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We study the mathematical evolution of a liquid fuel droplet inside a vessel. In particular, we give the radius
evolution of the droplet on a finite time interval, starting from a hyperbolic system involving the pressure

and the velocity of the surrounding gas. Existence of bounded solutions for the mass fraction of the liquid,
submitted to nonlinear contraints, is shown. Numerical simulations are given, in agreement with known

physical experiments.
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1. INTRODUCTION

The evaporation of a single drop in a gas involves simultaneous heat and mass transfer processes
in which the heat for evaporation is transferred to the drop surface by conduction and convection,
while vapor is carried by convection and diffusion back into the gas stream. The evaporation rate
depends on the pressure, temperature and physical properties of the gas, the temperature, volatility
and diameter of the drop in the spray.
In the experimental study of a single drop evaporation performed by the LCSR, Combustion Lab-
oratory of the University of campus from Orleans, France, see also [7], the drop is suspended from
a silicate tube. The elliptic shape of the drop is corrected to a sphere of equal volume. Important
quantities of interest for these experiments are time evolution of the radius of the drop, as well as
classical quantities such as mass fractions or temperatures of the liquid, gas. In the experiments
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made above, the so-called D2 law is used to simplify two-phase fluid models and then propose ad-
equate numerical schemes. This law simply states that the time evolution of the radius behaves as
1
t2

in time flow, and is purely phenomenological.
Our purpose in this paper is exactly in the opposite sense. We start from phenomenological fluid
(mixtures) PDE modeling the drop evaporation process, compute the time-evolution of the drop
radius, and then deduce other quantities of interest such as mass fractions of the liquid and gas.
Thus, we shall consider a drop initially represented by a single component mixture (chemical specie
1) while the surrounding gas at time t = 0 is pure (chemical specie 2).
During the evaporation process, the vapor of liquid is transferred into the gas, while by condensation
at the droplet surface and then by diffusion the specie 2 appears in the drop.
We make the important simplification that the moving interface between the drop and the surround-
ing gas (i.e. between the two species) is spherical with radius R = R(t) evolving in time.
Let ρG (resp. ρL) denote the gas density ( resp. liquid density). Let vG (resp. vL) denote the
gas velocity ( resp. velocity density). Then one has the classical overall continuity and momentum
conservation laws

∂tρk + div(ρkvk) = 0 (1.1)

ρk∂tvk + ρkvk.∇vk = −∇p (1.2)

where k is the gas G or the liquid L depending on whether one considers the gas or liquid and p the
state equation of the gas.
Let YL1, YL2 (resp. YG1, YG2) the mass fractions of the liquid (resp. gas) obtained after diffusion of
species in the surrounding gas. Therefore for two species, one has

YG1 + YG2 = YL1 + YL2 = 1.

Along with equation (1.1), we have to add the equation giving the conservation of species. So for
the liquid we have

ρL∂tYLk + ρLvL.∇YLk + div(ρLYLkvLk) = −ρLf(YLk), k = 1, 2 (1.3)

YLk denoting the mass fraction of the liquid, and f a continuous function associated to a friction or
a resistance for the drop.
We assume that the speed of the liquid is small, and thus settled it to 0. Equations (1.1) and (1.3)
can then be written under conservative form as

∂t(ρ g̃) + div(ρ g̃v) = F ( g̃) (1.4)

or

∂tu +
∂

∂x
(f(u)) = F (u) (1.5)
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in a system of particular coordinates.
If Γ is a curve of discontinuity of u, then one has

[f(u)] = [u]
dx

dt
(1.6)

where [.] denotes the jump of the inner quantity, s = dx
dt

is the speed of discontinuity along Γ. The
jump Relation (1.6) is known as Rankine-Hugoniot condition. It merely means that discontinuities
cannot be completely arbitrary. These classical facts are detailed for instance in [4].
In the case of the drop, to find interface condition at the surface of the drop i.e. for r = R(t), it is
sufficient to use (1.5) and (1.4) in polar coordinates, getting

[ρ g̃v] = [ρ g̃]
dR

dt
. (1.7)

Thus taking g̃ = 1, one has

(ρG − ρL)
dR

dt
= ρGvG − ρLvL

that is also with v = 0

ρG

(
vG −

dR

dt

)
= −ρL

dR

dt
. (1.8)

Taking g̃ = Y in (1.7), Y denoting the mass fraction of the liquid or the gas after diffusing, we get

(ρGYGk − ρLYLk)
dR

dt
= ρGYGk(vG + vGk)− ρLYLkvLk

and this is equivalent to

ρGYGk(vG −R′) + ρGYGkvGk = −ρLYLkR′ + ρLYLkvLk. (1.9)

Above vGk (resp.vLk) is the speed of the specie Gk (resp.Lk), k = 1, 2.

