
HAL Id: hal-00079258
https://hal.science/hal-00079258

Submitted on 12 Jun 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Electronic System Level to Hw/Sw Design Flow
Sylvain Huet, Pierre Bomel, Emmanuel Casseau, Bertrand Le Gal, Olivier

Pasquier

To cite this version:
Sylvain Huet, Pierre Bomel, Emmanuel Casseau, Bertrand Le Gal, Olivier Pasquier. Electronic System
Level to Hw/Sw Design Flow. 2004, pp.1-6. �hal-00079258�

https://hal.science/hal-00079258
https://hal.archives-ouvertes.fr

Electronic System Level to Hw/Sw Design Flow

S. HUET P. BOMEL E. CASSEAU
LESTER Laboratory LESTER Laboratory LESTER Laboratory
UBS University UBS University UBS University
BP 92116 BP 92116 BP 92116
56321 LORIENT Cedex 56321 LORIENT Cedex 56321 LORIENT Cedex
France France France
+33 (0)2 97 87 45 60 +33 (0)2 97 87 45 60 +33 (0)2 97 87 45 60
shuet@iuplo.univ-ubs.fr pierre.bomel@univ-ubs.fr emmanuel.casseau

@univ-ubs.fr

B. Le GAL O. PASQUIER
LESTER Laboratory IREENA
UBS University Polytech'Nantes
BP 92116 BP 50609
56321 LORIENT Cedex 44306 Nantes Cedex 3
France France
+33 (0)2 97 87 45 60 +33 (0)2 40 68 30 35
bertrand.legal@univ-ubs.fr olivier.pasquier@polytech.univ-nantes.fr

Abstract

The increasing needs for higher data rates
associated with mobility constraints motivates the
development of the fourth generation of wireless
systems. In this paper we focus on rapid
prototyping of such emerging software radio
applications. To address this problem, we
propose a five steps methodology based on both
an Electronic System Level (ESL) design tool and
a High Level Synthesis (HLS) tool. The
methodology has been applied on the design of a
Multiple Input Multiple Output (MIMO) system
using orthogonal space time codes.

Key words: rapid prototyping, software radio,
system level design, high level synthesis

1 Introduction

A typical Digital Signal Processing (DSP)
application design usually starts from the
specifications of the DSP algorithms and ends to
their physical Hardware/Software implementation
in a top down fashion. The increasing
computational complexity of new software radio
systems makes this classical design process time
consuming and consequently incompatible with
an efficient design space exploration. In order to
reduce time to real world tests of new software

radio applications, our approach consists in
automatically refining high abstraction level
models. The five steps methodology we proposed
is based on both an Electronic System Level
(ESL) design tool and a High Level Synthesis
(HLS) tool. This project named PALMYRE
involves multidisciplinary scientific teams working
on new DSP algorithms. In this context DSP, HLS
and Codesign teams collaborate around a
modular rapid prototyping platform from
Sundance [1] embedding several DSPs from
Texas Instrument [2] and FPGAs from Xilinx [3].
This paper is organised as follows. In section 2
we detail each steps of our design flow. Section 3
demonstrates its flexibility on the design of a
Multiple Input Multiple Output (MIMO) system
using orthogonal space time codes.

2 The design flow

System Level Design (SLD) flows are promising
approaches since they aim at automating the
refinement of the specifications down to the
implementation [4]. In this paper we put an SLD
flow into practice with the view to build rapid
prototypes of software radio systems on our
Sundance platform. Even though we target a
specific domain of application this flow can be
extended to design a wide range of electronic
systems.

As shown in Fig 1, our methodology is structured
on the basis of 5 main steps [5]. These five steps
are linked by three models: the Functional
Architecture model, the Platform model and the
Macro-Architecture model as presented in Fig. 2.
This methodology is now supported by Cofluent
Studio [6] which is the ESL design tool we use.
The next 5 sub sections detail each step of the
methodology.

