regularity ν > 0 denoted in the following by H(ν) coincides with the Besov one Bν

2,2

and the Hölder space Σ(ν) with Bν
∞,∞ when 0 < ν < 1.

Here we just give the following characterization of the Besov space Bν
p,q in terms

of wavelet coefficients of its elements.

Lemma 2.1. Let 0 < p, q ≤ ∞ and ν > max{1/p− 1, 0}. If the scaling function ϕ
and the wavelet function ψ correspond to a multiresolution analysis of L2[0, 1] that
is ([ν]+1)−regular (here [·] stands for the integer part), then a function f in Lp[0, 1]
belongs to the Besov space Bν

p,q if and only if it admits the decomposition (2.1) such
that

‖f‖Bν
p,q

≡ ‖(αJ0,k)k‖lp +

(

∑

j≥J0

2jq(ν+1/2−1/p)‖(βj,k)k‖qlp

)1/q

< +∞

for J0 ∈ N. The ‖f‖Bν
p,q

is equivalent to the Besov space norm.

For a proof see (Delyon & Juditsky 1995).

2.3 Notations and wavelet properties

Afterwards, we shall use the following notations:

∀f ∈ L2[0, 1] : ‖f‖2
2 =

∫

[0,1]

f2(t)dt and ‖f‖∞ = sup
x∈[0,1]

|f(x)|.

∀(ak)k ∈ R
q : |a|22 =

∑

k

a2
k and |a|∞ = sup

k
|ak|.

∀(bk)k ∈ R
n, ∀(ck)k ∈ R

n : < b, c >n=
1

n

n
∑

k=1

bkck and |b|2n =< b, b >n .

Moreover, the notation |f |2 (resp. |f |∞, |f |n, < f, g >n) will abusively stand for
|(f(xi))i|2 (resp. |(f(xi))i|∞, |(f(xi))i|2/n,< (f(xi))i, (g(xi))i) >n).
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Let J be such that 2J = n and the set of indices that permits to describe the
space Vl is given by:

Λl = {(−1, 0)} ∪ {λ = (j, k); j = 0, ..., l− 1; k = 0, ..., 2j − 1} ∀1 ≤ l ≤ J ;

Λ0 = {(−1, 0)} and Λ = ΛJ .

(2.2)

We put φ(−1,0) = ϕ and for any λ = (j, k) 6= (−1, 0), φλ = ψj,k. Our results are
deeply based on the following crucial property of wavelets:

For any 0 ≤ l ≤ J, the basis of the linear space SΛl
is localized in the following

sense: there exists some constant c(ψ) such that for any a ∈ R
2J

:

‖
∑

λ∈Λl

aλφλ‖∞ ≤ c(ψ)2l/2|a|∞. (2.3)

This property is a direct consequence of the localization of wavelets. Indeed, since
the support of ψj,k has a size proportionnal to 2r2−j , at any fixed level j, only a
finite number of wavelets ψj,k are overlapping. Hence there exist some constant c(ψ)

such that for any (βj,k)k ∈ R
2j

, ‖∑k=0,...,2j−1 βj,kψj,k‖∞ ≤ c(ψ)/(1 +
√

2)2j/2|β|∞.

Assertion (2.3) immediately follows since
∑l−1

j=0 2j/2 ≤ (1 +
√

2)2l/2.

3 Wavelet model selection

3.1 Wavelet models

Among the three following collections of models, we concentrate over the first two
ones. Let Ln ∈ {0, ..., J} and set Λ∗

n = ΛLn.

1. We want to select among the estimators all coefficients of which are kept until
a given level l − 1 of details (i.e. to estimate the projection over Vl), that is :

M(Ln) = {Λl, 0 ≤ l ≤ Ln}, (3.1)

and in this case ml = Λl. Here, the dimension of the model Sml
is given by

Dml
= 2l. With a least squared criterion, this choice should be compared to

adaptive linear procedure.

2. We consider the estimators all coefficients of which are kept up to a given level
(l − 2) of details and only some of which at level l − 1 (i.e. we estimate the
projection over Vl−1 and some directions of Wl−1):

M(Ln) = {Λ0} ∪ {m(l,Il) = {Λl−1 ∪ {(l− 1, k), k ∈ Il
| Il ⊂ {0, ..., 2l−1 − 1} and Il 6= ∅}, 1 ≤ l ≤ Ln},(3.2)

and in this case Sm(l,Il)
= Vl−1⊕W Il

l−1 where W Il
l−1 ⊂ Wl−1. Here the dimension

of Sm(l,Il)
is Dm(l,Il)

= 2l−1 + |Il| where 1 ≤ |Il| ≤ 2l−1. For any given l and
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1 ≤ d ≤ 2l−1 there are

(

2l−1

d

)

models with dimension 2l−1 + d. With this

choice, our procedure should be compared to usual procedures based on hard
thresholding.

3. We could also define models built on the coefficients complete binary tree. In
such a case, a model would be a sub-tree containing the root (corresponding
to the V0 space). This should be compared to soft threshold procedures.

Property 1. For any m ∈ M(Ln), there exists some constant bloc such that for any
a ∈ R

Dm

‖
∑

λ∈m

aλφλ‖∞ ≤ blocD1/2
m |a|∞.

For the first collection it is an immediate application of (2.3) with bloc = c(ψ),
whereas for the second one we take bloc =

√
2c(ψ), since 2l−1 ≤ Dml,Il

≤ 2l.

3.2 Oracle inequality

Assumption 1. The family (φλ)λ∈Λ is orthonormal for the scalar product < ·, · >n.

This assumption holds when the Haar basis is considered and for any determin-
istic design such that xi ∈ [(i− 1)/n, i/n].

Next, for technical reasons, we need to bound the dimension of the largest model
in the considered collection M(Ln).

Assumption 2. Suppose that the maximal dimension 2Ln is bounded by n1−θ, where
1/2 < θ < 1.

This constraint imposes to only consider the models up to the level Ln < J/2 =
logn/(2 log 2). Nevertheless, this condition being purely technical, in practice, we
consider all the models up to the level J = log n/ log 2.

Before giving the main result we first present an upper bound for the Kullback-
Leibler risk on a given model.

Proposition 3.1. Let Assumptions 1 and 2 hold and let τ ∈]0, 1[ and B be some
constants. If |f |∞ ≤ B then for any n ≥ 1, there exists some event Ωn such that

P

(

ΩC
n

)

≤ c(|f |∞, B, bloc, τ )
n2

,

and for any model m ∈ M(Ln) such that |f̄m|∞ ≤ B,

E f (K(f, f̂m)1lΩn) ≤ K(f, f̄m) + 2eτ/2+B+|f |∞
Dm

n
.

Next, we propose some penalty function which enables to select a model m̂ which
behaves as well as the ideal but unknown model m∗.
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Theorem 3.1. Suppose Assumptions 1 and 2 hold, α and B be some positive con-
stants and τ ∈]0, 1[. Let {Lm}m∈M(Ln) be positive numbers such that

∑

m∈M(Ln)

e−LmDm ≤ Σ < +∞. (3.3)

Define the penalty function as:

pen(m) = e|f̂m|∞+B+τ
(c1

2
+ c2Lm

) Dm

n
,

where c1 = (1 + α)4 and c2 = (1 + α)4(1 + 6/α).
For any f such that |f |∞ ≤ B and n ≥ 1, there exists some set Ωn such that

P

(

ΩC
n

)

≤ c(|f |∞, B, bloc, α, τ )
n2

,

and such that:

E(K(f, f̂m̂)1lΩn) ≤
(1 + α)2

α
min

m∈M(Ln),|f̄m|∞≤B

(

K(f, f̄m) + 2E(pen(m)1lΩn)
)

+
3C(|f |∞, B, α, τ )Σ

n
.

The constant B involved in the definition of the penalty function should be
choosen as an upper bound of |f |∞. On the one hand we would like to choose it
as large as possible to consider the largest possible model collection. On the other
hand, the constants in the penalty term and in the residual term increase with B.
In practice we will take for B an estimator of |f |∞.

The previous risk inequality can be seen as an oracle inequality. Indeed, the
penalty term can be bounded by:

E(pen(m)1lΩn) ≤ e2(τ+B)
(c1

2
+ c2Lm

) Dm

n
.

3.3 Choice of the weights {Lm,m ∈ M(Ln)}
The choice of these weights is done in order to check the constraint (3.3) , so that
it depends on the complexity of the model family. Let us consider the following two
cases:

1. Family with a polynomial number of models per dimension

Assumption 3. There exist some integer r and some constant R such that
the number of models with a given dimension D is bounded by RDr .

In this case, the weights can be choosen as constants Lm = L for all models
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m since

∑

m∈M(Ln)

e−LmDm ≤
+∞
∑

D=1

∑

m,Dm=D

e−LD ≤
+∞
∑

D=1

RDre−LD = Σ < +∞.

This assumption is fulfilled when using the first collection of models (3.1).
Indeed, in this case there is a single model per dimension D ∈ {1, ..., 2Ln}
and the previous assumption holds for r = 0 and R = 1. Then in (3.3)
Σ = 1/(expL−1). Herein, we recover the usual bound Dm/n up to a constant
for the variance term in the risk decomposition.

