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Abstract.

In this paper we present the identification of parameters in the flux and diffusion

functions for a quasilinear strongly degenerate parabolic equation which models the

physical phenomenon of flocculated sedimentation. We formulate the identification

problem as a minimization of a suitable cost function and we derive its formal gradient

by means of adjoint equation which is a backward linear degenerate parabolic equation

with discontinuous coefficients. For the numerical approach, we start with the discrete

Lagrangian formulation and assuming that the direct problem is discretized by the

Engquist-Osher scheme obtain a discrete adjoint state associated to this scheme. The

conjugate gradient method permits to find numerically the physical parameters. In

particular, it allows to identify as well the critical concentration level at which solid

flocs begin to touch each other and determines the change of parabolic to hyperbolic

behavior in the model equation.

1. Introduction

Batch sedimentation is a classical procedure to separate flocculated suspension into a

concentrated sediment of practical interest, and a clear fluid. It is used, for example

in metallurgy, alimentation industry. The experimental setting consists of a vertical

column, with a surface feeding at the top, and a discharge surface at the bottom. Under

the influence of gravity, the suspension separates into a clear fluid, and a compressible

sediment, which is collected at the bottom of the column. We refer to [13, 3, 4, 6] for

more complete descriptions and details.

Under several constitutive and simplifying assumptions, it turns out that this

mixture of two continuous media (fluid and solid flocs) can be described by a single

model equation, namely a partial differential equation of mixed type, hyperbolic and

parabolic. The unknown is the volumetric solid concentration φ, which is a function of

the time t and the height in the column z.
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Actually, the mixed type nature of the equation results from the different behaviour

of the solid flocs on the one hand, the fluid on the other. The former indeed lies in a

compression region, where the solid effective stress σe is not constant, while in the fluid

zone, it can be taken equal to a constant. Therefore, in the solid zone (sediment), the

equation will be of parabolic type, in the fluid zone, it will be hyperbolic.

More precisely, it can be assumed that σe is a nonlinear function of φ alone, with

the following shape:

σ′

e(φ) =

{

= 0 for φ ≤ φc

> 0 for φ > φc

The concentration φc is the so-called critical concentration, above which the flocs get

into contact with each other and form a network. The location of the interface φ = φc
is a specific problem in direct simulations.

Another constitutive relation can be obtained through Kynch’s theory of kinematic

sedimentation. It gives the velocity of the mixture as a function of the concentration φ,

f(φ, t) = q(φ, t) + fbk(φ).

Here q is the volume average velocity of the mixture, q = vsφ+ vf (1− φ) (vs and vf are

the solid and fluid velocities), and fbk the so-called batch flux density function. Kynch’s

theory gives a precise expression for this function.

We are interested here in the inverse problem which consists in identifying the

constitutive laws fbk and σe from experimental data. This kind of problem is in general

impossible to solve in its full generality, that is considering fbk and σe as general

functions. Therefore we shall consider more precise constitutive assumptions, which

give explicit expressions for both functions, depending on a finite number of parameters.

Among these we emphasize the value of the critical concentration φc, which is of great

practical importance, and very difficult to access from experimental data. We mention

here that there are several experimental methods to obtain the involved parameters, see

[11, 1] for an overview. They employ a set of data of local solid concentration and local

permeability to the effective solid stress to obtain approximate correlation formulas

and then by algebraic manipulation of this correlations determinate some empirical

representation of fbk and σe. In contrast to our approach, we need only experimental

concentration data and we compute the optimal fbk and σe.

There is a large list of authors who propose analytical and numerical methods for

inverse problems in evolution partial differential equations. For example, parameter

identification methods for parabolic PDEs can be found in [14, 15, 24, 29, 31] and

references therein. Recently, Yamamoto and Zou reconstruct in [33] the radiative

coefficient and the initial data for a linear parabolic equations using a piecewise linear

finite element method for the discretization and a nonlinear gradient multigrid method

for accelerating the reconstruction process. Several difficulties arise in the case specific

we consider, since we want to reconstruct nonlinear coefficients, but such a strategy is

likely useful to improve the results. Moreover, the hyperbolic degeneracy gives rise to
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shocks in the concentration profiles. The existence and uniqueness for weak solutions to

the direct problem rely on specific entropy conditions which has physical relevancy for

the model and must be considered owing to the nonlinearity of the flux and degeneracy

of the diffusion, see [3, 4, 9].

The existence of solutions for the inverse problem is a consequence of the continuous

dependence of the entropy solutions with respect to the flux and the diffusion (see

Theorem 2 below and [19, 21]). Its uniqueness cannot be ensured because of the

hyperbolic behaviour, see [25, 26]. Therefore we shall rewrite the identification problem

by adapting the technique developed by James and Sepúlveda, in [25, 26, 27], which

is numerically tested as an efficient method to reconstruct the flux of a particular

hyperbolic system. The idea is to write the inverse problem as an optimization problem

for an appropriate cost function and then to apply the classical conjugate gradient

method.

The continuous gradient stems from an adjoint state to the model consisting of a

backward linear degenerate convection-diffusion equation with discontinuous coefficients

and boundaryconditions. As in the purely hyperbolic case, the adjoint equation is ill-

posed in uniqueness. We obtain the discrete gradient by computing the exact gradient

of the discrete formulation of the optimization problem. This has become a classical

technique, instead of computing the discretization of the formal gradient, because

identification problems are generally badly conditioned or ill-posed, see [17, 27]. All

the computations are based upon the explicit (first and second order), semi-implicit and

implicit Engquist-Osher (or generalized upwind scheme) for the numerical computation

of the solution of the sedimentation model, see Bürger et al [9]. In each case, the adjoint

scheme and the discrete gradient are provided.

The remainder of this paper is organized as follows. In section 2 we provide the

formulation of the direct and inverse problems. In section 3 we analyze the question

of the well posedness. In section 4 we present the formal calculus of the gradient. In

section 5 we introduce the numerical schemes for the identification of the parameters

and we present some numerical results.