Combining relation (1.9) with Fick’s law, see [3,4], that is

YG1vG1 =− D12∇YG1, YG2vG2 = −D21∇GG2

where D12 and D21 are diffusion coefficients, and with equations relating the thermodynamic state
at the interface r = R(t)

YGk = KkYLk, k = 1, 2

we obtain for the mass fraction of the liquid YL1 the boundary condition
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∂rYL1 +
R′(t)(K1 − 1)

K2ρG(R(t), t)−K3
YL1 = 0, at r = R(t) (1.10)

using polar coordinates.
In [2] we have made huge mathematical and physical simplifications taking the state equation of the
gas p as constant in (1.2) and considering the velocity of the gas vG as a given function of the time
t. Thus in our previous work, the system (1.1), (1.2) was reduced to the equation (1.1) with vG(t)
given.
In this paper, we first analyze the hyperbolic system (1.1), (1.2) with an auxiliary state equation
of the gas p1 = ργ . Once ρG(r, t) and vG(r, t) determined, we compute the radius R(t) of the drop
suspended in the gas through the ordinary differential equation (1.8). R(t) being known, we shall
then study the mass fraction YL1 of the liquid after the evaporation process through the PDE (1.3)
along with the boundary condition (1.10), with a function f submitted to suitable assumptions.
Let us note that spherical symmetry reduces the problem to a transcent process of 1-dimensional
nature. Within the framework of weighted Sobolev spaces on initial data and for some continuous
function f subject to increasing condition, we shall provide an unique local solution for the mass
fraction YL1 of the liquid. In addition, we shall show that if the initial condition is bounded, then
so is our solution.

2. HYPERBOLIC SYSTEM

The velocity vG(r, t) of the gas and its density ρG(r, t) satisfy the following system, using polar
coordinates

∂ρG

∂t
+

1
r2

∂

∂r

(
r2ρGvG

)
= 0

∂

∂t
(ρGvG) +

1
r2

∂

∂r

(
r2ρGv2

G

)
= −∂p

∂r

(2.1)

Setting ρ(r, t) = r2ρG(r, t), v(r, t) = vG(r, t) we have

∂ρ

∂t
+ v

∂ρ

∂r
+ ρ

∂v

∂r
= 0

∂v

∂t
+ v

∂v

∂r
= −1

ρ

∂p1

∂r

(2.2)

where p1(r, t) is an auxiliary function connected to the state equation of the gas p(r, t) by ∂p1
∂r

=

r2 ∂p
∂r

.
In (2.2) we choose the auxiliary function p1(r, t) such that p1=ργ , γ > 1.
In this way, we have to consider the following system

∂ρ

∂t
+ v

∂ρ

∂r
+ ρ

∂v

∂r
= 0

∂v

∂t
+ v

∂v

∂r
+ γργ−2 ∂p

∂r
= 0

(2.3)
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(2.3) is equivalent to

∂

∂t

(
ρ

v

)
+ A.

∂

∂r

(
ρ

v

)
= 0, (2.4)

A being the matrix (2, 2)

A =
(

v ρ

γργ−2 v

)
The eigenvalues of A (characteristics speeds) are λ = v − c and µ = v + c, c =

√
γργ−1. Since

λ < µ, system (2.4) is hyperbolic. Then there exists two functions W (ρ, v) and Z(ρ, v) (Riemann
invariants) such that

W (ρ, v) = constant on
dX1

dt
= λ (2.5)

Z(ρ, v) = constant on
dX2

dt
= µ. (2.6)

W (ρ, v) is determined by the system dv
c/ρ

= dρ
1 , the vector R1 = (1, c/ρ) being the eigenvector

associated to the eigenvalue µ. Thus

W (ρ, v) = v − 2c

γ − 1
(2.7)

In the same way, the Riemann invariant Z(ρ, v) corresponding to λ is given by

Z(ρ, v) = v +
2c

γ − 1
(2.8)

The functions W (ρ, v) = W (t, r) and Z(ρ, v) = Z(t, r) satisfy the following system equivalent to
system (2.4)

∂W

∂t
+ λ(W,Z)

∂W

∂r
= 0

∂Z

∂t
+ µ(W,Z)

∂Z

∂r
= 0

(2.9)

where λ(W,Z) and µ(W,Z) are given by

λ = −
(

γ−3
4

)
Z +

(
γ+1

4

)
W

µ =
(

γ+1
4

)
Z −

(
γ−3

4

)
W

(2.10)

as can be seen from (2.7) and (2.8).
It is well known that a sufficient condition in order that (2.9) is authentically nonlinear is that
∂λ
∂W

> 0 and ∂µ
∂Z

> 0, which is the case here according to (2.10).
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Integration along the characteristics defined by

dX1

dt
= λ(W,Z), X1(0) = β

gives

X1
(0,β)(t) = β +

∫ t

0

λ(W (s,X1(s)), Z(s,X1(s)))ds (2.11)

and therefore the solution of the value initial problem

Wt + λ(W,Z)Wr = 0, W (0, r) = W0(r) (2.12)

can be written as

W (t, r) = W0

(
X1

(0,β)(0)
)

= W0(β), (2.13)

where β = r −
∫ t

0
λ(W (s,X1(s)), Z(s,X1(s)))ds.