2. Family with an exponential number of models per dimension

Assumption 4. There exist some constants A and a such that the number of
models with a given dimension D is bounded by AeaD.

In this case, the weights have to be choosen larger than in the previous case
in order to satisfy condition (3.3). Nevertheless, we take them as small as
possible to avoid a too large risk bound in the oracle inequality. We can
choose Lm = logn for all models m since

∑

m∈M(Ln)

e−LmDm ≤
+∞
∑

D=1

∑

m,Dm=D

e−D logn ≤
+∞
∑

D=1

AeaDe−D logn = Σ < +∞.

This assumption is fulfilled when using the second collection of models (3.2).
Indeed, in this case, each dimension D ∈ {2, ..., 2Ln} can be decomposed as

D = 2l−1 + d with 1 ≤ l ≤ Ln and 1 ≤ d ≤ 2l−1 and there are

(

2l−1

d

)

models

with dimension D. Furthermore

(

2l−1

d

)

≤
(

e2l−1

d

)d

= ed(1+log(2l−1/d)) ≤ ed(1+2l−1/d) = eD.

Hence, Assumption 4 holds for a = 1 and A = 1. Moreover, we get easily:

∞
∑

D=1

eDe−D logn =
e/n

1 − e/n
≤ e/3

1 − e/3
,

as soon as n ≥ 3. Then in (3.3), Σ = e/3
1−e/3

. Herein, we recover the bound

(Dm logn)/n up to a constant for the variance term in the risk decomposition.
This is the usual price to pay for investigating a large collection of models,
when the true function lies in a Besov space rather than in a Sobolev one.

4 Lower bounds on Besov spaces

Set ν ≥ 0, ν = k + α with k ∈ N and 0 ≤ α < 1. Let us consider the Hölder class
F = Σ(ν, L) of functions f defined over the interval [0, 1] that admit k derivatives

9



and such that the k-th derivative satisfies:

|f (k)(x) − f (k)(y)| ≤ L|x− y|α, ∀(x, y) ∈ [0, 1]2. (4.1)

We also consider the Sobolev Class H(ν, L) of regularity ν ∈ N
∗ over the interval

[0, 1] of functions which Sobolev norm (i.e. the L2-norm of the ν-th derivative of f)
is bounded by L. Note that for any integer ν ≥ 1 such a class contains the Hölder
class F = Σ(ν, L). Furthermore we denote C∞(B) the space of functions uniformly
bounded by B, where B is a positive constant.

In this section we will state that the minimax rate of convergence for the es-
timation problem with Poisson response is the same as the usual minimax rate of
convergence in nonparametric regression estimation. The following lower bound is
stated in the case of a deterministic and equispaced design (xi)1≤i≤n in [0, 1] and
over a Hölder class.

Theorem 4.1. Let B and L be positive constants and ν > 1/2. There exists a
constant C, which only depends on B, L and ν, such that:

lim inf
n→∞

inf
f̂n∈C∞(B)

sup
f∈Σ(ν,L)∩C∞(B)

E f(K(f, f̂n)v
−2
n ) ≥ C > 0,

where vn = n− ν
2ν+1 .

The lower bound over the Sobolev class H(ν, L) is a direct consequence of the
lower bound over the Hölder class Σ(ν, L) since that class contains the latter one
when ν is a nonzero integer.

In the Gaussian regression case, it is now well known, that when the quadratic
risk is considered, the linear wavelet estimator reaches the minimax rate of conver-
gence n−2ν/(ν+1) over the Sobolev class H(ν, L) as soon as the optimal resolution
level j∗ is chosen such that 2j

∗
= O(n1/(2ν+1)).

Here when considering the collection (3.1), the selected estimator f̂m̂ reaches
the rate n−2ν/(2ν+1) over the Sobolev class H(ν, L) and hence is minimax. Indeed,
since K(f, f̄ml

) ≤ K(f, Plf) due to definition of f̄ml
and since over a Sobolev class

K(f, Plf) is of the same order as ‖f − Plf‖2
2 = O(2−2lν) the bias term K(f, f̄ml

)
is also of order O(2−2lν). Furthermore the dimension Dml

of the model Sml
is 2l.

Hence the trade-off between the bias term and the penalization term in Theorem
3.1 is obtained for 2l = O(n1/(2ν+1)). Moreover, the residual term in the oracle
inequality being of order 1/n the risk E f(K(f, f̂m̂)1lΩn) is bounded from above by
O(n−2ν/(2ν+1)).

We guess that on Besov classes the obtained lower bound for the Kullback-Leibler
risk should be the same as the usual one for quadratic risk, that is O(n−2ν′/(2ν′+1))
with ν ′ = ν − 1/p + 1/2, ν ≥ 1/2 and p ≤ 2. For this larger class of functions, the
richest collection of models (3.2) should be considered, in order to obtain an upper
bound for the bias term of order O(−n2ν′/(2ν′+1)). Due to the choice of weights
Lm = logn, the selected estimator can only reach the rate O(n−2ν′/(2ν′+1)) up to a
logn factor which is the usual price to pay for adaptivity.
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5 A simulation study

In this part, we present some numerical experiments that illustrate our results.
Our aim is to compare our procedure with the projection procedure proposed in
(Reynaud-Bouret 2003). More precisely, we want to answer the following questions:

1. Does the e|f̂m|∞+B factor in the penalty make any sense in practice ?

2. How to choose the constants involved in the penalty term in practice ?

3. How much the penalized maximum likelihood estimator is preferable to the pe-
nalized projection estimator as defined in (Reynaud-Bouret 2003) ?

5.1 Choice of the penalty functions

In the proof of the Theorem, it can be seen that the term |f̂m|∞ +B in the penalty
term comes from an estimation of |f |∞. Therefore, in order to see the sensibility of
the penalty function to |f |∞, we choose functions that only differ from their infinity
norms.

More precisely, we choose n = 27 = 128, and we choose the functions f and
regular models so that the function f belongs to one of the following models:

a. f = f4 is a regular piecewise constant function on [0, 1], f4 = 1l[1/4,1/2]−1l[1/2,3/4] .
We use the Haar basis. In this case, such models may be described, for J ≥ 0,
by:

SHJ = {
J
∑

j=0

j−1
∑

k=0

βj,k 1l[k2−j ,(k+1)2−j[, β ∈ R
2J−1}.

b. f = 2f4 and the models are the same as above.

c. f = f4/2 and the models are the same as above.

d. Let g be defined by g(x) = a(x2(1 − x))3 − 1, where a is some positive constant
such that |g|∞ = 1. We define the models for J ≥ 0 by:

SψJ = {
J
∑

j=0

j−1
∑

k=0

βj,kψj,k, β ∈ R
2J−1},

where the ψj,k are the Symmlet basis with 4 vanishing moments (see (Daubechies
1992) and (Wickerhauser 1994)). The true function is then defined as:

fsmooth = P2(g).

In these 4 cases, the true function belongs to the model SH2 which dimension is
22 = 4.

For L = 100 simulations, we generate n = 128 = 27 independent random vari-
ables Yi with Poisson distribution with parameter ef(i/n). For each simulation, we

11



calculate, on each model SJ , the maximum likelihood estimator f̂J and the projec-
tion estimator êJ , which is simply the L2-projection of Y onto the model SJ . Since
there is only one model with a given dimension, we then select the “best” model
with the following penalized criteria:

ĴML = arg min
0≤J≤7

(γn(f̂J ) + c2J/n), ĴP = arg min
0≤J≤7

(n−1

n
∑

i=1

(Yi − êJ,i)
2 + c2J/n).

The final estimators are the penalized maximum likelihood estimator (PMLE) f̂ĴML

and the penalized projection estimator (PPE) êĴP
. Note that, in the Haar basis

case, the maximum likelihood estimator and the projection estimator coincide in
each model SHJ (êJ = exp f̂J ) whereas this is not the case in the Symmlet case.
Nevertheless, the chosen model is not necessarily the same since the selection criteria
are not the same.

The constant c in the penalty term is first chosen equal to 0.1 and then grows by
steps of 0.1. For lower values of c, the chosen dimension is the maximum one (here
27) and for a particular value of c it suddenly jumps down to lower dimensions. For
each simulation, we detect the lowest constant c selecting the true “model” (J = 2).
Figure 1 shows the dispersion of these constants over the L = 100 simulations.
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Figure 1: Distribution of the lowest constants selecting the “true” model: (1-2)
f = f4, (3-4) f = 2f4, (5-6) f = f4/2, (7-8) f = fsmooth via (1,3,5,7) penalized
maximum likelihood criterion, (2,4,6,8) penalized projection criterion.

We can remark that these constants seem more stable with the PMLE than with
the PPE. In particular, we see that the distribution of the PMLE constants is of
the same order for the four functions whereas it seems to depend on |f |∞ for the
PPE. If we divide the constants by e|f |∞ in the PPE case, as described in Figure 2,
we recover constants of the same order as the ones obtained in the PMLE case.