Need

System Specification

Functional Design

Architectural Design

Functional & non-functional specifications

Prototyping &
Implementation

C code for Software Hardware Synthesis

Executive Structure
Design/Description

Specific platform

 OR

Macro-architecture model

Platform model

Functional Architecture model

Micro-architecture model

 Fig. 1: Methodology steps

2.1 System specification

The need is first analyzed in the System
Specification Step. This step provides the System
Specifications which include both the functional
and non-functional (technical for example)
specifications.
These System Specifications (mainly functional)
are used in the Functional design step.

2.2 Functional Design

It consists in defining the Functional solution by
extracting and exploring the parallelism of the
specifications. This Functional solution is depicted
according to the Functional Architecture model.
The solution is graphically described by a set of
functions interconnected with three kinds of
relations (Fig.2 a): events to model
synchronisation, shared variables to model data
sharing and communication ports to model
producer/consumer like relations. A function is
described by a behaviour which can be refined by
a set of concurrent functions linked by relations.

This model is free of any details of implementation
but could be simulated [7], [8]. So it is possible to
verify the system functionality and to test several
descriptions of the system. Some reference
models are selected through this iterative
validation process and will be considered as
golden references for the next design steps.

2.3 Executive Structure Design/Description

The next step, Executive Structure
Design/Description, aims at describing the
physical organisation of the platform on which the
application will run.
The platform model (Fig. 2 b) is based on
Processing Elements interconnected by
Communication Nodes. In the context of the
PALMYRE project, our rapid prototyping platform
is modelled as a set of DSPs from TI (c62, c67,
c64) and FPGAs from Xilinx (Virtex E1000)
collaborating through a high speed
communication network composed of 20 Mbytes/s
Sundance’s comm.-ports and 200 Mbytes
Sundance’s SDB links.

F1

Functional Architecture

MsQ2
F2

EvV1

F31 F32
V3

F3

P1
N1 P2

Mapping

MsQ1
F0

Platform Architecture

N0

P0
Communication network

Macro-Architecture

N1

P2

IntN1

MsQ2

V1

F2

F31 F32
V3

F3

MsQ2

V1
IntN1

P1

F1
N0

IntN0
MsQ1

P0

F0
MsQ1

IntN0

Communication network

Ev

(a) (b)

(c)

Fig. 2: Description models

2.4 Architectural Design

The fourth step, architectural design, consists in
mapping the Functional Architecture to the
Platform Architecture. The Functional Architecture
model is mapped to the Platform Architecture
Model, that is to say Functions to Processing
Elements and Relations to Communication
Nodes. The resulting Macro-Architecture model is
heterogeneous: it contains both functional and

executive elements. In this model are also
introduced interfaces functions to map Functional
Relations to Communication Nodes. This is
represented by the “Communication network” on
Fig. 2 c.
Like the Functional model, the Macro-Architecture
model, also named virtual prototype, can be
simulated [9], [10]. This is very important for
architecture exploration and performance
estimation since this model describes both the
behaviour of the system and the hardware on
which it runs. Besides, this model is a high
abstraction level description. This allows a rapid
simulation and thus to explore several platform
configurations.

2.5 Prototyping and implementation

Finally, the Macro-Architecture is refined to the
Micro-Architecture composed of the programming
code for the microprocessors and the
synthesizable description of the hardware parts of
the system. Consequently two majors activities
are involved to perform this task: Software
generation and hardware generation.

2.5.1 Software generation

As in the ESL design tool we use the behaviour of
the system is described with either C/C++ or
SystemC, the software code of the functions
mapped onto software processors is generated in
C. This code uses common services of a Real
Time Operating System (RTOS) parameterised by
a set of attributes like task priorities. According to
the targeted usage –rapid prototyping of DSP
systems- the flexibility and the speed up in term of
time to prototype of a such approach prevails on
the performance losses.
Two templates are available to customize the
generated code: either the VxWorks application
programming interface (API) or a generic RTOS
API could be used. In the last case, the API as to
be implemented with the primitives of the targeted
RTOS.
Anyway the generated code relies on common
RTOS services like tasks creations, message
queues and semaphores handling… For example
if the function F0 of Fig. 2 a) is mapped on the
software processor P0 of Fig. 2 b) the generated