Similarly we have

Z(t, r) = Z0

(
X2

(0,α)(0)
)

= Z0(α) (2.14)

where

X2
(0,α)(t) = α +

∫ t

0

µ(W (s,X2(s)), Z(s,X2(s)))ds.

Proposition 2.1. Let us suppose that W ′
0(β) < 0 or Z ′

0(α) < 0. Then the solution of system (2.3)
is defined on a finite interval [0, T [.

�

Proof
Differentiation of (2.5) and (2.11) with respect to β gives

dX1
β

dt
= λβ(W,Z) with X1

β(t = 0) = 1. (2.15)

In the same way

dX2
α

dt
= µα(W,Z) with X2

α(t = 0) = 1. (2.16)

But λβ = λW Wβ + λZZβ = λW W ′
0(β) and µα = µZZ ′

0(α). Using these results in (2.15) and (2.16)
and integrating w.r.t. t along the characteristics gives
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X1
β(t) = 1 +

∫ t

0

λW W ′
0(β)dt = 1 +

(
γ + 1

4

)
W ′

0(β)t (2.17)

X2
α(t) = 1 +

∫ t

0

µZZ ′
0(α)dt = 1 +

(
γ + 1

4

)
Z ′

0(α)t (2.18)

From (2.17) we see that X1
β(t1) = 0 for t1 = −4

(γ + 1)W ′
0(β)

> 0. Similarly X2
α(t2) = 0 for t2 =

−4
(γ + 1)Z ′

0(α)
> 0. Hence ∂W

∂r
(t, r) becomes infinite for T = inf {t1, t2} since ∂W

∂r
= Wβ .

dβ
dX

=

W ′
0(β)
Xβ

.

�
We can deduce from this result the following facts.

Consequence 1: Proposition 2.1 implies that system (2.9) admits an unique C1 solution on [0, T [ for
all r ∈ R+ and for initial data ρG(0, r) = ρ0(r) and vG(0, r) = v0(r) belonging to C1(R+).
Consequence 2: Radius of the drop
From (1.8) we get the ODE giving the radius of the drop

dR(t)
dt

=
vG(t, R(t))ρG(t, R(t))

ρG(t, R(t))− ρL
, R(0) = R0. (2.19)

The Cauchy problem (2.19) has an unique solution R(t) on a maximal time interval [0, T ∗[ with
T ∗ ≤ T for initial data ρ0(r) and v0(r) ensuring that W ′

0(r) < 0 or Z ′
0(r) < 0.

3. MASS FRACTION OF THE LIQUID

The mass fraction of the liquid YL1 satisfies the conservation equation of specie (1.3) which can be
rewritten as

∂tYL1 −
1
r2

∂

∂r

(
r2 ∂

∂r
YL1

)
+ f(YL1) = 0 (3.1)

using polar coordinates, the diffusion constant D12 being taken equal to 1. Then (3.1) is equivalent
to

∂tYL1 −∆YL1 −
2
r

∂

∂r
YL1 + f(YL1) = 0, for 0 < r < s(t) (3.2)

where s(t) = R(t) is the radius of the drop determined in section II.
The boundary condition at the surface s(t) is given by the Rankine-Hugoniot condition connected
to the thermodynamic equilibrium i.e. formula (1.10). With the change of variable r = R(t)x, the
function YL1(t, r) becomes the function YL1(t, R(t)x) = u(t, x) which satisfies the following initial
boundary value (i.b.v.) problem
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∂tu− a(t)
(

∆u +
2
x

∂xu

)
− x

R′(t)
R(t)

∂xu + f(u) = 0, 0 < x < 1, t > 0 (3.3)

|limx→0+xux(t, x)| < ∞, ux(t, 1) + k(t)u(t, 1) = 0 (3.4)

u(0, x) = u0(x) (3.5)

where

a(t) =
1

R2(t)
, k(t) =

R(t)R′(t)(K1 − 1)
K2ρG(t, R(t))−K3

. (3.6)

Denote by Ω =]0, 1[ and H for the Hilbert space defined by

H = {v : Ω → R, measurable and such that
∫ 1

0

x2v2(x)dx < +∞}.