Therefore, we have decided to skip the e|f̂m|∞+B factor in the penalty term for
the PMLE and to keep it for the PPE. More precisely, consequently, we shall take
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Figure 2: Distribution of the lowest constants selecting the “true” model: (1-2) f =
f4, (3-4) f = 2f4, (5-6) f = f4/2, (7-8) f = fsmooth via (1,3,5,7) penalized maximum
likelihood criterion, (2,4,6,8) penalized projection criterion, (2,4,6,8) contants are
divided by exp(|f |∞).

a penalty term of the form penML(J) = cML2
J/n for the PMLE and penP (J) =

cP |êJ |∞2J/n for the PPE.

5.2 Choice of the constant in the penalty functions

Next, we consider the constants cKL,p, cMC,p, p = 0.75, 0.80, 0.85, 0.90, 0.95, 0.99, 1
corresponding to the 0.75, 0.80, 0.85, 0.90, 0.95, 0.99, 1 quantiles of the former con-
stants for each procedure. We still choose the functions f so that they belong to
one of the models:

a. f = f16 is a regular piecewise constant function on [0, 1], equal to 1 on inter-
vals [1/16, 2/16[, [5/16, 6/16[, [9/16, 10/16[, [13/16, 14/16[ and to −1 on intervals
[2/16, 3/16[, [6/16, 7/16[, [10/16, 11/16[, [14/16, 15/16[ and 0 elsewhere. The true
dimension is then 24 = 16. We estimate f16 via the Haar basis on the models
SHJ , 0 ≤ J ≤ 7.

b. f = fsmooth like described in case d, the models are the SψJ , 0 ≤ J ≤ 7, so that
the true dimension still is 4 = 22.

We perform L = 100 new simulations of n = 128 random variables Yi and for each
simulation, we calculate the penalized maximum likelihood estimator and penalized
projection estimator, calculated with the previous seven constants. We present in
Table 1 the distribution of the selected dimensions over the 100 simulations. We
also present in Figures 3 and 4 the distribution of the Average Square Error and in
Figures 5 and 6 the Kullback-Leibler divergence of both estimators over the L = 100
simulations and for each of the seven constants.
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(a)

J ĴML ĴP

p 0.75 0.80 0.85 0.90 0.95 0.99 1 0.75 0.80 0.85 0.90 0.95 0.99 1
cp 0.9 0.9 1.0 1.1 1.2 1.6 1.9 0.85 0.96 1.04 1.18 1.4 1.97 3.4

0 0 0 0 0 0 1 5 0 0 0 0 0 7 59
1 0 0 0 0 0 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 1 2 6 10 1 2 2 5 21 66 39
4 94 94 96 98 98 93 85 99 98 98 95 79 27 0
5 6 6 3 1 0 0 0 0 0 0 0 0 0 0
2 72 72 79 84 89 96 98 66 75 82 87 94 100 100
3 21 21 18 15 10 4 2 34 25 18 13 6 0 0
4 4 4 1 1 1 0 0 0 0 0 0 0 0 0
5 1 1 1 0 0 0 0 0 0 0 0 0 0 0
6 2 2 1 0 0 0 0 0 0 0 0 0 0 0

(b)

J ĴML ĴP

p 0.75 0.80 0.85 0.90 0.95 0.99 1 0.75 0.80 0.85 0.90 0.95 0.99 1
cp 0.9 0.9 1.0 1.1 1.2 1.6 1.9 0.85 0.96 1.04 1.18 1.4 1.97 3.4

0 0 0 0 0 0 1 5 0 0 0 0 0 7 59
1 0 0 0 0 0 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 1 2 6 10 1 2 2 5 21 66 39
4 94 94 96 98 98 93 85 99 98 98 95 79 27 0
5 6 6 3 1 0 0 0 0 0 0 0 0 0 0
2 72 72 79 84 89 96 98 66 75 82 87 94 100 100
3 21 21 18 15 10 4 2 34 25 18 13 6 0 0
4 4 4 1 1 1 0 0 0 0 0 0 0 0 0
5 1 1 1 0 0 0 0 0 0 0 0 0 0 0
6 2 2 1 0 0 0 0 0 0 0 0 0 0 0

Table 1: Distribution of the selected dimensions over the 100 simulations: (a) f =
f16, Haar basis, (b) f = fsmooth, Symmlet basis.
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Figure 3: Distribution of the Average Square Error for f = f16 of the (1-7) penalized
maximum likelihood estimator, (8-14) penalized projection estimator, with constant
in the penalty term: (1) cML,0.75 = 0.9, (2) cML,0.80 = 0.9, (3) cML,0.85 = 1.0, (4)
cML,0.90 = 1.1, (5) cML,0.95 = 1.2, (6) cML,0.99 = 1.6, (7) cML,1 = 1.9, (8) cP,0.75 =
0.85, (9) cP,0.80 = 0.96, (10) cP,0.85 = 1.04, (11) cP,0.90 = 1.18, (12) cP,0.95 = 1.4, (13)
cP,0.99 = 1.97, (14) cP,1 = 3.4.
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Figure 4: Distribution of the Average Square Error for f = fsmooth of the (1-7)
penalized maximum likelihood estimator, (8-14) penalized projection estimator, with
constant in the penalty term: (1) cML,0.75 = 0.9, (2) cML,0.80 = 0.9, (3) cML,0.85 = 1.0,
(4) cML,0.90 = 1.1, (5) cML,0.95 = 1.2, (6) cML,0.99 = 1.6, (7) cML,1 = 1.9, (8) cP,0.75 =
0.85, (9) cP,0.80 = 0.96, (10) cP,0.85 = 1.04, (11) cP,0.90 = 1.18, (12) cP,0.95 = 1.4, (13)
cP,0.99 = 1.97, (14) cP,1 = 3.4.
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Figure 5: Distribution of the Kullback-Leibler divergence for f = f16 of the (1-7)
penalized maximum likelihood estimator, (8-14) penalized projection estimator, with
constant in the penalty term: (1) cML,0.75 = 0.9, (2) cML,0.80 = 0.9, (3) cML,0.85 = 1.0,
(4) cML,0.90 = 1.1, (5) cML,0.95 = 1.2, (6) cML,0.99 = 1.6, (7) cML,1 = 1.9, (8) cP,0.75 =
0.85, (9) cP,0.80 = 0.96, (10) cP,0.85 = 1.04, (11) cP,0.90 = 1.18, (12) cP,0.95 = 1.4, (13)
cP,0.99 = 1.97, (14) cP,1 = 3.4.
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Figure 6: Distribution of the Kullback-Leibler divergence for f = fsmooth of the (1-7)
penalized maximum likelihood estimator, (8-14) penalized projection estimator, with
constant in the penalty term: (1) cML,0.75 = 0.9, (2) cML,0.80 = 0.9, (3) cML,0.85 = 1.0,
(4) cML,0.90 = 1.1, (5) cML,0.95 = 1.2, (6) cML,0.99 = 1.6, (7) cML,1 = 1.9, (8) cP,0.75 =
0.85, (9) cP,0.80 = 0.96, (10) cP,0.85 = 1.04, (11) cP,0.90 = 1.18, (12) cP,0.95 = 1.4, (13)
cP,0.99 = 1.97, (14) cP,1 = 3.4.
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From these results, it seems reasonable to keep, among the seven quantiles, for
each procedure the 0.95 quantile, namely cML = 1.2 and cP = 1.4 in the penalty
term for the next simulations.

5.3 Comparison with the penalized projection estimator

In this part, we compare our penalized maximum likelihood procedure with the
penalized projection estimator for different values of n and for two criteria, namely
Average Square Error and Kullback-Leibler divergence. For that purpose, we choose

a. f = f4, the true dimension is then 22 = 4. We estimate f4 via the Haar basis on
the models SHJ (case a).

b. f = g like described in case d, the models are the SψJ . Hence, the true function
belongs to none of the models.

We perform L = 100 new simulations of n = 128 = 27, n = 256 = 28, n = 512 =
29 random variables Yi and the collections of models are defined by

M128 = {SJ , 0 ≤ J ≤ 7},M256 = {SJ , 0 ≤ J ≤ 8},M512 = {SJ , 0 ≤ J ≤ 9}.

For each simulation, we calculate the penalized maximum likelihood estimator and
the penalized projection estimator, computed with the constants determined in the
previous section. We describe in Table 2 the distributions of the selected dimensions
over the 100 simulations and in Table 3 the number of simulations for which the
maximum likelihood procedure selects a lower, resp. equal, resp. higher dimension
than the projection procedure. We also present in Figure 7 the distributions of the
Average Square Error and in Figures 8 and 9 the Kullback-Leibler divergence of
both estimators over the L = 100 simulations.

J n = 128 n = 256 n = 512

ĴML ĴP ĴML ĴP ĴML ĴP
2 96 100 97 100 93 98

(a) 3 4 0 3 0 7 2
2 80 92 78 60 39 6

(b) 3 18 8 21 40 60 94
4 2 0 1 0 1 0

Table 2: Distribution of the selected dimensions over the 100 simulations for dif-
ferent sample sizes (n = 128, 256, 512): (a) f = f4, Haar basis, (b) f polynomial,
Symmlet basis.