2. Statement of the problem

2.1. The direct problem

Summarizing the results given in [2, 3, 4, 6] for the mathematical model of the

sedimentation processes, we have the following IBVP

∂φ

∂t
+

∂

∂z
(q(t)φ+ fbk(φ)) = − ∂

∂z

(

fbk(φ)
σ′

e(φ)

∆ρgφ

∂φ

∂z

)

, (z, t) ∈ QT ,(1)

φ(z, 0) = φ0(z) , z ∈ [0, L] , (2)

φ(L, t) = φ2(t) , t ∈ [0, T ] , (3)

fbk(φ)

(

1 +
σ′(φ)

∆ρgφ

∂φ

∂z

)
∣

∣

∣

∣

z=0

= 0 , t ∈ [0, T ] , (4)
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where φ is the non-negative unknown function, QT = [0, L]×[0, T ], ∆ρ and g are positive

constants, q, fbk, σe, φ0 and φ2 are given functions with the next supposed behavior

• q is a non-positive Lipschitz function, this is

q ∈ Lip([0, T ]) and q(t) ≤ 0 , ∀t ∈ [0, T ] . (5)

• fbk(φ) is a smooth function such that

fbk(φ) =

{

= 0 for φ ∈ IR−]0, φmax[ ,

< 0 for φ ∈]0, φmax[ .
0 < φmax ≤ 1 (6)

• σe(φ) is a C3 function, constant for φ < φc, with monotonic increasing for φ > φc
where φc ∈]0, φmax[ is a constant, and its first derivative, σ′

e, satisfies

σ′

e(φ) =

{

= 0 for φ ≤ φc ,

> 0 for φ > φc .
(7)

• φ0 and φ2 are piecewise continuous functions such that

0 ≤ φ0(z), φ2(t) ≤ φmax, z ∈ [0, L], t ∈ [0, T ] (8)

with φ2 changing its monotonicity behavior a finite number of times.

In the setting of sedimentation theory φ(z, t) denotes the volumetric solid

concentration at height z in time t, q the volume-averaged velocity of a suspension,

fbk the Kynch batch flux density function, φmax is the maximum concentration value, σe
the effective solid stress, L the height of thickener feeding level, T the total time for the

process, ∆ρ the difference of solid and fluid mass densities, g the acceleration of gravity

and φc is a critical concentration value or gel point, see [2, 13, 5, 6] for specific details.

The flux density function (or shortly flux) and the diffusion coefficient (or shortly

diffusion) associated to equation (1) are defined by

f(φ, t) = q(t)φ+ fbk(φ) and a(φ) = −fbk(φ)σ′

e(φ)

∆ρgφ
, (9)

respectively. Moreover we define the integrated diffusion coefficient A by

A(φ) =

∫ φ

0

a(s)ds . (10)

Due to (6), (7) and (9), (1) is a second order parabolic partial differential equation

for φ ∈]φc, φmax[, a nonlinear hyperbolic conservation law for φ ∈]0, φc[ and a linear

advection equation for φ ∈ IR−[0, φmax]. In brief, the IBVP is referenced as a quasilinear

strongly degenerate parabolic equation. We remark that it is sufficient to consider

the degeneracy on [0, φc] ∪ {φmax} because for φ solution of the IBVP we have that

φ ∈ [0, φmax] almost everywhere, see [4].
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2.2. The inverse problem

Experimental results obtained in industrial and laboratory processes for flocculated

sedimentation suggest to consider in the model (1)-(9), a dependence of finite number

of parameters for the functions fbk and σe, see [2, 13, 5] and [6]. The determination of

this parameters implies to solve an “Identification Problem”, IP. We can formulate it,

in general way, as follows

IP Given an observation data φobs(z), at time T , and the functions q(t), φ(z, 0), φ(L, t),

explicitly, and φ(0, t), implicitly, satisfying (5), (2), (3) and (4) respectively, find

the flux f and the diffusion a with fbk and σe satisfying (6) and (7) such that the

weak solution φ(z, T ), in time T , of the IBVP (1)-(7) is as close as to φobs(z) in

some suitable norm.

We can write the IP, see [25, 26] and [27], as the optimization of a cost function J

min
f,a

J(φ(·, T )) , (11)

under the constraint for φ to satisfy weakly the IBVP (1)-(4), for some f and a. A

natural example of cost function J is

J(φ) =
1

2

∫ L

0

|φ(z, T ) − φobs(z)|2dz , (12)

for other examples see [26].

We particularize the general situation by consider the parametric dependent

analytic form of the flux and the diffusion. In this work, we seek fbk by the usual

formula of Richardson and Zaki [32], and σe by a constitutive law, [9], i.e.

fbk(φ) = u∞φ(1 − φ

φmax
)C , (13)

σe(φ) =

{

Cte. for φ ≤ φc ,

α
(

(φ/φc)
β − 1

)

for φ > φc ,
(14)

where u∞ is the flow velocity of a singular particle in an unbounded medium and

C > 1, α > 0, β > 1, φc ∈]0, φmax[ are parameters(see [13, 23, 11] for another examples).

Thus, in this particular case, if we denote by e the parameters to find, the problem (11)

can be formulated in an equivalent way by

min
e
J(φe(·, T )) ,

where φe is a weak solution of IBVP (1)-(4) with fbk and σe given by (13)-(14),

respectively.

The nonlinearity and degeneracy implies that solutions of the IBVP may become

discontinuous in finite time. Thus, we need to interpret the IBVP in a weak way. In

addition, it is well known that the IBVP is ill-posed in the classical weak sense because

there is no uniqueness. In order to have a well-posed problem we must consider an

additional condition or entropy condition, see [3, 4, 10].
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3. Theoretical analysis of the IBVP and the IP

3.1. The direct problem

We adopt in this work the definition of weak entropy solution introduced by Bürger et

al. in [10].