Note that H is the closure of C0(Ω̄) w.r.t. the norm ‖v‖H =
(∫ 1

0

x2v2(x)dx
)1/2

. We also introduce

the real Hilbert space V =
{

v ∈ H |v′ ∈ H
}

. In the following, we shall often use the fact that V

is the closure of C1(Ω̄) w.r.t. the norm ‖v‖V =
(
‖v‖2H + ‖v′‖2H

)1/2

. V is continuously embedded in
H. Identifying H with his dual H ′, one has V ⊂ H ⊂ V ′with continuous injections.
Note also that the norms ‖.‖H and ‖.‖V can be defined, respectively, from the inner products

< u, v >=
∫ 1

0

x2u(x)v(x)dx and < u, v > + < u′, v′ >.

We then have the following results, the proofs of which can be found in [6].

Lemma 3.1. For every v ∈ C1([0, 1]), ε > 0 and x ∈ [0, 1] we have

‖v‖20 =
1
2
‖v′‖20 + v2(1)

v2(1) ≤ ε‖v′‖20 + Cε‖v‖20∣∣∣v(x)
∣∣∣ ≤ 2 ‖v‖1,

∣∣∣xv(x)
∣∣∣ ≤ √

5‖v‖1

where Cε = 3 + 1
ε and ‖.‖0 = ‖.‖H , ‖.‖1 = ‖.‖V .

�

Lemma 3.2. The embedding V ⊂ H is compact.
�

Remark 3.1. Lemma 3.1 proves that
(
‖v′‖20 + v2(1)

)1/2

and ‖v‖1 are two equivalent norms on V

since



9

2
3
‖v‖21 ≤ v2(1) + ‖v′‖20 ≤ 5‖v‖21, ∀v ∈ V.

�

Remark 3.2. We have

xv(x) ∈ C0([0, 1]), ∀v ∈ V.

Indeed, on one hand lim
x→0+

xv(x) = 0, ∀v ∈ V (see [1], p.128), and on the other hand v|[ε,1] ∈

C0([ε, 1]), ∀ε, 0 < ε < 1 since we have H1(ε, 1) ⊂ C0([ε, 1]) and ε‖v‖H1(ε,1) ≤ ‖v‖1 ∀v ∈ V

∀ε, 0 < ε < 1.
�

If X is any Banch space, we denote by ‖.‖X its norm, and by X ′ the dual space of X. We denote by
Lp(0, T ;X), 1 ≤ p ≤ ∞ the standard Banach space of real functions u : (0, T ) → X, measurable,
such that

‖u‖Lp(0,T ;X) =

(∫ T

0

‖u(t)‖p
Xdt

)1/p

< +∞, for 1 ≤ p < ∞

and

‖u‖L∞(0,T ;X) = ess sup0<t<T ‖u(t)‖X , for p = ∞.

Let u(t), u′(t), ux(t), uxx(t) denote u(t, x), ∂u
∂t

(t, x), ∂u
∂x

(t, x), ∂2u
∂x2 (t, x) respectively.

We shall make the following assumptions:
• (H1) u0 ∈ H

• (H2) a, k ∈ W 1,∞(0, T ), a(t) ≥ a0 > 0

• (F1) f ∈ C(R, R)

• (F2) There exists positive constants C1, C
′
1, C2 and p, 1 < p < 3 such that

(i) uf(u) ≥ C1|u|p − C ′
1

(ii) |f(u)| ≤ C2(1 + |u|p−1)

Let u ∈ C2([0, T ]× [0, 1]) be a solution of problem (3.3)-(3.5). Then, after multiplying equation (3.3)
by x2v, v ∈ V w.r.t. the scalar product of the space H, integrating by parts and taking into account
boundary condition (3.4), we get

d

dt
< u(t), v > + a(t)

∫ 1

0

x2uxvxdx + a(t)k(t)u(1)v(1)− R′(t)
R(t)

∫ 1

0

x3uxvdx+ < f(u), v >= 0

The weak formulation of the ibv problem (3.3)-(3.6) can be given in the following way:
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Find u(t) defined in the open set (0, T ) such that u(t) satisfies the following variational problem

d

dt
< u(t), v > + ã(t;u(t), v)+ < f(u(t)), v >= 0, ∀v ∈ V (3.7)

and the initial condition

u(0) = u0 (3.8)

where

ã(t;u, v) = a(t)
∫ 1

0

x2uxvxdx + a(t)k(t)u(1)v(1)− R′(t)
R(t)

∫ 1

0

x3uxvdx, u, v ∈ V . (3.9)

We then have the following lemma, the proof of which can be found in [2]

Lemma 3.3. There exists constants KT , αT and βT depending on T such that

| ã(t;u, v)| ≤ KT ‖u‖1‖v‖1, for all u, v ∈ V, (3.10)

ã(t;u, u) ≥ αT ‖u‖21 − βT ‖u‖20, u, v ∈ V. (3.11)

�

We then have the following theorem

Theorem 3.1. Let T > 0 and assumptions (H1),(H2),(F1),(F2) hold true. Then, there exists a
solution u of problem (3.7),(3.8) such that

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), x2/pu ∈ Lp(QT )

tu ∈ L∞(0, T ;V ), tut ∈ L2(0, T ;H).