5.4 Conclusion

From a statistical point of view, this simulation study suggests that the penalized
maximum likelihood estimator behaves better than the projection estimator. Indeed,
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n ĴML < ĴP ĴML = ĴP ĴML > ĴP
128 0 96 4

(a) 256 0 97 3
512 0 95 5
128 1 86 13

(b) 256 19 79 2
512 33 66 1

Table 3: Comparison of the selected dimensions by the penalized Maximum Likeli-
hood criterion and by the Projection criterion over the 100 simulations for different
sample sizes (n = 128, 256, 512): (a) f = f4, Haar basis, (b) f polynomial, Symmlet
basis.
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Figure 7: Distribution of the Average Square Error for (1-6) f = f4 and (7-
12) f = fsmooth for different sample sizes: (1,2,7,8) n = 128, (3,4,9,10) n = 256,
(5,6,11,12) n = 512, (1,3,5,7,9,11) PMLE, (2,4,6,8,10,12) PPE.
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Figure 8: Distribution of the Kullback-Leibler divergence for f = f4 for different
sample sizes: (1,2) n = 128, (3,4) n = 256, (5,6) n = 512, (1,3,5) PMLE, (2,4,6)
PPE.
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Figure 9: Distribution of the Kullback-Leibler divergence for f = fsmooth for differ-
ent sample sizes: (1,2) n = 128, (3,4) n = 256, (5,6) n = 512, (1,3,5) PMLE, (2,4,6)
PPE.
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for the first one, an estimation of |f |∞ is not required in the procedure although
it is for the second one. Secondly, even if both procedures are equivalent when
estimating a piecewise constant function (f4), the penalized maximum likelihood
estimator performs better than the penalized projection estimator when estimating
a smooth function (here, a polynomial) and this, with both loss functions, Average
Square Error and Kullback-Leibler divergence.

Nevertheless, the computing cost is much higher in the maximum likelihood case
than in the projection case, since the latter provides an explicit estimator whereas
the first one requires the minimization of a function, except in the particular case
of the Haar basis: in this case indeed, just compute the estimator on each model
by projection, and then select the best one using our penalized maximum likelihood
criterion.

The constants 1.2 and 1.4 are calibrated for piecewise constants and smooth
functions. For other kinds of functions (for instance, functions with bumps or an-
gles), our constant calibration method should be applied with an adapted wavelet
basis. Thus, the constants may change.

6 Proofs

6.1 Proof of the oracle inequality given in Theorem 3.1

Let us denote εi = Yi − E(Yi) = Yi − efi. By elementary algebric manipulation we
have:

K(f, f̂m̂) = K(f, f̄m) + γn(f̂m̂) − γn(f̄m)+ < f̂m̂ − f̄m̂, ε >n + < f̄m̂ − f̄m, ε >n .

Next, due to definitions (1.3) of m̂ and (1.1) of f̂m , we have:

γn(f̂m̂) + pen(m̂) ≤ γn(f̂m) + pen(m) ≤ γn(f̄m) + pen(m).

Hence γn(f̂m̂) − γn(f̄m) is bounded by pen(m) − pen(m̂). Thus, when substituting
γn(f̂m̂) − γn(f̄m) by this latter upper bound in the decomposition of K(f, f̂m̂), we
get:

K(f, f̂m̂) ≤ K(f, f̄m) + pen(m) − pen(m̂)+ < f̂m̂ − f̄m̂, ε >n + < f̄m̂ − f̄m, ε >n(6.1)

Furthermore, since for any numbers a, b and any positive θ, 2ab ≤ θa2 + 1
θ
b2, we

have

< f̂m̂ − f̄m̂, ε >n ≤ sup
h∈Sm̂

< h, ε >n

|h|n
|f̂m̂ − f̄m̂|n

≤ θ1

2
χ2
n(m̂) +

1

2θ1
|f̂m̂ − f̄m̂|2n,

where

χn(m
′) = sup

h∈Sm′

< h, ε >n

|h|n
= sup

h∈Sm′ ,|h|n≤1

< h, ε >n .
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and θ1 is a positive number. Next, substituting in (6.1) the upper bound given in
(7.5) for |f̂m̂ − f̄m̂|2n, we obtain:

K(f, f̂m̂) ≤ K(f, f̄m) + pen(m) − pen(m̂) (6.2)

+
θ1

2
χ2
n(m̂) +

e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

θ1
K(f̄m̂, f̂m̂)+ < f̄m̂ − f̄m, ε >n .

Next, let A be some positive number and ρ such that

1 − θ < 2ρ < θ, (6.3)

where θ is defined in Assumption 2. In order to control the terms χ2
n(m̂) and

|f̂m̂ − f̄m̂|∞, we introduce the set Ωn[A]:

Ωn[A] =

{

sup
λ∈Λ∗

n

| < ϕλ, ε >n | ≤ An−ρ

blocD
1/2
Λ∗

n

}

.

The set Ωn of the theorem will be defined later as Ωn[A] for a particular value of A.
The following proposition, which is the key to state the oracle inequality, gives an
upper bound for the term χ2

n(m̂).

Proposition 6.1. Let (xm′)m′∈M(Ln) be some positive numbers and suppose that

A ≤ 12αe−|f |∞

κ(α)
, where κ(α) is defined in (6.18). Then, there exists some set Ω1

n such

that P

(

Ω1
n
C
)

≤∑m′∈M(Ln) e
−xm′ , and on the set Ω1

n

χn(m̂)1lΩn[A] ≤ (1 + α)e|f |∞/2

(

(

Dm̂

n

)1/2

+

(

12xm̂
n

)1/2
)

. (6.4)

The proof of this proposition is postponed in Section 6.3.2. It is an application
of a concentration inequality for Poisson process that can be found in (Reynaud-
Bouret 2003), to the case of independant Poisson variables.

The following proposition provides an upper bound for the last term of inequality
(6.2).

Proposition 6.2. Let (ym′)m′∈M(Ln) be some positive numbers and θ2 and θ3 be

some positive constants. Then, there exists some set Ω2
n such that P

(

Ω2
n
C
)

≤
2
∑

m′∈M(Ln) e
−ym′ , and on the set Ω2

n

< f̄m̂ − f̄m, ε >n ≤ e|f̄m̂−f |∞

2

(

1 +
1

θ2

)

ym̂
n

+ θ2K(f, f̄m̂)

+
e|f̄m−f |∞

2

(

1 +
1

θ3

)

ym
n

+ θ3K(f, f̄m). (6.5)

The proof of the Bernstein type inequality (6.5) is given in Section 6.3.3.
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Gathering (6.2), (6.4) and (6.5), on the set Ω1
n ∩ Ω2

n we have:

K(f, f̂m̂)1lΩn[A] ≤
1lΩn[A]

{

K(f, f̄m) + pen(m) − pen(m̂)

+
θ1

2
(1 + α)2e|f |∞

(

(

Dm̂

n

)1/2

+

(

12xm̂
n

)1/2
)2

+
e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

θ1
K(f̄m̂, f̂m̂)

+

(

1 +
1

θ2

)

e|f̄m̂−f |∞ym̂
2n

+ θ2K(f, f̄m̂) +

(

1 +
1

θ3

)

e|f̄m−f |∞ym
2n

+ θ3K(f, f̄m)

}

(6.6)

Let us choose xm′ = ym′ = Lm′Dm′ + ζ. Since for any positive θ and any a and b
(a + b)2 ≤ (1 + θ)a2 + (1 + 1/θ)b2, for any positive θ4 we get:

(

(

Dm̂

n

)1/2

+

(

12xm̂
n

)1/2
)2

≤ (1 + θ4)
Dm̂

n
+

(

1 +
1

θ4

)

12(Lm̂Dm̂ + ζ)

n

≤ (1 + θ4)

(

1 +
12Lm̂
θ4

)

Dm̂

n
+

(

1 +
1

θ4

)

12ζ

n
.

(6.7)

Hence, when substituting (6.7) in inequality (6.6) and factorizing the terms
K(f, f̄m), Dm̂

n
and ζ

n
, we obtain:

K(f, f̂m̂)1lΩn[A] ≤

1lΩn[A]

[

(1 + θ3)K(f, f̄m) + pen(m)− pen(m̂) +

(

1 +
1

θ3

)

e|f̄m−f |∞LmDm

2n

+

{

θ1

2
(1 + α)2e|f |∞(1 + θ4)

(

1 +
12Lm̂
θ4

)

+

(

1 +
1

θ2

)

e|f̄m̂−f |∞

2
Lm̂
}

Dm̂

n

+

{

6θ1(1 + α)2

(

1 +
1

θ4

)

e|f |∞ +

(

1 +
1

θ2

)

e|f̄m̂−f |∞

2

}

ζ

n

+
e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

θ1
K(f̄m̂, f̂m̂) + θ2K(f, f̄m̂)

]

. (6.8)

Now, we take 0 < θ2 < 1 and θ1 = e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

θ2
. Since K(f̄m̂, f̂m̂) + K(f, f̄m̂) =

K(f, f̂m̂), we get

e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

θ1

K(f̄m̂, f̂m̂) + θ2K(f, f̄m̂) = θ2K(f, f̂m̂).