Definition 1 Let φ ∈ L∞(QT )∩BV (QT ) . Then φ is an entropy solution of the IBVP

if the following four conditions are valid

(i) ∂zA(φ) ∈ L2(QT )

(ii) For all k ∈ IR and for all ϕ ∈ C∞(]0, 1] × [0, T ]) such that ϕ ≥ 0 and

supp ϕ ⊂]0, 1]×]0, T [ the entropy inequality
∫ ∫

QT

{

|φ− k|∂tϕ+ sgn(φ− k)(f(φ, t) − f(k, t) − ∂zA(φ))∂zϕ
}

dzdt

+

∫ T

0

{

− sgn(φ2(t) − k)[f(γ1φ, t) − f(k, t) − γ1∂zA(φ)]ϕ(1, t)

+[sgn(γ1φ− k) − sgn(φ2(t) − k)][A(γ1φ) −A(k)]∂zϕ(1, t)
}

dt ≥ 0

is satisfied.

(iii) For almost all t ∈]0, T [

γ0(fbk(φ) − ∂zA(φ)) = 0

(iv) For almost all z ∈ [0, L]

lim
t→0

φ(z, t) = φ0(z)

The notations γ0 and γ1 denote the traces in BV (QT ) at x = 0 and x = 1,

respectively. For a precise definition see [4]. The item (i) is a technical regularity

condition, (ii) is the entropy condition meanwhile that (iii) and (iv) are the weak

formulation for the boundary condition (4) and the initial condition (2), respectively.

The definition 1 implies that the direct problem is well-posed, it was proved in

[10], see also [4]. In that works, following the Kružkov [30] and Carrillo [16] ideas they

establish several properties for the entropy solution of the direct problem. In particular

they, provided the hypothesis (5)-(9), proved the following theorem

Theorem 1 There is almost one entropy solution φ ∈ BV (QT ) for the IBVP (1)-(4).

3.2. Existence of solutions to the Inverse Problem

In this section we provide a sufficient condition for existence of at least one solution for

our IP. The existence result is a consequence of the continuous dependence of the entropy

solution with respect to the flux and diffusion. The non-uniqueness is a consequence of

the degeneracy and the hyperbolic behavior.
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The continuous dependence for a Cauchy Problem with spatially dependent flux

was studied in [28, 21]. Their ideas, inspired by the works of Carrillo [16] and Cockburn

and Gipenberg [19], can be extended to our IBVP with time dependent flux. First, we

need the following lemma.

Lemma 1 Assume that A′ > 0, then for any ϕ ≥ 0 in C∞

0 (QT ) and k ∈ IR we have
∫∫

QT

{|φ− k|∂tϕ+ sgn(φ− k)(f(φ, t) − f(k, t) − ∂zA(φ))∂zϕ} dtdz

= lim
ε→0

∫∫

QT

A′(φ)(∂zφ)2sgn′

ε(φ− k)ϕdtdz, (15)

where φ is an entropy solution of the IBVP and

sgnε(r) =











−1 r < −ε,
r/ε −ε ≤ r ≤ ε,

1 r > ε.

Proof. Let ψε(z) = −sgnε(A
−1(z) − k) and Aψε

(φ) =
∫ φ

k
ψε(A(r))dr. Then, by a

“weak chain rule” (see [16, 10]) we have

−
∫ T

0

< ∂tφ,−sgnε(φ− k)ϕ > dt =

∫∫

QT

Aψε
(φ)∂tϕdtdz, (16)

where < ·, · > denotes the usual pairing between H−1(]0, L[) and H1
0 (]0, L[).

On the other hand, by definition 1, we follow that

−
∫ T

0

< ∂tφ, sgnε(φ− k)ϕ > dt+
∫∫

QT

[f(φ, t) − f(k, t) − ∂zA(φ)]∂z(sgnε(φ− k)ϕ)dtdz = 0. (17)

Combining (16) with (17) and passing to the limit when ε→ 0, we obtain (15). �

Theorem 2 Let u and v be entropy solutions of the following IBVP’s

∂u

∂t
+

∂

∂z
(q1(t)u+ fbk1(u)) =

∂2A(u)

∂z2

u(z, 0) = u0(z), u(L, t) = uL(t), fbk1(φ) − A(u)
∂u

∂z

∣

∣

∣

∣

z=0

= 0,

and

∂v

∂t
+

∂

∂z
(q2(t)v + fbk2(v)) =

∂2B(v)

∂z2

v(z, 0) = v0(z), v(L, t) = vL(t), fbk2(v) −B(v)
∂v

∂z

∣

∣

∣

∣

z=0

= 0,

respectively, where the assumptions (5)-(10) are fulfilled by each one of its coefficients,

initial and boundary conditions. Then for almost all t ∈ [0, T ]

‖u(·, t) − v(·, t)‖L1([0,L]) ≤ ‖u0 − v0‖L1([0,L]) + tC‖q1 − q2‖Lip([0,T ])

+tC‖fbk1 − fbk2‖Lip([0,umax]) +
√
tC‖

√
a−

√
b‖L∞([φc,φmax])
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where C > 0 is a constant and a(u) = A′(u), b(v) = B′(v).

Proof. It is sufficient to prove this theorem when the equations are uniformly

parabolic since the degenerate parabolic case is a consequence of the convergence of

the vanishing viscosity method, see [4, 10]. The proof will be done by the generalized

doubling of variables technique, see [16].

Let us introduce the test function ϕ ∈ C∞

0 (QT ×QT )

ϕ(z, t, y, s) =

{
∫ t−ν

−∞

ρθ(s)ds−
∫ t−τ

−∞

ρθ(s)ds

}

ρη(z − y)ρδ(t− s),

where ν, τ ∈]0, T [ are Lebesgue points of ‖u(·, t) − v(·, t)‖L1([0,L]), θ ∈]0,min{ν, T − τ}[,
η, δ > 0 and ρε(x) = (1/ε)ρ(x/ε) for ε > 0 with ρ ∈ C∞

0 (IR) such that ρ is a even

function, ρ(r) = 0 for |r| > 1 and
∫

ρ(r)dr = 1.