code will contain a message queue corresponding
to MsQ1 and two tasks, the first corresponding to
F0 and the second IntN0 corresponding to an
interface function automatically introduced to
enable F0 to use the communication node N0.
Concretely, as our platform embeds TI DSP, we
have implemented the generic RTOS API with the
DSP/BIOS primitives. Fig. 3 illustrates this
approach by giving an example of the generic
RTOS message queue send primitive
implemented with DSP/BIOS.
To end the software code generation, platform
specific code has to be written to solve the inter
processing elements communication problem.
The communication drivers of the targeted
platform are called inside the interface functions
introduced in the macro-architecture model
through an API mechanism.

int msgQueueSend (
 MSG_QUEUE_ID *msQ, /* message queue on which to send */
 void *data, /* message to send */
 int timeout,
 int priority)
{
 return(MBX_post(msQ->mbx_handle, data,
 timeout == WAIT_FOREVER ? SYS_FOREVER : timeout));
}

Fig. 3: Generic RTOS API primitive example

Thereby we have developed C++ Concurrent
Sequential Process like I/O drivers: we provide a
specific class for each type of link available on the
point to point cable based communication network
of our Sundance platform. These objects are used
thanks to the simple interface described on fig. 4.

void send(int *w, int n);
void recv(int *w, int n);
void sendReq(int *w, int n);
void recvReq(int *w, int n);
bool sendRun();
bool recvRun();

Fig. 4: I/O drivers interface

Methods send(…) and recv(…) are blocking
communication calls whereas sendReq(…) and
recvReq(…) are the non-blocking ones;
sendRun() and recvRun() methods are predicates
to check if the communication is still active or not.
A benchmark has been developed to characterise
and measure the performance of our I/O drivers.
The effects of data location, compiler
optimisations, DMA usage on the throughput and

CPU load have been studied allowing a fine tune
of the extra DSP communications.

2.5.2 Hardware generation

Characterised Hand-written or IP hardware
components can be used to implement the
hardware parts of the system. In this paper we
promote a flexible approach based on HLS to
generate these IP components.
HLS is analogous to software compilation
transposed to the hardware domain: the source
specification is written in a high-level language
that models the behaviour of a complex hardware
component; an automatic refinement process
allows to map the described behaviour onto a
specific technology target.
A typical HLS tool performs four main tasks [11]:
(1) source specification analysis (identify
computations); (2) hardware resources selection
and allocation for each kind of operation; (3)
operation scheduling; (4) optimised architecture
generation, including a datapath and a control
finite-state machine. HLS is a constraint-based
synthesis flow: hardware resources are selected
from technology-specific libraries of components
(arithmetic and logic units, registers …) where
components are characterised in terms of gate
count, delay, power consumption, etc; resource
selection/allocation and operation scheduling can
be constrained to limit hardware complexity (i.e.
the number of allocated resources) and reach a
given computation speed (given as the number of
control steps for operation scheduling).
Due to its high abstraction level, a behavioural
description for HLS can be made customisable
through functional parameters. Each set of
supported parameter values and synthesis
constraints allows to instantiate a different
dedicated architecture that will fulfill specific
functional requirements and achieve specific
performance. As a result, HLS tools can be seen
as a relevant approach for designing and reusing
highly flexible IP cores.
In the PALMYRE project, the HLS tool we use is
GAUT [12], [13]. Its input language is a subset of
behavioural VHDL. A SystemC entry point will be
soon available, thus the languages used in the
design flow will be unified. With respect to the
functions to be computed the HLS tool could
synthesise the hardware parts of the system. Data

Flow oriented functions (Fig. 5) are typical
candidates.
Beyond the synthesis of the algorithmic cores the
HLS tool also synthesises our platform specific
communication interfaces: CP or SDB can be
used as an input or an output of the synthesised
component. Therefore, the synthesized function
can be easily interfaced with others software or
hardware processors of our rapid prototyping
platform.