Substituting this expression in inequality (6.8) and noticing that (1 + 1/θ2) ≤ 2/θ2,
we have:

22



(1 − θ2)K(f, f̂m̂)1lΩn[A] ≤ 1lΩn[A]

{

(1 + θ3)K(f, f̄m) + pen(m) − pen(m̂)

+(1 +
1

θ3
)
e|f̄m−f |∞LmDm

2n
+ T1(m̂)

Dm̂

n
+ T2(m̂)

ζ

n

}

, (6.9)

where

T1(m̂) =
e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

2θ2

(1 + α)2e|f |∞(1 + θ4)

(

1 +
12Lm̂
θ4

)

+
e|f̄m̂−f |∞

θ2

Lm̂

T2(m̂) =

{

12
e|f̄m̂|∞+|f̂m̂−f̄m̂|∞

θ2
(1 + α)2

(

1 +
1

θ4

)

e|f |∞ +
e|f̄m̂−f |∞

θ2

}

Next, on the one hand, we have to bound the quantities |f |∞ and |f̄m̂−f |∞ in T1(m̂)
and to choose the constant θ2, θ4 in such a way that

(− pen(m̂) + T1(m̂)
Dm̂

n
)1lΩn[A] ≤ 0, (6.10)

and on the other hand, we have to bound T2(m̂) by a deterministic constant. To this
end, the following proposition enables us to bound the term |f̄m′ − f |∞ for m′ = m̂
or m′ = m.

Proposition 6.3. Let Assumption 2 holds. Set τ ∈]0, 1[. If

A ≤ τ

4e1+B
, (6.11)

then, on the set Ωn[A], for any model m′ ∈ M(Ln) such that |f̂m′ |∞ ≤ B or |f̄m′|∞ ≤
B, we have :

|f̂m′ − f̄m′|∞ ≤ τ/2

Due to definition of m̂ (1.3), the previous result can be applied to m̂. In the

sequel of the proof, we put A = inf(12αe−|f |∞

κ(α)
, τ

4e1+B ) and we put Ωn = Ωn[A] for this
choice of A.

On Ωn we can bound T1(m̂) using that:

(|f̄m̂|∞ + |f̂m̂ − f̄m̂|∞)1lΩn ≤ (|f̂m̂|∞ + 2|f̂m̂ − f̄m̂|∞)1lΩn ≤ (|f̂m̂|∞ + τ )1lΩn

|f̄m̂ − f |∞ 1lΩn ≤ (|f |∞ + |f̄m̂|∞)1lΩn ≤ (B + |f̂m̂|∞ + τ/2)1lΩn

≤ (B + |f̂m̂|∞ + τ )1lΩn . (6.12)

Moreover, on Ωn we also have |f̄m̂|∞ 1lΩn ≤ (|f̂m̂− f̄m̂|∞+|f̂m̂|∞ ≤ (τ/2+B)1lΩn .
Hence we obtain:

|f̄m̂ − f |∞ 1lΩn ≤ (|f̄m̂|∞ + |f |∞)1lΩn ≤ (τ/2 + 2B)1lΩn , (6.13)

which provides an upper bound for T2(m̂). Now, we choose θ2 = 1/(1 + α), θ4 = α,
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and α such that

(1 + α)4 = c1

(1 + α)4

(

6

α
+ 1

)

= c2,

where c1 and c2 are the constants in the penalty term. With these choices of θ2 and
θ4, substituting the bounds given in (6.12) and in (6.13) in expressions of T1(m̂) and
of T2(m̂), we check (6.10) and we bound T2(m̂) with some constant C ′(B, α).

Hence inequality (6.9) over Ω1
n ∩ Ω2

n gives :

α

1 + α
K(f, f̂m̂)1lΩn ≤

1lΩn

{

(1 + θ3)K(f, f̄m) + pen(m) +

(

1 +
1

θ3

)

e|f̄m−f |∞LmDm

2n
+ C ′(B̄, α)

ζ

n

}

.

(6.14)

Let us now suppose that |f̄m|∞ ≤ B and choose θ3 = α. Then the third term of the
previous right hand side can be bounded as follows:

1lΩn

(

1 +
1

θ3

)

e|f̄m−f |∞LmDm

2n
≤ 1lΩn

(

1 +
1

α

)

e|f̂m|+B+τ/2LmDm

2n
≤ pen(m)1lΩn .

Moreover, since Ω1
n and Ω2

n satisfy

P

(

Ω1
n
C ∪ Ω2

n
C
)

≤ 3
∑

m∈Mn

e−LmDm−ζ ≤ 3Σe−ζ ,

when applying Lemma 7.5 with

κ1 =
1 + α

α

C ′(B, α)

n
=
C(B, α)

n
κ2 = 3Σ

we get the oracle inequality.
It remains to prove that the set Ωn has a great probability, which is given in the

following proposition.

Proposition 6.4. Let Assumptions 1 and 2 hold. For any positive A, there exists
some positive constant c, which depends only on |f |∞, bloc and A, such that

P

(

Ωn[A]C
)

≤ c(|f |∞, A, bloc)
n2

.

Since we have already choosen A = inf(12αe−|f |∞

κ(α)
, τ

4e1+B ) the control of ΩC
n only

depends on |f |∞, bloc, B, α and τ .
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6.2 Proof of Proposition 3.1

This proof is a simplier version of the preceding one, since we only have to deal with
one single fixed model m, rather than a random model m̂. With the same notations,
we easily have that, for any model m,

K(f, f̂m) = K(f, f̄m) + γn(f̂m) − γn(f̄m)+ < ε, f̂m − f̄m >n

≤ K(f, f̄m)+ < ε, f̂m − f̄m >n

≤ K(f, f̄m) +
θ1

2
χ2
n(m) +

1

2θ1
|f̂m − f̄m|22

≤ K(f, f̄m) +
θ1

2
χ2
n(m) +

e|f̂m−f̄m|∞+|f̄m|∞

θ1

K(f̄m, f̂m),

for any positive θ1. Therefore, bounding |f̂m − f̄m|∞ + |f̄m|∞ by τ/2 +B on the set

Ωn and setting θ2 = eτ/2+B̄

θ1
, we have

(1 − θ2)K(f, f̂m)1lΩn ≤ (1 − θ2)K(f, f̄m) +
eτ/2+B̄

2θ2

χ2
n(m).

Now, let us choose θ2 = 1/2 and since E(χ2
n(m)) ≤ e|f |∞Dm/n:

E(K(f, f̂m)1lΩn) ≤ K(f, f̄m) + 2e|f |∞+B+τ/2Dm

n
.

6.3 Proofs of the propositions involved in the proof of the

Theorem

6.3.1 Concentration inequalities

The proofs of Propositions 6.1, 6.2 and 6.4 highly depend on concentration inequal-
ities established in (Reynaud-Bouret 2003). When applying these results to the
following Poisson process N we obtain concentration inequalities for sequences of
Poisson variables of mean ef(xi).

Let X =]0, n] and Ii =]i− 1, i], 1 ≤ i ≤ n. Let µ denote the Lebesgue measure
on R and let define dν =

∑n
i=1 e

f(xi) 1lIi dµ. Let N be a Poisson process with
inhomogeneous intensity dν. Then, the random variables

∫

1lIi dN have Poisson
distributions with parameter ν(Ii) = ef(xi).

For any h ∈ R
n, let us define fh =

∑n
i=1 hi 1lIi . Then,

∫

fdN =
∑n

i=1 hi
∫

1lIi dN
has the same distribution as

∑n
i=1 hiYi.

So, inequalities given in (Reynaud-Bouret 2003) can be re-enunced in this way:

Theorem 6.1. Bernstein’s inequality :
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For any ξ > 0 and any h ∈ R
n,

P(
n
∑

i=1

hiεi ≥ ξ) ≤ exp

(

− ξ2

2
∑n

i=1 e
f(xi)h2

i + 2
3
ξ|h|∞

)

P(|
n
∑

i=1

hiεi| ≥ ξ) ≤ 2 exp

(

− ξ2

2
∑n

i=1 e
f(xi)h2

i + 2
3
ξ|h|∞

)

(6.15)

For any u > 0 and any h ∈ R
n,

P

(

n
∑

i=1

hiεi ≥ (2u
n
∑

i=1

ef(xi)h2
i )

1/2 + |h|∞u/3
)

≤ e−u,

P

(

|
n
∑

i=1

hiεi| ≥ (2u
n
∑

i=1

ef(xi)h2
i )

1/2 + |h|∞u/3
)

≤ 2e−u. (6.16)

We will also need the following theorem:

Theorem 6.2. Let S be some finite dimensional linear subspace of L2 and
(φλ)λ=1,...,D be some orthonormal basis of S for the inner product <,>n. Let χn
be the following Chi-square statistics:

χn(S) = sup
f∈S,|f |n=1

< f, ε >n=

(

∑

λ=1,...,D

< φλ, ε >
2
n

)1/2

.

Let

MS = sup
h∈S,|h|n=1

n−1
n
∑

i=1

ef(xi)h2
i

and assume that this quantity is finite. Let ΩS(α) be the event

ΩS(α) =

{

|
∑

λ=1,...,D

< φλ, ε >n φλ|∞ ≤ 12αMS

κ(α)

}

, (6.17)

where

κ(α) = 5/4 + 32/α. (6.18)

Then, for any positive α and x,

P

(

χn(S)1lΩS (α) ≥ (1 + α)
(

E(χ2
n(S))1/2 + (12MSx/n)1/2

))

≤ e−x. (6.19)
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6.3.2 Proof of Proposition 6.1

For the sake of simplicity, we use here the notations Mm′ = MSm′ and MΛ = MSΛ∗
n
.