We apply the lemma 1 twice. Firstly with ϕ as a test function in (z, t), φ = u(z, t),

k = v(y, s) and integrate with respect to (y, s) ∈ QT . Then we apply the lemma with

ϕ as a test function in (y, s), φ = v(y, s) and k = u(z, t) and integrate with respect to

(z, t) ∈ QT . By summing up the results we obtain

−
∫∫∫∫

QT×QT

{

|u− v|(∂tϕ + ∂sϕ)

+sgn(u− v)[(f(u, t) − f(v, t))∂zϕ− (g(v, s) − g(u, s))∂yϕ]

−[sgn(u− v)∂zA(u)∂zϕ+ sgn(v − u)∂yB(v)∂yϕ]
}

dzdtdyds

= − lim
ε→0

∫∫∫∫

QT×QT

{

A′(u)(∂zu)
2 +B′(v)(∂yv)

2
}

sgn′

ε(v − u)ϕdzdtdyds

≤ − lim
ε→0

∫∫∫∫

QT×QT

2
√

A′(u)
√

B′(v)∂zu∂yv sgn′

ε(v − u)ϕdzdtdyds = S1

Now, by triangle inequality we get

I1 + I2 + I3 ≤ −
∫∫∫∫

QT×QT

|u− v|(∂tϕ+ ∂sϕ)dzdtdyds ≤ S1 + S2 + S3

where

I1 = −
∫∫∫∫

QT×QT

|u(y, t) − v(y, t)|(∂tϕ+ ∂sϕ)dzdtdyds

I2 = −
∫∫∫∫

QT×QT

|v(y, t) − v(y, s)|(∂tϕ+ ∂sϕ)dzdtdyds

I3 = −
∫∫∫∫

QT×QT

|u(z, t) − u(y, t)|(∂tϕ+ ∂sϕ)dzdtdyds

S2 =

∫∫∫∫

QT×QT

sgn(u− v)[(f(u, t) − f(v, t))∂zϕ− (g(v, s)− g(u, s))∂yϕ]dzdtdyds

S3 = −
∫∫∫∫

QT×QT

[sgn(u− v)∂zA(u)∂zϕ+ sgn(v − u)∂yB(v)∂yϕ]dzdtdyds.

Taking into account that ∂tϕ+ ∂sϕ = [ρθ(t− ν) − ρθ(t− τ)]ρη(z − y)ρδ(t− s) and
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∂zϕ+ ∂yϕ = 0, we obtain that

lim
θ→0

I1 = ‖u(·, τ) − v(·, τ)‖L1(]0,L[) − ‖u(·, ν) − v(·, ν)‖L1(]0,L[),

lim
θ→0

I2 = 0,

lim
θ→0

I3 ≥ −2η sup
t∈(ν,τ)

|u(·, t)|BV (]0,L[),

lim
θ,η,δ→0

S2 ≤ (‖q1 − q2‖Lip + ‖fbk1 − fbk2‖Lip) sup
t∈(ν,τ)

|u(·, t)|BV (]0,L[)

and

lim
θ→0

S1 + S3 ≤ (τ − ν) sup
t∈(ν,τ)

|u(·, t)|BV (]0,L[)
2

η
‖
√
B′ −

√
A′‖2

L∞([φc,φmax]).

This estimates yields the result. �

Corollary 1 Let M = Lip([0, T ]) × Lip([0, umax]) × L∞([φc, φmax]). The mapping

J̃ : (q, fbk, a) 7→ J(φq,fbk,a) defined from M to IR+ is continuous. Then, if (q, fbk, a) ∈ F ,

where F is a compact subset of M, there exist at least one solution for the IP.

Because the square root is not a Lipschitz function it is interesting to note that

if we consider the mapping Ĵ : (q, fbk,
√
a) 7→ J(φq,fbk,a) from M to IR+ is Lipschitz

continuous, obtaining a strong result of continuity of the cost function respect to “
√
a”

than “a”.

It is known that IP is ill-posed in uniqueness if we consider for instance the

identification of the parameters of the flux an only shock observation, when A = 0 (see

[17] for more details). We hope to solve in practice this problem of uniqueness following

the same idea of [17]: considering several experimental observations with rarefaction

waves and limited number of real parameters to identify.

4. Lagrangian formulation and formal calculus

We define a Lagrangian for the problem (11) by setting

L(φ, ψ; f, a) = J(φ) −E(φ, ψ; f, a),

where ψ is a smooth test function, φ is the state variable and

E(φ, ψ; f, a) = −
∫

QT

(

φ
∂ψ

∂t
+ f(φ)

∂ψ

∂z
+ A(φ)

∂2ψ

∂z2

)

+

∫

z=L

(

ψf(φ2) − ψ
∂A

∂z
(φ2) + A(φ2)

∂ψ

∂z

)

−
∫

z=0

(

ψq(t)φ+ A(φ)
∂ψ

∂z

)

+

∫

t=T

ψφ−
∫

t=0

ψφ0 .

When we formally take the derivative of L in the direction δφ we obtain
〈

∂L
∂φ

, δφ

〉

=

∫

QT

δφ

(

∂ψ

∂t
+ f ′(φ)

∂ψ

∂z
+ a(φ)

∂2ψ

∂z2

)

+

∫

z=0

δφ

(

ψq(t) + a(φ)
∂ψ

∂z

)

+

∫

t=T

δφ(φ− φobs − ψ) ,
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where we used the fact that φ0, φ2 and φobs are fixed. Now, we are interested in

canceling ∂L/∂φ, then ψ should be solution of

∂ψ

∂t
+ (q(t) + f ′

bk(φ))
∂ψ

∂z
= − a(φ)

∂2ψ

∂z2
, (z, t) ∈ QT , (18)

ψ(z, T ) = φ(z, T ) − φobs(z) , z ∈ [0, L] , (19)

ψq(t) − a(φ)
∂ψ

∂z

∣

∣

∣

∣

z=0

= 0 , t ∈ [0, T ] . (20)

This problem is a backward boundary value problem for a linear parabolic degenerate

equation with discontinuous coefficients. The end condition (19) depends on the cost

function, in this case it corresponds to J . In more general case we have the relation
∫

t=T
δφψ =< ∂J/∂φ, δφ >, for all δφ smooth. No boundary condition is needed at

z = L, for the case of batch sedimentation q = φ2 = 0, since the characteristics are

entering the domain for the direct problem.