Furthermore, if f satisfies the additional condition

(f(u)− f(v))(u− v) ≥ −δ|u− v|2,

for all u, v ∈ R, for some δ ∈ R, then the solution is unique.
�

Proof: We divide it in several steps.
Step1. The Galerkin method: denote by {wj}, j = 1, 2, ... an orthonormal basis in the separable
Hilbert space V . We find um(t) of the form

um(t) =
m∑

j=1

cmj(t)wj (3.12)
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where cmj(t) satisfy the following system of nonlinear differential equations

< u′m(t), wj > + ã(t;um(t), wj)+ < f(um(t)), wj >= 0, 1 ≤ j ≤ m (3.13)

and the initial condition

um(0) = u0m (3.14)

where

u0m → u0 strongly in H. (3.15)

It is clear that for each m, there exists a solution um(t) of the form (3.12), which satisfies (3.13) and
(3.14) almost everywhere on 0 ≤ t ≤ Tm, for some Tm, 0 < Tm ≤ T. The following estimates allow
us to take Tm = T for all m.
Step2. A priori estimates.
(a) the first estimate:
Multiplying the jth equation of the system (3.13) by cmj(t) and summing up w.r.t. j, we have

1
2

d

dt
‖um(t)‖20 + ã(t;um(t), um(t))+ < f(um(t)), um(t) >= 0 (3.16)

Using assumption (H2), (F2,i), Lemma 3.1 and Remark 3.1, it follows from (3.16) that

d

dt
‖um(t)‖20 + 2αT ‖um(t)‖21 + 2C1

∫ 1

0

x2|um(t, x)|pdx ≤ 2C ′
1

3
+ 2βT ‖um(t)‖20 (3.17)

Integrating (3.17), with (3.15), we have

Sm(t) ≤ C0 +
2
3
TC ′

1 + 2βT

∫ t

0

Sm(s)ds, (3.18)

where

Sm(t) = ‖um(t)‖20 + 2αT

∫ t

0

‖um(s)‖21ds + 2C1

∫ t

0

ds

∫ 1

0

x2|um(s, x)|pdx, (3.19)

and C0 is a constant depending only on u0 with ‖u0m‖20 ≤ C0 ∀m.

By Gronwall’s lemma, we obtain from (3.18)

Sm(t) ≤
(

C0 +
2
3
TC ′

1

)
exp(2βT t) ≤MT , ∀m, ∀t, 0 ≤ t ≤ Tm ≤ T, (3.20)

i.e. Tm = T.

In the following MT will denote a generic constant depending only on T .

(b) the second estimate: replacing wj by t2um in (3.8) gives
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‖tu′m‖)20 +
1
2

d

dt

[
a(t)‖tum‖20 + a(t)k(t)t2u2

m(1)
]

+
1
2

d

dt

[
t2
∫ 1

0

x2f̂(um)dx

]
= ‖umx‖20

d

dt

[
t2a(t)

]
+

1
2
u2

m(1)
d

dt
(t2a(t)k(t)) + 2t

∫ 1

0

x2f̂(um)dx

+
R′(t)t2

R(t)

∫ 1

0

x3umxu′mdx

(3.21)

where

f̂(z) =
∫ z

0

f(y)dy. (3.22)

Integrating (3.21) w.r.t. time variable from 0 to t, we shall have, after some rearrangements

2
∫ t

0

‖su′m(s)‖20ds + a(t)‖tumx(t)‖20 + a(t)t2u2
m(t, 1)

= a(t)(1− k(t))t2u2
m(t, 1) +

∫ t

0

[
s2a(s)

]′‖umx(s)‖20ds

+
∫ t

0

[
s2a(s)k(s)

]′
u2

m(s, 1)ds + 2
∫ t

0

R′(s)
R(s)

s2 < xumx(s), u′m(s) > ds

+4
∫ t

0

sds

∫ 1

0

x2f̂(um(s, x))dx− 2t2
∫ 1

0

x2f̂(um)dx.