Define for any model m′ ∈ M(Ln),

Ω1
n(m

′) =
{

χn(m
′)1lΩSm′

≤ (1 + α)
(

E(χ2
n(m

′))1/2 + (12Mm′xm′/n)1/2
)

}

Ω1
n =

⋂

m′∈M(Ln)

Ω1
n(m

′),

where ΩSm′ is defined by (6.17). From (6.19), we have

P

(

Ω1
n
C
)

≤
∑

m′∈M(Ln)

P

(

Ω1
n(m

′)C
)

≤
∑

m′∈M(Ln)

e−xm′ .

Using Property 1, since m′ ⊂ Λ∗
n we have

|
∑

λ∈m′

< φλ, ε >n φλ|∞ ≤ blocD
1/2
m′ sup

λ∈m′

| < φλ, ε >n | ≤ blocD
1/2
m′ sup

λ∈Λ∗
n

| < φλ, ε >n |.

Furthermore, for any m′, A ≤ 12αe−|f |∞

κ(α)
≤ 12αMm′

κ(α)
. Thus on the set Ωn[A] we have

|
∑

λ∈m′

< φλ, ε >n φλ|∞ ≤ 12αn−ρMm′

κ(α)
≤ 12αMm′

κ(α)
.

Therefore, for any model m′, Ωn[A] ⊂ ΩSm′ , so that on the set Ω1
n,

χn(m
′)1lΩn[A] ≤ χn(m

′)1lΩSm′
≤ (1 + α)

(

E(χ2
n(m

′))1/2 + (12Mm′xm′/n)1/2
)

.

Moreover, we have:

E(χ2
n(m

′)) =
∑

λ∈m′

E < ϕλ, ε >
2
n=

∑

λ∈m′

Var< ϕλ, ε >n ≤
∑

λ∈m′

Mm′

n
=
Mm′Dm′

n
.

Noticing that Mm′ ≤ e|f |∞ for any model m′ ∈ M(Ln), (6.4) holds true for any
model m′. Hence it is true for m′ = m̂.

6.3.3 Proof of Proposition 6.2

Let Ω2
n(m

′) be defined for any model m′ ∈ M(Ln) by

Ω2
n(m

′) =







| < f̄m′ − f, ε >n | ≤
(

2ym′

n2

n
∑

i=1

ef(xi)(f̄m′,i − fi)
2

)1/2

+ |f̄m′ − f |∞
ym′

3n







,

Ω2
n =

⋂

m′

Ω2
n(m

′).
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Applying Bernstein’s inequality (6.16) for h = f̄m′ − f̄m, we deduce that P(Ω2
n
C
) ≤

2
∑

m′ e−ym′ . Next, using (7.4),

∑n
i=1 e

f(xi)(f̄m′,i − fi)
2

n2
=
Vf (f, f̄m′)

n
≤ 2e|f̄m′−f |∞

n
K(f, f̄m′),

so that on the set Ω2
n,

| < f̄m′ − f, ε >n | ≤
(

e|f̄m′−f |∞ym′

n
2K(f, f̄m′)

)1/2

+ |f̄m′ − f |∞
ym′

3n
,

using that ab ≤ θ2a
2/2+ b2/(2θ2) with a = (2K(f, f̄m′))1/2 and b = (

e|f̄m′−f |∞ym′

n
)1/2,

we get:

| < f̄m′ − f, ε >n | ≤ 1

2θ2

e|f̄m′−f |∞ym′

n
+ θ2K(f, f̄m′) + |f̄m′ − f |∞

ym′

3n

≤ e|f̄m′−f |∞

2
(1 +

1

θ2

)
ym′

n
+ θ2K(f, f̄m′),

for some positive constant θ2. Since this is true for any model m′, this is in particular
true for m′ = m̂ and for m′ = m with θ2 replaced by θ3. To conclude, (6.5) follows
from

| < f̄m̂ − f̄m, ε >n | ≤ | < f̄m̂ − f, ε >n | + | < f − f̄m, ε >n |.

6.3.4 Proof of Proposition 6.3

To prove Proposition 6.3 we state the following preliminary lemma adapted from the
results given in (Barron & Sheu 1991) and (Castellan 2003). Let G be the function
from R

Dm to R
Dm which λ− th component is given by :

Gλ(β) = n−1
n
∑

i=1

e
P

λ βλφλ,iφλ,i

and δ̂m and δ̄m be vectors in R
Dm with λ-th coordinates

δ̂m,λ = n−1

n
∑

i=1

Yiφλ,i and δ̄m,λ = n−1

n
∑

i=1

efiφλ,i.

Lemma 6.1. 1. Suppose that there exists β̄ ∈ R
Dm such that G(β̄) = δ̄m and let

us denote f̄m =
∑

λ∈m β̄λφλ. For any τ ∈]0, 1[, if

|δ̂m − δ̄m|2 ≤ τ

(4blocD
1/2
m e1+|f̄m|∞)

, (6.20)

then equation G(β) = δ̂m admits a solution β̂. Hence when setting f̂m =

28



∑

λ∈m β̂λφλ we get

|f̂m − f̄m|∞ ≤ τ/2.

2. Suppose that there exists β̂ ∈ R
Dm such that G(β̂) = δ̂m and let us denote

f̂m =
∑

λ∈m β̂λφλ. For any τ ∈]0, 1[, if

|δ̂m − δ̄m|2 ≤ τ

(4blocD
1/2
m e1+|f̂m|∞)

, (6.21)

then equation G(β) = δ̄m admits a solution β̄. Hence when setting f̄m =
∑

λ∈m β̄λφλ we get

|f̂m − f̄m|∞ ≤ τ/2.

Proof. For any δ ∈ R
Dm, define Fδ as the function from R

Dm to R which derivative
with respect to βλ is Gλ(β) − δλ :

Fδ(β) = n−1

n
∑

i=1

e
P

λ βλφλ,i −
∑

λ

δλβλ.

Due to definition of Fδ, solving equation G(β) = δ̂m comes to minimize Fδ̂m. Now
for any β ∈ R

Dm,

Fδ̂m(β)− Fδ̂m(β̄) = n−1

n
∑

i=1

e
P

λ βλφλ,i −
∑

λ

δ̂m,λβλ − n−1

n
∑

i=1

e
P

λ β̄λφλ,i +
∑

λ

δ̂m,λβ̄λ

= K(f̄m, h(β)) + n−1

n
∑

i=1

ef̄m,i

∑

λ

(βλ − β̄λ)φλ,i− < δ̂m, β − β̄ >

= K(f̄m, h(β))+ < δ̄m, β − β̄ > − < δ̂m, β − β̄ >

= K(f̄m, h(β))− < δ̂m − δ̄m, β − β̄ >

≥ e−|f̄m|∞

2
e−b

locD
1/2
m |β−β̄|2|β − β̄|22 − |δ̂m − δ̄m|2|β − β̄|2.

Let τ be some number in ]0, 1[ and consider the sphere {β, |β − β̄|2 =
2eτe|f̄m|∞ |δ̂m − δ̄m|2}. For any β on the sphere,

Fδ̂m(β)− Fδ̂m(β̄) > (eτ−2blocD
1/2
m eτ e|f̄m|∞ |δ̂m−δ̄m|2 − 1)2eτe|f̄m|∞ |δ̂m − δ̄m|22.

Due to (6.21) and since 0 < τ < 1, 2blocD
1/2
m e1+|f̄m|∞ |δ̂m−δ̄m|2 < τ < 1, hence for any

β on the sphere Fδ̂m(β)−Fδ̂m(β̄) > 0. Moreover, the function Fδ̂m(·)−Fδ̂m(β̄) being
continuous and equal to zero in the center of the sphere β̄, it admits a minimizer
inside the sphere, say β̂, such that |β̂ − β̄|2 < 2eτ+|f̄m|∞|δ̂m − δ̄m|2.

Thus, from Lemma 7.4,

|f̂m − f̄m|∞ ≤ blocD1/2
m |β̂ − β̄|2 ≤ 2blocD1/2

m eτ+|f̄m|∞|δ̂m − δ̄m|2 ≤ τ/2.

The proof of the second point is similar, exchanging δ̂m (resp. f̂m) with δ̄m (resp.
f̄m).
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We let us now prove the proposition. On the set Ωn[A], for any m′ ⊂ Λ∗
n, we

have:

|δ̂m′ − δ̄m′|2n =
∑

λ∈m′

< φλ, ελ >
2≤

∑

λ∈m′

A2n−2ρ

(bloc)2DΛ∗
n

≤ A2n−2ρ

(bloc)2
.

Due to Assumption 2 and to (6.3), we have that for any model m′, n−ρ ≤ n−(1−θ)/2 ≤
1

D
1/2

m′

. Since A satisfies (6.11), if m′ is such that |f̂m′|∞ ≤ B, then A ≤ τ

4e1+|f̂
m′ |∞

.