FIRFunction

DataOut

DataIn

FIRCompute

*

Fig. 5 A typical candidate for the HLS tool

At this last step of our design flow the system is
refined enough to reach the entry point of the
downstream tools we use: Code Composer from
TI for the software parts, ISE from Xilinx for the
hardware parts.

3 MIMO System design

As the PALMYRE project targets MIMO
applications prototyping, this section presents the
flexibility of our design flow applied to a MIMO
system using orthogonal space time codes [14].
In this paper we especially focus on the encoding
parts.

Channel
coding

Source
coding Interleaver Mapping

Orthogonal
STBC

encoding

Fig. 6 MIMO encoder

3.1 Functional exploration

As shown on Fig. 6, the targeted system is
composed of following cascading blocks: the
source coder, the channel coder, the interleaver,
the mapper and the orthogonal Space Time Block
Code (STBC) encoder.
Therefore, the corresponding functional model is
composed of five functional blocks interconnected
by communication ports. To have a complete test
bed, we also model the system environment (Fig.
7): known test patterns are send to the source
coder, so, when the functionality of each blocks
has been validated, we dispose of a golden
reference composed of these test patterns and
the resulting data produced by each functional
block.
At this stage of our flow, high levels models of the
system are used to explore and validate various
alternatives for each functional blocks.
Simulations of these models are used to
experiment different mappings: 4 QAM and 16
QAM, different channel coding strategies:
convolutional coder, convolutional coder plus
Reed Solomon coder, turbo codes, … and
different orthogonal STBC encoders. Beyond the
functional results obtained at this stage, the
profiler integrated in our ESL tool allows to
measure the relative computational complexity of
each blocks. Although these results depend on
the characteristics of the simulation platform
(CPU, Operating System), the more complex
functions can be identified and the optimisations
quantified.

MsQ3Channel
coding

MsQ1
Inter-
leaver

MsQ4
mapping

MsQ5 Orthogonal
STBC

encoding

MsQ6

MsQ7
MsQ2Source

coding

System environment

Fig. 7 MIMO System Functional Architecture

3.2 Architectural exploration

This topology and the data flow orientation of this
application offers great opportunities in term of
architectural exploration. Indeed each block can
be implemented either in software or in hardware.
Our strategy consists in first trying a full software

implementation mapped on a unique DSP. We
profiled the timing behaviour of this first prototype
so that we are able to back annotate our macro
architecture models with an accurate timing of the
software implementation of each blocks. As our
platform embeds three types of DSP (c62, c67,
c64), this experience has to be repeated for each
DSP.
If this implementation does not fits the non
functional specifications, in our case the
throughput, the simulation of the timed macro
architecture model allows the identification of the
bottlenecks. As the timing of the functions is
known, others software based architectural
configurations (solutions embedding more than
one DSP) can be simulated at the macro
architecture level. If such software based
architectures do not fit the specifications hardware
accelerators are introduced. Thanks to the HLS
tool we use, the design of these components is
speeded-up.
To be more concrete, the following list presents
the conceivable mappings of each functional
block:
• The source coder is implemented in software.

Indeed it is a complex function: a large
diversity of data (voice, video, …) could be
processed by this block with different quality /
data rates tradeoffs. Hardware
implementations of the source coder are
generally Hard IP (a HLS tool can be useful
when designing a such function but can’t
handle the complexity of the whole function).

• The channel coding can be either
implemented in software or in hardware.
Hardware implementation is being preferred
for the high computational complexity coders.
For example [15] and [16] presents
successful results obtained with the HLS tool
we use in the fields of turbo codes and Reed
Solomon codes.

• The interleaver can be mapped either on a
software processor or on a hardware
processor. The first mapping is interesting in
terms of flexibility: changing the interleaving
algorithm is simple and the second one
unloads the software processors from a task
easily realized in hardware.

• The mapper implementation tradeoffs are
similarly to these of the interleaver.

• The orthogonal STBC encoder can also be
implemented either in software or in hardware.