(3.23)

By means of assumption (H2) and Remark 3.1, we get

a(t)‖tum(t)‖20 + a(t)t2u2
m(t, 1) ≥ 2

3
a0‖tum(t)‖21 ∀t ∈ [0, T ], ∀m. (3.24)

Let us choose ε > 0 such that

‖a‖∞‖1− k‖∞ε <
a0

3
(3.25)

where ‖.‖∞ = ‖.‖L∞(0,T ).
Using again Lemma 3.1, Remark 3.1 with ε > 0 as in (3.25) and first estimate (3.20), we estimate
without difficulty the terms in the r.h.s. of (3.23) as follows

a(t)(1− k(t))t2u2
m(t, 1) ≤ ‖a‖∞‖1− k‖∞

(
ε‖tum(t)‖21 + Cε‖tum(t)‖20

)
≤ a0

3
‖tum(t)‖21 + MT

(3.26)

∫ t

0

(
s2a(s)

)′‖umx(s)‖20ds +
∫ t

0

(
s2a(s)k(s)

)′
u2

m(s, 1)ds

≤
[∥∥(t2a)′

∥∥
∞ +

∥∥(t2ak)′
∥∥
∞

]∫ t

0

[
‖umx(s)‖20 + u2

m(s, 1)
]
ds

≤ 5
[∥∥(t2a)′

∥∥
∞ +

∥∥(t2ak)′
∥∥
∞

]∫ t

0

‖um(s)‖21ds ≤ MT

(3.27)
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2
∣∣∣∣∫ t

0

s2 R′(t)
R(t)

< xumx(s), u′m(s) > ds

∣∣∣∣ ≤ ∫ t

0

‖su′m(s)‖20ds +
∥∥∥∥R′

R

∥∥∥∥2

∞

∫ t

0

‖sum(s)‖21ds. (3.28)

On the other hand, from assumptions (F1) and (F2), we have

−m̂0 = −
∫ z0

−z0

|f(y)|dy ≤ f̂(z) =
∫ z

0

f(y)dy ≤ C2

(
|z|+ |z|p

p

)
, ∀z ∈ R (3.29)

where z0 = (C ′
1/C1)1/p.

Using the first estimate (3.20), (3.29) and Lemma 3.1, we obtain∣∣∣∣4∫ t

0

sds

∫ 1

0

x2f̂(um(s, x))dx− 2t2
∫ 1

0

x2f̂(um(t, x)dx

∣∣∣∣
≤ 4C2

∫ t

0

sds

∫ 1

0

x2

(
|um(s, x)|+ 1

p
|um(s, x)|p

)
dx + 2t2

∫ 1

0

x2m̂0dx

≤ 4C2

∫ t

0

s‖um(s)‖0ds +
4
p
C2t

∫ t

0

ds

∫ 1

0

x2|um(s, x)|pdx +
2
3
T 2m̂0

≤ 2C2T
√

MT +
2C2

pC1
TMT +

2
3
T 2m̂0 ≤ MT .

(3.30)

Hence, we deduce from (3.23),(3.24),(3.26)-(3.28) and (3.30) that

∫ t

0

‖su′m(s)‖20ds +
a0

3
‖tum(t)‖21 ≤ MT +

∥∥∥∥R′

R

∥∥∥∥2

∞

∫ t

0

‖sum(s)‖21ds. (3.31)

By Gronwall’s lemma, it follows that

∫ t

0

‖su′m(s)‖20ds +
a0

3
‖tum(t)‖21 ≤ MT exp

(∥∥∥∥R′

R

∥∥∥∥2

∞
.
3T

a0

)
≤ MT , ∀t ∈ [0, T ]. (3.32)

On the other hand, by using (3.20) and assumption (F2,ii) we have

∫ t

0

ds

∫ 1

0

∣∣∣x2/p′f(um(s, x))
∣∣∣p′dx ≤ (2C2)p′

∫ t

0

ds

∫ 1

0

x2|um(s, x)|pdx ≤ MT (3.33)

with p′ = p
p− 1 .

step3: The limiting process.
By (3.20), (3.32) and (3.33) we deduce that there exists a subsequence of {um}, still denoted {um}
such that

um → u weakly ∗ in L∞(0, T ;H)
um → u weakly in L2(0, T ;V )
x2/pum → x2/pu weakly in Lp(QT )
tum → tu weakly ∗ in L∞(0, T ;V )
(tum)′ → (tu)′weakly in L2(0, T ;H).

(3.34)
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A compactness lemma ([5] p.57) and formula (3.34) enables us to extract from the sequence {um}
a subsequence still denoted by {um} such that

tum → tu strongly in L2(0, T ;H). (3.35)

The continuity of f implies

f(um(t, x)) → f(u(t, x)) a.e. (t, x) ∈ QT = (0, T )× (0, 1) (3.36)

since we have the convergence of um(t, x) to u(t, x) a.e. (t, x) ∈ QT .

Applying a weak convergence lemma (see [5]) we obtain

x2/p′f(um) → x2/p′f(u) weakly in Lp′(QT ).

Passing to the limit in (3.13), (3.14), then by (3.15), (3.34) and (3.36) one can show that the function
u(t) satisfies the i.b.v. problem (3.7), (3.8).

step4: Uniqueness of the solutions.
First of all, we shall need the following lemma, which is a slight improvement of a lemma used in
[2] (see also [5])

Lemma 3.4. Let w be the weak solution of the i.b.v. problem
wt − a(t)(wxx + 2

xwx) = f̃(t, x), 0 < t < T, 0 < x < 1,∣∣∣ lim
x→0+

xwx(t, x)
∣∣∣ < +∞, wx(t, 1) + k(t)w(t, 1) = 0, w(0, x) = 0,

w ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), x2/pw ∈ Lp(QT )
tw ∈ L∞(0, T ;V ), twt ∈ L2(0, T ;H).