Let φf,a be solution of the IBVP. If φf,a is smooth, then we have E(φf,a, ψ; f, a) = 0

for each ψ smooth. In this way, L(φf,a, ψ; f, a) = J(φf,a) = J̃(f, a). Thus

∇J̃(f, a) =

(〈

∂L
∂φf,a

, φf,a

〉

+
∂L
∂f

,

〈

∂L
∂φf,a

, φf,a

〉

+
∂L
∂a

)

=

〈

∂L
∂φf,a

, φf,a

〉

(1, 1) +

(

∂L
∂f

,
∂L
∂a

)

·

In this equality, for ψ solution of (18)-(20) the first term in the right-hand side is zero,

so that we obtain
〈

∇J̃ , (δf, δa)
〉

= 〈∇L, (δf, δa)〉 = −〈∇E, (δf, δa)〉

=

∫

QT

(

δf(φf,a)
∂ψ

∂z
, a(φf,a)

∂2ψ

∂z2

)

+

∫

z=L

(

δf(φ2)ψ, a(φ2)
∂ψ

∂z

)

−
∫

z=0

(

0, a(φ1)
∂ψ

∂z

)

.(21)

5. Numerical schemes and discrete study

We divide the interval (0, L) into M subintervals of length ∆z = L/M and the interval

(0, T ) into N subintervals of length ∆t = T/N . For n = 0, . . . , N and j = 0, . . . ,M we

will denote by φnj the value of numerical solution at (j∆z, n∆t) and by φ0
j , φ

n
2 , φ

obs
j the

corresponding approximation of φ0, φ2, φ
obs, respectively.

At discrete level the minimization corresponds to the following problem

min
e
J∆(φnj (e))

where J∆ is the discrete form of cost function. In the case of (12) is given by

J∆(φnj (e)) =
1

2

M
∑

j=0

∆z|φNj − φobsj |2 .
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In this way we define the discrete Lagrangian associated by

L·(φ
n
j , ψ

n
j ; e) =

1

∆z
J∆(φnj ) − E∆(φnj , ψ

n
j ; e) ,

where E∆(φnj , ψ
n
j ; e) denotes a discrete weak formulation, it will be obtained by

summation by parts of the numerical scheme by means we calculated the numerical

solution of IBVP and ψnj will be chosen as solution of a discrete adjoint problem.

5.1. First and second order explicit EO scheme

In [9] the IBVP was well discretized by means of the first and second order Engquist-

Osher scheme. The first order EO scheme is

φn+1
j − φnj

∆t
+ q(n∆t)

φnj+1 − φnj
∆z

+
fEObk (φnj , φ

n
j+1) − fEObk (φnj−1, φ

n
j )

∆z

=
A(φnj+1) − 2A(φnj ) + A(φnj−1)

(∆z)2
, j = 1, . . . ,M − 1, (22)

where

fEObk (φnj , φ
n
j+1) = f+

bk(φ
n
j ) + f−

bk(φ
n
j+1)

=

[

fbk(0) +

∫ φn
j

0

max(f ′

bk(s), 0)ds

]

+

[
∫ φn

j+1

0

min(f ′

bk(s), 0)ds

]

.

The second order EO scheme is defined by

φn+1
j − φnj

∆t
+ q(n∆t)

φLj+1 − φRj
∆z

+
fEObk (φRj , φ

L
j+1) − fEObk (φRj−1, φ

L
j )

∆z

=
A(φnj+1) − 2A(φnj ) + A(φnj−1)

(∆z)2
, j = 1, . . . ,M − 1, (23)

where

φLj = φnj −
∆z

2
snj and φRj = φnj +

∆z

2
snj .

Here sn1 = snM−1 = 0 and for j = 2, . . . ,M − 2 we have

snj = mm(θ
φnj − φnj−1

∆z
,
φnj+1 − φnj−1

2∆z
, θ
φnj+1 − φnj

∆z
) , θ ∈ [0, 2],

with mm the minmod function

mm(a, b, c) =











min(a, b, c), if a, b, c > 0,

max(a, b, c), if a, b, c < 0,

0, otherwise.

In both cases, first and second order, φnM is obtained by φnM = φ2(n∆t) and φn0 by the

following formula

φn+1
0 − φn0

∆t
+ q(n∆t)

φn1 − φn0
∆z

+
fEObk (φn0 , φ

n
1 )

∆z
=
A(φn1 ) −A(φn0 )

(∆z)2
·
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Denoting by λ = ∆t/∆z and ν = ∆t/(∆z)2 the discrete weak formulation for (22)

is given by

E∆(φnj , ψ
n
j , e) =

∑

n,j

{

φn+1
j − φnj + λq(n∆t)(φnj+1 − φnj ) + λ

(

fEObk (φnj , φ
n
j+1, e)

− fEObk (φnj−1, φ
n
j , e)

)

− ν(A(φnj+1, e) − 2A(φnj , e) + A(φnj−1, e))
}

ψn+1
j

=
∑

n,j

{

φnj

[

ψnj − ψn+1
j + λq(n∆t)(ψn+1

j−1 − ψn+1
j )

]