The flexibility offered by a software
implementation allows to rapidly test several
orthogonal STBC or to change the code at run
time (for example if the channel changes).
Similar to the mapper and the interleaver an
hardware implementation unloads the
software processors from a task easily
realized in hardware.

Our design flow applied to MIMO systems is very
promising. Numerous mixed hardware-software
alternatives can be rapidly prototyped. In this
manner the design space can be efficiently
explored without focusing on implementation.

4 Conclusion and future works

Our methodology releases the digital signal
processing application designer from the
implementation constraints: the golden functional
model of the system expressed at a high level of
abstraction is rapidly prototyped: software coding,
generation of complex hardware parts of the
system, software-hardware interfaces are handled
by the collaboration the HLS and ESL design
tools. Further efforts in our design flow will focus
on improving the system level profiling by
introducing new metrics, improving the reuse of
existing hardware components and having a
unified language in our flow.

Acknowledgements

This work takes place in the PALMYRE project
sponsored by “Conseil Régional de Bretagne”,
“Conseil Général du Morbihan” and ‘Communauté
de communes du pays de Lorient”.

References

[1] Sundance Multiprocessor Technology,
http://www.sundance.com
[2] Texas Instruments, http://dspvillage.ti.com/
[3] Xilinx, http://www.xilinx.com/
[4] A. Gerstlauer, R. Dömer, J. Peng, D.D. Gajski.
System Design: A Practical Guide with SpecC.
Kluwer Academic Publishers, 272 pages, 2001.
[5] J.P. Calvez, Embedded Real-Time Systems. A
Specification and Design methodology, John
Wiley, 670 pages, 1993.
[6] Cofluent design, Cofluent Studio,
http://www.cofluentdesign.com

[7] O. Pasquier, J.P. Calvez, “An object-based
executable model for simulation of real-time
Hw/Sw systems”, Proceedings of DATE 99,
March 1999, Munich.
[8] R. Le Moigne, O. Pasquier, J.P. Calvez, “A
Graphical Tool for System Level Modeling and
Verification with SystemC”, FDL’ 03, September
2003, Frankfurt.
[9] R. Le Moigne, O. Pasquier, J.P. Calvez, “ A
Generic RTOS Model for Real-time Systems
Simulation with SystemC”, DATE 04, February
2004, Paris.
[10] R. Le Moigne, O. Pasquier, J.P. Calvez, “An
Abstract Communication Bus Model for
Performance Estimation in SoCs with SystemC”,
FDL 04, September 04, Lille.
[11] D.D. Gajski, N.D. Dutt, A. C.H. Wu, S. Y.L.
Lin, High-Level Synthesis: Introduction to Chip
and System Design, Kluwer Academic Publishers,
359 pages, 1992.
[12] LESTER-UBS, GAUT, http://web.univ-
ubs.fr/lester/www-gaut/
[13] E. Martin, O. Sentineys, H. Dubois, J.L.
Philippe, “GAUT: An Architectural Synthesis Tool
for Dedicated Signal Processors”, EURO-DAC 93,
September 1993, Hambourg.
[14] V. Tarokh, N. Seshadri, and A. R.
Calderbank, “Space-time codes for high data rate
wireless communications: Performance criterion
and code construction,” IEEE Trans. Inform.
Theory, vol. 44, pp. 744–765, Mar. 1998.
[15] E. Casseau, B. Le Gal, C. Jégo, N. Le Héno,
E. Martin, "Reed-Solomon behavioral virtual
component for communication systems", ISCAS
2004, IEEE International Symposium on Circuits
and Systems, Vancouver, Canada, 21-23 mai
2004.
[16] Philippe Coussy, David Gnaëdig, Amor
Nafkha, Adel Baganne, Emmanuel Boutillon, Eric
Martin, ""A Methodoly for IP integration in DSP
Soc: a case study of a MAP algorithm for turbo
decoder", ICASSP'04, Montreal, Vol.5, pp. 45-49,
May 2004.

	Electronic System Level to Hw/Sw Design Flow
	
	Acknowledgements
	References