Then

1
2
‖w(t)‖20 +

∫ t

0

a(s)
[
‖wx(s)‖20 + k(s)w2(s, 1)

]
ds−

∫ t

0

< f̃(s), w(s) > ds = 0,

a.e. t ∈ (0, T )

�

Uniqueness of the solution will be deduced as follows. Let u and v be two weak solutions of
(3.3)−(3.5). Then w = u − v is a weak solution of the associated problem mentioned in Lemma

3.4, with the r.h.s. function f̃(t, x) = xR′(t)
R(t) wx − f(u) + f(v). Lemma 3.4 gives

1
2
‖w(t‖20 +

∫ t

0

ã(s;w(s), w(s))ds + 2
∫ t

0

< f(u(s))− f(v(s)), w(s) > ds = 0.

Using Lemma 3.3 and (F3) we obtain

‖w(t)‖20 + 2αT

∫ t

0

‖w(s)‖21 ≤ 2(δ + βT )
∫ t

0

‖w(s)‖20ds. (3.37)
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If δ + βT ≥ 0 we have ‖w(t)‖0 = 0 by applying Gronwall’s lemma. In the case where δ + βT < 0 the
result is clearly still true.
This ends the proof of Theorem 3.1.

�
For the boundedness of solutions, we shall make use of the following assumptions

• (H’1) u0 ∈ L∞(0, 1), |u0(x)| ≤ M, a.e. x ∈ (0, 1)

• (H’2) a, k ∈ W 1,∞(0, T ), a(t) ≥ a0 > 0, k(t) ≥ k0 > 0

• (F’1) uf(u) ≥ 0 ∀u ∈ R such that |u| ≥ ‖u0‖∞, for a.e. x ∈ (0, 1).

We then have the following result

Theorem 3.2. Let (H’1), (H’2), (F1)-(F3) and (F’1) hold. Then the unique weak solution of the
ibv problem (3.7)-(3.9) as given by theorem 1, belongs to L∞(QT ).

�

Proof: Firstly, assuming that u0(x) ≤ M, Z = u−M satisfies the i.b.v. problem

∂tZ − a(t)
(

∆Z +
2
x

∂xZ

)
− x

R′(t)
R(t)

∂xZ + f(Z + M) = 0, 0 < x < 1, t ∈ (0, T ) (3.38)

|limx→0+xZx(t, x)| < ∞, Zx(t, 1) + k(t)[Z(t, 1) + M ] = 0 (3.39)

Z(0, x) = u0(x)−M (3.40)

Multiplying equation (3.38) by x2v, for v ∈ V , integrating by parts w.r.t. variable x and taking into
account boundary condition (3.39), one has after some rearrangements

∫ 1

0

x2Ztvdx + a(t)
∫ 1

0

x2Zxvxdx + a(t)k(t)Z(t, 1)v(1)− R′(t)
R(t)

∫ 1

0

x3Zxvdx

+
∫ 1

0

x2f(Z + M)vdx = −Ma(t)k(t)v(1), ∀v ∈ V

(3.41)

∀v ∈ V hence for v = Z+ = 1
2

(
Z + |Z|

)
since u0 ∈ L∞(0, 1). Thus it follows that

1
2

d
dt

∫ 1

0

x2|Z+|2dx + a(t)
∫ 1

0

x2|(Z+)x|2dx + a(t)k(t)|Z+(t, 1)|2

−R′(t)
R(t)

∫ 1

0

x3Z+
x Z+dx +

∫ 1

0

x2f(Z+ + M)Z+dx = −Ma(t)k(t)Z+(t, 1) ≤ 0

since ∫ 1

0

x2ZtZ
+dx =

∫ 1

0,Z>0

x2(Z+)tZ
+dx =

1
2

d

dt

∫ 1

0

x2|Z+|2dx.

On the other hand, by assumption (H’2) and Remark 3.1, we obtain

a(t)
∫ 1

0

x2
∣∣Z+

x

∣∣2dx + a(t)k(t)
∣∣Z+(t, 1)

∣∣2 ≥ C̃0

∥∥Z+(t)
∥∥2

1
, (3.42)

where C̃0 = 2
3a0 min {1, k0}.
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Using the monotonicity of f(u) + δu and (F’1) we have

∫ 1

0

x2f(Z+ + M)Z+dx =
∫ 1

0

x2
[
f(Z+ + M)− f(M)

]
Z+dx +

∫ 1

0

f(M)x2Z+dx

≥ −δ

∫ 1

0

x2
∣∣Z+

∣∣2dx +
∫ 1

0

f(M)x2Z+dx ≥ −δ
∥∥Z+

∥∥2

0
.