+ λfEObk (φnj , φ
n
j+1)(ψ

n+1
j − ψn+1

j+1 ) − νA(φnj )(ψ
n+1
j−1 − 2ψn+1

j + ψn+1
j+1 )

}

+

M−1
∑

j=0

{

φNj ψ
N
j − φ0

jψ
0
j

}

+

N−1
∑

n=0

{

λ
[

q(n∆t)φnMψ
n+1
M−1 − q(n∆t)φn0ψ

n+1
−1 + fEObk (φnM−1, φ

n
M)ψn+1

M

]

− ν
[

A(φnM)ψn+1
M−1 −A(φnM−1)ψ

n+1
M −A(φn0 )(ψn+1

−1 − ψn+1
0 )

]}

,

where we approximated the boundary condition at z = 0 by

fbk(φ)

(

1 +
σ′(φ)

∆ρgφ

∂φ

∂z

)
∣

∣

∣

∣

z=0

≈ fEObk (φn
−1, φ

n
0 ) − A(φn0 ) − A(φn

−1)

∆z
= 0 .

Taking the derivative of E∆ with respect to φnj we obtain

∂E∆

∂φnj
= ψnj − ψn+1

j + λq(n∆t)(ψn+1
j−1 − ψn+1

j )

+ λ
{

min(f ′

bk(φ
n
j ), 0)ψn+1

j−1 + |f ′

bk(φ
n
j )|ψn+1

j − max(f ′

bk(φ
n
j ), 0)ψn+1

j+1

}

− νa(φnj )(ψ
n+1
j−1 − 2ψn+1

j + ψn+1
j+1 ) + ψNj δn,N

−
[

λq(n∆t)ψn+1
−1 − νa(φn0 )(ψn+1

−1 − ψn+1
0 )

]

δj,0

+
[

λmax(f ′

bk(φ
n
M−1), 0) + νa(φnM−1)

]

ψn+1
M δj,M−1 .

If we consider that (∂L∆)/(∂φnj ) should be zero we have the follow adjoint scheme

to (22)

ψnj − ψn+1
j

∆t
+ q(n∆t)

ψn+1
j−1 − ψn+1

j

∆z
+
FA1

∆z
=
a(φnj )(ψ

n+1
j−1 − 2ψn+1

j + ψn+1
j+1 )

(∆z)2
,

ψNj =
∂J∆

∂φNj
,

q(n∆t)ψn+1
−1 − a(φn0 )

ψn+1
−1 − ψn+1

0

∆z
= 0 ,

[

λmax(f ′

bk(φ
n
M−1), 0) + νa(φnM−1)

]

ψn+1
M = 0 ,

where

FA1 = min(f ′

bk(φ
n
j ), 0)ψn+1

j−1 + |f ′

bk(φ
n
j )|ψn+1

j − max(f ′

bk(φ
n
j ), 0)ψn+1

j+1 . (24)
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Thus, we obtain the discrete gradient

∇Ĵ∆(e) = −∇eE∆∆z

= −
∑

n,j

∆t∇ef
EO
bk (φnj , φ

n
j+1)(ψ

n+1
j − ψn+1

j+1 )

− λ∇eA(φnj )(ψ
n+1
j−1 − 2ψn+1

j + ψn+1
j+1 ) −

N−1
∑

n=0

{

∆t∇ef
EO
bk (φnM−1, φ

n
M)ψn+1

M

− λ
[

∇eA(φnM)ψn+1
M−1 −∇eA(φnM−1)ψ

n+1
M −∇eA(φn0 )(ψn+1

−1 − ψn+1
0 )

]}

.

If we use (23) instead of (22) we get the adjoint scheme

ψnj − ψn+1
j

∆t
+
q(n∆t)Fq

∆z
+
FA2

∆z
=
a(φnj )(ψ

n+1
j−1 −2ψn+1

j +ψn+1
j+1 )

∆z2

ψNj =
∂J∆

∂φNj

q(n∆t)
∂φL0
∂φn0

ψn+1
−1 − a(φn0 )

ψn+1
−1 − ψn+1

0

∆z
= 0

λmax(f ′

bk(φ
R
M−1), 0)

∂φRM−1

∂φn0
ψn+1
M−1 + νa(φnM−1)ψ

n+1
M = 0,

where

FA2 = min(f ′

bk(φ
L
j−1), 0)

∂φLj−1

∂φnj
(ψn+1

j−2 − ψn+1
j−1 )

+

{

max(f ′

bk(φ
R
j−1), 0)

∂φRj−1

∂φnj
+ min(f ′

bk(φ
L
j ), 0)

∂φLj
∂φnj

}

(ψn+1
j−1 − ψn+1

j )

+

{

max(f ′

bk(φ
R
j ), 0)

∂φRj
∂φnj

+ min(f ′

bk(φ
L
j+1), 0)

∂φLj+1

∂φnj

}

(ψn+1
j − ψn+1

j+1 )

+ max(f ′

bk(φ
R
j+1), 0)

∂φRj+1

∂φnj
(ψn+1

j+1 − ψn+1
j+2 ),

F q =

(

∂φLj−1

∂φnj
−
∂φRj−1

∂φnj

)

(ψn+1
j−2 − ψn+1

j−1 ) +

(

∂φLj
∂φnj

−
∂φRj
∂φnj

)

(ψn+1
j−1 − ψn+1

j )

+

(

∂φLj+1

∂φnj
−
∂φRj+1

∂φnj

)

(ψn+1
j − ψn+1

j+1 ).

In this case the gradient is given by

∇Ĵ∆(e) = −
∑

n,j

{

∆t∇ef
E0
bk (φRj , φ

L
j+1)(ψ

n+1
j − ψn+1

j+1 )

− λ∇eA(φnj )(ψ
n+1
j+1 − 2ψn+1

j + ψn+1
j+1 )

}

−
N−1
∑

n=0

{

∆t∇ef
E0
bk (φRM−1, φ

L
M)ψn+1

M−1

− λ
[

∇eA(φnM)ψn+1
M−1 −∇eA(φnM−1)ψ

n+1
M −∇eA(φn0)(ψ

n+1
0 − ψn+1

−1 )
]}

.
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If the following CFL condition

λ max
t∈[0,T ]

|q(t)| + λ max
φ∈[0,φmax]

|f ′

bk(φ)| + 2ν max
φ∈[φc,φmax]

|a(φ)| ≤ 1 ,

is satisfied, then the first and second order schemes are stable. For another CFL

condition see [9].