Hence,

|δ̂m′ − δ̄m′|n ≤ An−ρ

bloc
≤ τ

4blocD
1/2
m′ e1+|f̂m′ |∞

.

If m′ is such that |f̄m′|∞ ≤ B, then

|δ̂m′ − δ̄m′|n ≤ An−ρ

bloc
≤ τ

4blocD
1/2
m′ e1+|f̄m′ |∞

.

In both cases, when applying Lemma 6.1, we get the result.

6.3.5 Proof of Proposition 6.4

¿From the definition of Ωn[A], we have

P

(

Ωn[A]C
)

≤
∑

λ∈Λ∗
n

P

(

| < φλ, ε >n | ≥ An−ρ

blocD
1/2
Λ∗

n

)

.

Using Bernstein’s inequality (6.15) and setting ξ(A) = An−ρ

blocD
1/2

Λ∗
n

, we get

P (| < φλ, ε >n | ≥ ξ(A)) ≤ 2 exp

(

− n2ξ2

2
∑

λ∈Λ∗
n
ef(xi)φ2

λ,i +
2
3
nξ|φλ|∞

)

.

Since Assumption 1 gives orthonormality of the basis (φλ) for the <,>n inner prod-
uct,

∑

λ∈Λ∗
n

ef(xi)φ2
λ,i ≤ e|f |∞n|ϕλ|2n = ne|f |∞.

Furthermore, due to Property 1, for any λ ∈ Λ∗
n:

|ϕλ|∞ ≤ blocD
1/2
Λ∗

n
,

so that

P (| < φλ, ε >n | ≥ ξ(A)) ≤ 2 exp

(

−η(A)
n1−2ρ

e|f |∞bloc2DΛ∗
n

)

,
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where η(A) = A2

2+2A/3
. Now, using Assumption 2, we get

P

(

Ωn[A]C
)

≤ 2DΛ∗
n

exp(−η(A)
n1 − 2ρ

e|f |∞bloc2DΛ∗
n

) ≤ 2n1−θ exp(−η(A)
nθ−2ρ

e|f |∞bloc2
)

=
2

n2
n3−θ exp(−Cnθ−2ρ),

where C is a positive constant depending on A, |f |∞ and bloc but not on n. Since
θ − 2ρ > 0 from (6.3), n3−θ exp(−Cnθ−2ρ) tends to 0 when n tends to infinity, so
that the sequence remains bounded, which yields the result.

6.4 Proof of the lower bound given in Theorem 4.1

Let FM denote a finite subset of cardinality M + 1 of F ∩ C∞(B), then we have for
any estimator f̂n of f :

sup
f∈F∩C∞(B)

E f (K(f, f̂n)v
−2
n ) ≥ sup

f∈FM

E f((K(f, f̂n)v
−2
n ).

Next, due to inequality (7.5), which provides a lower bound in discrete quadratic
norm for the Kullback Leibler distance, we obtain that for any f ∈ FM and any
f̂n ∈ C∞(B):

E f ((K(f, f̂n)v
−2
n ) ≥ e−3B

2
E f (|f̂n − f |2nv−2

n ) ≥ e−3B

2
P f (|f̂n − f |nv−1

n > ξ)ξ2.

Hence, for any ξ > 0 and any f̂n ∈ C∞(B), when denoting by fk the elements of
FM :

sup
f∈FM

E f ((K(f, f̂n)v
−2
n ) ≥ e−3B

2
max

k=0,...,M
P fk

(|f̂n − fk|nv−1
n > ξ)ξ2. (6.22)

Therefore, the assertion of the proposition will follow from a non negative lower
bound of the probability in the right hand side that does not depend on f̂n.

For the convenience of the reader we recall the basic tool (Theorem 2.5 in
(Tsybakov 2004) p.85) we use to obtain such a bound. Note that, for the sake
of simplicity, we use a simplified version of that given in (Tsybakov 2004), since we
only wish to obtain optimal rate and do not investigate the more difficult problem
of an optimal constant in the lower bound.

Lemma 6.2. Suppose that the elements f0, ..., fM ∈ FM ,M ≥ 2 are such that
a) For all k, k′ such that 0 ≤ k < k′ ≤M , the following inequality holds:

|fk − fk′|n ≥ 2sn > 0; (6.23)

b) For any k = 1, ...,M the Kullback-Leibler divergence between the likelihoods
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under fk and f0 satisfies

1

M

M
∑

k=1

nK(fk, f0) ≤ a log(M) (6.24)

where 0 < a < 1/10.
Then for any estimator f̂n

max
0≤k≤M

P fk
(|f̂n − fk|n ≥ sn) ≥ c > 0, with c = 0.04

We construct now a convenient set of functions FM that will verify Assump-
tions (6.23) and (6.24) for some large enough M , which will be choosen as an
increasing funtion of n.

Let us consider a real positive function Φ(·) (called basic function for the class
Σ(ν, 1), with ν = k + α) satisfying assumptions given in Lemma 6.3. Set m ∈ N

with m ≥ 8 and consider the sequence of points bj = (j−1/2)/m for all j = 1, ..., m,
and the sequence of functions fjn defined as :

bj =
j − 1/2

m
fjn = L

(

1

m

)ν

Φ

(

x− bj
1/m

)

.

In the following lemma, we state the properties of functions fjn that are necessary
to construct a subset FM of functions satisfying (6.24) and (6.23).

Lemma 6.3. Let Φ ∈ Σ(ν, 1) be compactly supported over [−1/2, 1/2], such that
‖Φ‖∞ ≤ 8νB/L and ‖Φ‖2

2 < log 2/(60L2). Moreover we suppose that Φ has all its
derivatives up to order k+1 with its k+1-th derivative uniformly bounded by 1. Let
m ≥ 8 then for any j = 1...m :

i) fjn is compactly supported over [(j − 1)/m, j/m], such that ‖fjn‖∞ =
Lm−ν‖Φ‖∞, ‖fjn‖2

2 = L2‖Φ‖2
2m

−(2ν+1) and ‖f ′
jn‖∞ = Lm−ν+1‖Φ′‖∞.

ii) fjn ∈ F ∩ C∞(B).
iii) |‖fjn‖2

2 − |fjn|2n| ≤ ‖fjn‖∞‖f ′
jn‖∞n−1

Proof. The first point of the lemma is a straightforward consequence of required
assumptions on the basic function Φ.

The Kernel Φ being compactly supported and having its k+1-th derivative uni-
formly bounded by 1, the k-th derivative of fjn satisfies condition (4.1). Moreover,
since ‖Φ‖∞ ≤ 8νB/L and due to i), fjn is obviously bounded by B.

The third point is an application of Taylor expansion of fjn at order one around
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each point xi = i/n of the design. Indeed,

|‖fjn‖2
2 − |fjn|2n| = |

n
∑

i=1

∫ xi

xi−1

(f2
jn(x) − f2

jn(xi))dx| ≤
n
∑

i=1

∫ xi

xi−1

|f2
jn(x) − f2

jn(xi)|dx

≤ 2‖fjn‖∞
n
∑

i=1

∫ xi

xi−1

|fjn(x) − fjn(xi)|dx

≤ 2‖fjn‖∞‖f ′
jn‖∞

n
∑

i=1

∫ xi

xi−1

|x− xi|dx = ‖fjn‖∞‖f ′
jn‖∞n−1

Consider now the set of all possible binary vectors w̄ = (w1, ..., wm), wl ∈
{0, 1}, l = 1, ..., m. Due to Varshanov-Gilbert Lemma (1962) (see (Tsybakov 2004)
p. 89), if m ≥ 8, there exists a subset W = (w̄0, ..., w̄M) such that w̄0 = (0, ..., 0)
and for any 0 ≤ k < k′ ≤ M

ρH(w̄k, w̄k
′

) = card{l : 1 ≤ l ≤ m,wkl 6= wk
′

l } ≥ m/8

and 8 log(M)/ log(2) ≥ m. (6.25)

Next, for each binary sequences w̄k ∈ W, we define the function

fk(x) =
m
∑

j=1

wkj fjn(x).

Since the supports of fjn are non-overlapping, we have for any k = 0, ...,M , fk ∈
F∩C∞(B) and ‖fk‖∞ ≤ Lm−ν‖Φ‖∞. Let us check now that functions fk also satisfy
conditions (6.23) and (6.24), for n and M large enough.