(3.43)

Hence it follows from (3.41)-(3.43) with Cauchy’s inequality applied to the term

−R′(t)
R(t)

∫ 1

0

x3Z+
x Z+dx

d

dt

∥∥Z+(t)
∥∥2

0
+ C̃0

∥∥Z+(t)
∥∥2

1
≤

(
1
C̃0

∥∥∥∥R′

R

∥∥∥∥2

∞
+ 2|δ|

)∥∥Z+(t)
∥∥2

0
. (3.44)

Integrating (3.44), we get

∥∥Z+(t)
∥∥2

0
≤
∥∥Z+(0)

∥∥2

0
+

(
1
C̃0

∥∥∥∥R′

R

∥∥∥∥2

∞
+ 2|δ|

)∫ t

0

∥∥Z+(s)
∥∥2

0
ds. (3.45)

Since Z+(0) =
(
u(0, x) − M

)+

=
(
u0(x) − M

)+

= 0, hence using Gronwall’s lemma, we obtain

‖Z+(t)‖0 = 0. Thus u(t, x) ≤ M a.e. (t, x) ∈ QT .

The case u0(x) ≥ −M can be dealt with, in the same manner as above by considering Z = u + M

and Z− = 1
2

(
|Z| − Z

)
. Thus we get Z− = 0 and hence u(t, x) ≥ −M a.e. (t, x) ∈ QT .

All in all, one obtains |u(t, x)| ≤ M a.e. (t, x) ∈ QT and this ends the proof of Theorem 3.2.

4. NUMERICAL APPLICATIONS

For the numerical applications, we have taken in (2.3) γ = 3, so that equations (2.9) reduce to
Burger’s equations

{
Wt + WWr = 0, W (0, r) = W0(r)
Zt + ZZr = 0, Z(0, r) = Z0(r).

(4.1)

We know that the Burger’s equation

ut + uur = 0, u(0, r) = u0(r)

admits the solution u(t, r) = u0(ξ(t, r)) where ξ(t, r) is defined by the parametrization r = u0(ξ)t+ξ.

In connection with (4.1), we have considered two examples. In the first example, we have chosen the
initial conditions W0(r) = 1, r > 0; W0(0) = 0 and Z0(r) = 2, r > 0; Z0(0) = 0. The continuous
solutions of (4.1) are given by

W (t, r) =
{

1 if 0 ≤ t ≤ r
r
t if 0 ≤ r ≤ t
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Z(t, r) =
{

2 if 0 ≤ 2t ≤ r
r
t if 0 ≤ r ≤ 2t.

According to Section 2, the radius of the drop is given by formula (2.19) which we rewrite with
initial conditial taken equal to 1 as

dR(t)
dt

=
vG(t, R(t))ρG(t, R(t))

ρG(t, R(t))− ρL
, R(0) = 1 (4.2)

with  vG(t, r) =
1
2
(W (t, r) + Z(t, r))

ρG(t, r) =
1

2
√

3r2
(Z(t, r)−W (t, r)).

(4.3)

In figure 1 below, we have drawn the curve t −→ R(t) on the time interval [0, 1] with a step h = 0.05
and ρL = 0.9.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

d2

Fig. 1

For the second example we have chosen the experimental conditions made by the LCSR in the study
of single drop evaporation, the drop being suspended from a silicate tube. Drops are made up of n-
heptane fuel (ρL = 683 kg/mm3)) in air at normalized atmospheric pressure and with an initial speed
vG(0, r) = C1 = 35mm/s. The initial density ρG(0, r) of the gas is taken as C2 = 348

T0
, T0 = 373K.

So The solution of (4.1) can be written as

W (t, r) = C1 −
√

3C2ξ
2, ξ =

1 +
√

1− 4(r − C1t)
√

3C2t

2
√

3C2t
,

Z(t, r) = C1 +
√

3C2η
2, η =

−1 +
√

1 + 4(r − C1t)
√

3C2t

2
√

3C2t
.

Figures 2 and 3 represent the velocity vG(t, r) and the pressure ρG(t, r) given by (4.3) for (t, r) ∈
(0, 1)× (0, 1).
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Fig. 3
The curve of the radius t −→ R(t) for this case is drawn in figure 4.
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Fig. 5

Since W ′
0(ξ) < 0 the maximal existence interval is finite (Proposition 2.1) as can be seen in our

graphic. Let us remark that looking on the experimental curves made by the LCSR (figure 5) at the
beginning, the function t −→ R(t) is increasing around the vicinity of t = 0. This fact is confirmed
by our model which represents a good improvement of our previous model(see [1]) in which the
velocity vG(t) was a given function of t.
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