5.2. Implicit and semi-implicit schemes

The direct problem can be discretized by semi-implicitly scheme

φn+1
j − φnj

∆t
+ q(n∆t)

φnj+1 − φnj
∆z

+
fEObk (φnj , φ

n
j+1) − fEObk (φnj−1, φ

n
j )

∆z

=
A(φn+1

j+1 ) − 2A(φn+1
j ) + A(φn+1

j−1 )

(∆z)2
, j = 1, . . . ,M − 1 (25)

or by the implicit scheme

φn+1
j − φnj

∆t
+ q((n+ 1)∆t)

φn+1
j+1 − φn+1

j

∆z
+
fEObk (φn+1

j , φn+1
j+1 ) − fEObk (φn+1

j−1 , φ
n+1
j )

∆z

=
A(φn+1

j+1 ) − 2A(φn+1
j ) + A(φn+1

j−1 )

(∆z)2
, j = 1, . . . ,M − 1

(26)

In both cases the boundary condition at z = L is discretized by φn+1
M = φ2((n + 1)∆t)

while the boundary condition at z = 0 is calculated by the interior scheme with the

following approximation
(

fbk(u) −
∂A(u)

∂z

)
∣

∣

∣

∣

z=0

≈ fEObk (φn+1
−1 , φ

n+1
0 ) − A(φn+1

0 ) −A(φn+1
−1 )

∆z
= 0 .

Applying the same strategy as the previous section for to calculate the gradient, we

have the adjoint state

ψnj − ψn+1
j

∆t
+ q(n∆t)

ψnj−1 − ψnj
∆t

+
FA1

∆z
= a(φnj )

ψnj−1 − 2ψnj + ψnj+1

(∆z)2

(1 + 2νa(φNj ))ψNj =
∂J∆

∂φNj

q(n∆t)ψn+1
−1 − a(φn0 )

ψn
−1 − ψn0

∆z
= 0

λmax{f ′

bk(φ
n
M−1), 0}ψn+1

M + νa(φnM−1)ψ
n
M = 0

for (25) and

ψnj − ψn+1
j

∆t
+ q(n∆t)

ψnj−1 − ψnj
∆t

+
FAI

∆z
= a(φnj )

ψnj−1 − 2ψnj + ψnj+1

(∆z)2

ψNj =
∂J∆

∂φN−1
j

q(n∆t)ψn
−1 − a(φn0 )

ψn
−1 − ψn0

∆z
= 0

{λmax{f ′

bk(φ
n
M−1), 0} + νa(φnM−1)}ψnM = 0
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for (26), where FA1 is given by (24) and

FAI = min(f ′

bk(φ
n
j ), 0)ψnj−1 + |f ′

bk(φ
n
j )|ψnj − max(f ′

bk(φ
n
j ), 0)ψnj+1 .

The gradient in the case of semi-implicit is given by

∇Ĵ∆(e) = −∇eE∆∆z

= −
∑

n,j

∆t∇ef
EO
bk (φnj , φ

n
j+1)(ψ

n+1
j − ψn+1

j+1 ) − λ∇eA(φnj )(ψ
n
j−1 − 2ψnj + ψnj+1)

−
N−1
∑

n=0

{

∆t∇ef
EO
bk (φnM−1, φ

n
M)ψn+1

M

− λ
[

∇eA(φnM)ψnM−1 −∇eA(φnM−1)ψ
n
M −∇eA(φn0)(ψ

n
−1 − ψn0 )

]}

,

whereas in the implicit ones is

∇Ĵ∆(e) = −∇eE∆∆z

= −
∑

n,j

∆t∇ef
EO
bk (φnj , φ

n
j+1)(ψ

n
j − ψnj+1) − λ∇eA(φnj )(ψ

n
j−1 − 2ψnj + ψnj+1)

−
N−1
∑

n=0

{

∆t∇ef
EO
bk (φnM−1, φ

n
M)ψnM

− λ
[

∇eA(φnM)ψnM−1 −∇eA(φnM−1)ψ
n
M −∇eA(φn0)(ψ

n
−1 − ψn0 )

]}

,

The CFL condition for the semi-implicit scheme is given by

λ

(

max
t∈[0,T ]

|q(t)| + max
φ∈[0,φmax]

|f ′

bk(φ)|
)

≤ 1.

Meanwhile, the implicit scheme is “CFL free”, see [9].

The unconditional stability of the implicit scheme is useful for the reason that

it allows the choose of a coarse grid without loosing the convergence to the entropy

solution. Therefore, the implicit scheme is a good alternative to simulate numerically

the physical problem with a few (reasonable) steps of time to overcome the cumbersome

number of steps of time in the explicit and semi-implicit schemes.

5.3. Numerical tests

5.3.1. Identification from analytic data. Let us consider fbk and σe like (13) and

(14) with the value of the parameters given by the Table 1. Then the function

φ1(z, t) = z2 + (t/30000)2 is solution of the following IBVP

∂φ

∂t
+

∂

∂z
(fbk(φ)) =

∂2A(φ)

∂2z
+ g1(z, t) (z, t) ∈ QT

φ(z, 0) = 0.05 z ∈ [0, 1]

φ(1, t) = φ1(1, t) t ∈ [0, T ]

fbk(φ) − ∂A(φ)

∂z

∣

∣

∣

z=0
= b1(t) t ∈ [0, T ]



Identification of parameters for a model of sedimentation processes 16

Table 1. Parameters for direct simulation [20].