When using Lemma 6.3 and the Varshanov-Gilbert lower bound for ρH given in
(6.25), we get for any 0 ≤ k < k′ ≤ M , and for any n and m ≥ 8:

On the one hand,

|fk − fk′|2n =

m
∑

j=1

(wkj − wk
′

j )2|fjn|2n ≥
m
∑

j=1

(wkj − wk
′

j )2(‖fjn‖2 − ‖fjn‖∞‖f ′
jn‖∞n−1)

= ρH(w̄k, w̄k′)(L
2‖Φ‖2

2m
−(2ν+1) − L2m−2ν+1‖Φ‖∞‖Φ′‖∞n−1)

≥ m−2νL2‖Φ‖2
2

8
Rm,n with Rm,n = 1 − ‖Φ‖∞‖Φ′‖∞m2

L2‖Φ‖2
2n

; (6.26)
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on the other hand, when also using inequality (7.5):

nK(fk, f0) ≤ 1

2
e‖fk‖∞+‖fk−f0‖∞n|fk − f0|2n ≤ 1

2
e2‖Φ‖∞Lm−ν

n

(

m
∑

j=1

(wkj )
2|fjn|2n

)

≤ 1

2
e2‖Φ‖∞Lm−ν

n

m
∑

j=1

(‖fjn‖2
2 + L2m−2ν+1‖Φ‖∞‖Φ′‖∞n−1)

≤ 1

2
e2‖Φ‖∞Lm−ν

n
m
∑

j=1

(L2‖Φ‖2
2m

−(2ν+1) + L2m−2ν+1‖Φ‖∞‖Φ′‖∞n−1)

≤ L2‖Φ‖2
2

1

2
e2‖Φ‖∞Lm−ν

m

(

nm−(2ν+1) +
m−2ν+1‖Φ‖∞‖Φ′‖∞

‖Φ‖2
2

)

≤ L2‖Φ‖2
2

4 logM

log 2
Pm,n (6.27)

with

Pm,n = e2‖Φ‖∞Lm−ν

(

n

m2ν+1
+

‖Φ‖∞‖Φ′‖∞
‖Φ‖2

2m
2ν−1

)

.

Now we put m = n1/(2ν+1). For such a choice, Rm,n increases and tends to one,
and Pm,n decreases and tends to one when n tends to infinity. Hence for n large
enough

√

Rm,n ≥ 1/2 and Pm,n ≤ 3/2 and we have, when substituting these bounds
in (6.26) and (6.27):

|fk − fk′ |n ≥ n
−ν

2ν+1
L‖Φ‖2

4
√

2
and nK(fk, f0) ≤ 3L2‖Φ‖2

2 logM.

Hence Assumptions (6.23) and (6.24) are obtained for sn = n−ν/(2ν+1)(L‖Φ‖2)/(8
√

2)
and a = 3L2‖Φ‖2

2, for n and M large enough, and Lemma 6.2 provides the estimate:

max
k=0,...,M

Pfk
(|f̂n − fk|n > ξvn) ≥ 0.04 for ξ = L‖Φ‖2/(8

√
2).

To end the proof, we substitute the previous lower bound in (6.22) which provides
the result given in Theorem 4.1 with C = 0.04e−3BL2‖Φ‖2

2/256.

7 Appendix

7.1 Technical lemmas

Afterwards, for the sake of simplicity, we put D = Dm.

7.1.1 Estimator and projection on a given model

Due to their definitions, (1.1) and (1.2), f̂m and f̄m have no simple analytical ex-
pression. Nevertheless, they satisfy the following relations :
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Lemma 7.1. For any m ∈ M(Ln) and any function h ∈ Sm,

n
∑

i=1

Yihi =
n
∑

i=1

ef̂m,ihi (7.1)

n
∑

i=1

efihi =

n
∑

i=1

ef̄m,ihi. (7.2)

In particular,

n
∑

i=1

ef̄m,ihi = E f (
n
∑

i=1

ef̂m,ihi). (7.3)

Proof. Since h ∈ Sm we have h =
∑D

λ=1 βλφλ and

γn(h) = n−1
n
∑

i=1

(ehi − Yihi) = n−1
n
∑

i=1

(exp(
D
∑

λ=1

βλφλ,i) − Yi

D
∑

λ=1

βλφλ,i).

Deriving with respect to βλ0, and f̂m =
∑

λ∈m βλφλ being a minimizer of the contrast
function γn(h) we get for any λ0 = 1, ..., D:

n
∑

i=1

(exp(
D
∑

λ=1

β̂λϕλ,i)φλ0,i − Yiφλ0,i) = 0.

Hence, for any function φλ0,i of the basis of Sm relation (7.1) being satisfied, it holds
also true for any linear combination of them. The proof of the second assertion
(7.2) is analogous, so it is omitted. The third assertion obviously follows when
noticing that expectation of the left hand side of (7.1) is equal to the left hand side
of (7.2).

7.1.2 Pythagoras Equality

Lemma 7.2. For any m ∈ M(Ln) and any function h ∈ Sm, we have:

K(f, h) = K(f, f̄m) +K(f̄m, h).

Proof.

K(f, h) = n−1

n
∑

i=1

ehi − efi − efi(hi − fi)

= n−1
n
∑

i=1

ehi − ef̄m,i + ef̄m,i − efi − efi(hi − f̄m,i + f̄m,i − fi)

= K(f, f̄m) + n−1

n
∑

i=1

ehi − ef̄m,i − efi(hi − f̄m,i)
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The functions h et f̄m are both in Sm, so is their difference. Therefore, when applying
relation (7.2) we obtain:

n
∑

i=1

efi(hi − f̄m,i) =
n
∑

i=1

ef̄m,i(hi − f̄m,i).

Then we get:

K(f, h) = K(f, f̄m) + n−1

n
∑

i=1

ehi − ef̄m,i − ef̄m,i(hi − f̄m,i) = K(f, f̄m) +K(f̄m, h).

7.1.3 Links between distances

Lemma 7.3. For any functions f and h,

e−|h−f |∞
Vf (f, h)

2
≤ K(f, h) ≤ e|h−f |∞

Vf (f, h)

2
, (7.4)

e−|f |∞−|h−f |∞
|h− f |2n

2
≤ K(f, h) ≤ e|f |∞+|h−f |∞

|h− f |2n
2

, (7.5)

where

Vf (f, h) = n−1

n
∑

i=1

ef(xi)(h(xi) − f(xi))
2.

Proof. Recall the definition of the Kullback-Leibler divergence given in the intro-
duction :

K(f, h) = E f (γn(h) − γn(f)) = n−1

n
∑

i=1

efi(ehi−fi − 1 − (hi − fi)).

Since for any x ∈ R,
x2

2
e−|x| ≤ ex − 1 − x ≤ x2

2
e|x|, we have :

n−1

n
∑

i=1

efi(e−|hi−fi|
(hi − fi)

2

2
) ≤ K(f, h) ≤ n−1

n
∑

i=1

efi(e+|hi−fi|
(hi − fi)

2

2
). (7.6)

Moreover, for any i, exp(−|hi − fi|) ≥ exp(−|h − f |∞) and exp(|hi − fi|) ≤
exp(|h − f |∞). Hence, substituting these bounds in (7.6) we obtain (7.5). Next,
since exp(−|f |∞) ≤ exp(fi) ≤ exp(|f |∞) we have exp(−|f |∞)|h− f |2n ≤ Vf (f, h) ≤
exp(|f |∞)|h− f |2n and (7.4) follows.

The next lemma deals with links between norms of functions and norms of the
coefficient vectors in an orthonormalized basis, for the <,>n inner product.

Lemma 7.4. Suppose Assumption 1 satisfied. Then for any h =
∑

λ∈m βλφλ ∈ Sm:

|h− f̄m|∞ ≤ blocD1/2
m |β − β̄|2, (7.7)
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e−|f̄m|∞

2
e−b

locD
1/2
m |β−β̄|2|β − β̄|22 ≤ K(f̄m, h) ≤ e|f̄m|∞

2
eb

locD
1/2
m |β−β̄|2|β − β̄|22.

Proof. Since |β− β̄|∞ ≤ |β− β̄|2, Assertion (7.7) follows immediately from Property
1.

For the second one we have :

K(f̄m, h) = n−1
n
∑

i=1

ehi−ef̄m,i−ef̄m,i(hi−f̄m,i) = n−1
n
∑

i=1

ef̄m,i(ehi−f̄m,i−1−(hi−f̄m,i)).

Applying inequalities (7.5), (7.7) and noticing that for any h ∈ Sm, |h|2n = |β|22, we
obtain:

K(f̄m, h) ≤ e|f̄m|∞e|h−f̄m|∞
|h− f̄m|2n

2
≤ e|f̄m|∞eb

locD
−1/2
m |β−β̄|2

|β − β̄|22
2

.

The lower bound is deduced in the same way.

7.1.4 Integration lemma

Lemma 7.5. Let X and Y be positive random variables defined on the probabil-
ity space (Ω,P). Assume that there exist positive constants κ1 and κ2 such that

P (X ≥ Y + κ1ζ) ≤ κ2e
−ζ , then E(X) ≤ E(Y ) + κ1κ2.

Proof. By definition, using Fubini,

E(X) =

∫ +∞

0
P (X ≥ x) dx =

∫

Ω

∫ +∞

0

1l{X≥x} dxdP .

The latter event can be decomposed as

1l{X≥x} = 1l{X≥x,Y≥x} +1l{X≥x,Y <x} ≤ 1l{Y≥x} +1l{Y <x≤X},

so that

E(X) ≤ E(Y ) +

∫

Ω

∫ +∞

0

1l{Y <x≤X} dxdP .

Now, changing variable x for ζ in the previous integral with x = Y + κ1ζ we obtain

∫

Ω

∫ +∞

0

1l{Y+κ1ζ≤X} κ1dζdP =

∫ +∞

0
P (Y + κ1ζ ≤ X)κ1dζ ≤

∫ +∞

0

κ1κ2e
−ζdζ = κ1κ2.
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