C α β φc
15.6 5.0 6.0 0.1

Table 2. Identified parameters with the second order EO explicit scheme.

φobs J C α β φc
φ1 8.245e-6 16.09203 5.50039 6.50071 0.10053

1.01φ1 4.553e-6 16.08856 5.50039 6.50069 0.10280

where the source term g1 is defined by

g1(z, t) =
∂φ1

∂t
+

∂

∂z
(fbk(φ1)) −

∂2A(φ1)

∂2z
and the boundary condition b1 is given by

b1(t) = fbk(φ1(0, t)) −
∂A(φ1(0, t))

∂z
·

The identified parameters given at Table 2 are obtained with the second order

explicit EO scheme (θ = 1.0) and the observed data φ1(z, 12000) and the noised form

1.01φ1(z, 12000). The grid parameters are M = 200 and CFL = 0.98. The initial guess

corresponds to C = 16.1, α = 5.5, β = 6.5 and φc = 0.2. See Figures 1 and 2.

5.3.2. Identification from simulated data. We present here a validation of the above

Lagrangian method as well as a comparison between the four numerical schemes

developed. Since we did not have access to real experimental data, the idea consists

in using as an observation the result of a direct simulation. We used the standard

simulation given by Concha [20], which is very close to experimental data results. All

tests are developed for batch sedimentation velocity q = 0, with an initially homogeneous

suspension of concentration, namely φ0 = 0.05. The column is assumed to be closed,

that is φ2 = 0. The physical constants considered are u∞ = −1.7200×10−4, φmax = 0.7,

∆ρ = 1500 and g = 9.81. We summarize in Table 1 the parameters used for this

simulation, which we want to recover in the inverse problem.

Three tests are performed, the first one is concerned only with the flux identification,

that is parameter C. The second test identifies the diffusion together with the flux, that

is parameters C, α and β, the critical concentration φc being fixed. Finally, we perform

the complete identification on the four parameters. We start with the following values:

e = (16.5, 5.0, 6.0, 0.1), e = (16.5, 5.5, 6.5, 0.1) and e = (16.5, 5.5, 6.5, 0.2) for the test

1, test 2 and test 3 respectively. Other several initial points were considered with very

similar and close results. The identification problem is solved at T = 12144 seconds in

the three cases, and a simulation at T = 30000 seconds with the identified parameters

is proposed.
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Figure 1. The identified flux for the observations φ1 and 1.01φ1, with the second

order EO scheme at T = 12000 with ∆x = 0.005, CFL = 0.98 and θ = 1.

For each test, we compare the four numerical schemes presented above, namely

the first order scheme EO1, the second order scheme EO2, the semi-implicit scheme

EOS and the fully implicit scheme EOI. For the explicit and semi-implicit schemes we

employ the CFL = 0.5 and in the case of explicit second order scheme we consider

θ = 1. For the implicit scheme we take ∆t = ∆x. Four different meshes were used, with

M = 10, 50, 100, 200 steps.

In Figures 3-4 and table 3 we show numerical results for the first test. The Figures

5-6 and table 4 shows the results of the second test and the results for the third test are

given in Figures 7-8 and table 5.

All schemes give satisfactory results, and it should be emphasized that the value

of the critical concentration φc is correctly recovered. The explicit scheme is of course

the simplest to implement, but turns out to be worst one in terms of computational

time. Indeed the stability restriction requires such a high number of time steps that the

benefit of the computational simplicity is lost (here ∆t ≈ ∆x2). In the semi-explicit

and fully implicit schemes, Gauss-Seidel and Newton methods are needed to solve linear

and nonlinear systems, but this is compensated by the less restrictive CFL condition.

For the semi-explicit the restriction becomes the same as in the hyperbolic case, that is

∆t ≈ ∆x, and finally the implicit scheme is CFL free.
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Figure 2. The identified diffusion for observations φ1 and 1.01φ1, with the second

order EO scheme at T = 12000 with ∆x = 0.005, CFL = 0.98 and θ = 1.

Table 3. Identification of the flux: values of the parameter C.

M EO1 EO2 EOS EOI

10 15.34225 15.78555 17.21670 14.00079

50 15.62241 15.95830 15.50107 15.25519

100 15.60076 15.77236 15.70925 15.39562

200 15.58900 15.66536 15.64600 15.47951

Acknowledgments

This work was supported by MECESUP UCO9907, FONDECYT 1000332, 7000332,

1030718, and Fondap in Applied Mathematics.

References

[1] Becker R., 1982 Espesamiento cont́ınuo, diseño y simulación de espesadores, Engineering Thesis,

Universidad de Concepción.

[2] Bürger R., Bustos M.C. and Concha F. 1999 Settling velocities of particulate systems: 9.



Identification of parameters for a model of sedimentation processes 19

Table 4. Identification of the flux and diffusion except the critical concentration φc.

M Scheme C α β

10 EO1 15.28574 5.48153 6.46587

EO2 15.73031 5.48855 6.47817

EOS 17.02054 5.53600 6.38967

EOI 13.92483 5.47128 6.46003

50 EO1 15.59482 5.37159 6.07586

EO2 15.90027 5.43575 6.25493

EOS 15.72207 5.47796 6.46396

EOI 15.16180 5.45272 6.43251

100 EO1 15.54214 5.30271 6.12221

EO2 15.69580 5.42393 6.34055

EOS 15.57037 5.44297 6.40494

EOI 15.31271 5.37628 6.30522

200 EO1 15.59575 5.13254 5.86232

EO2 15.66016 5.30389 6.02822

EOS 15.58839 5.27715 6.13142

EOI 15.48579 5.12949 5.88291

Table 5. Identification of the flux and diffusion.

M Scheme C α β φc

10 EO1 15.55524 5.50000 6.50000 0.20000

EO2 15.97224 5.50000 6.50000 0.20000

EOS 17.67741 5.49970 6.49966 0.32618

EOI 14.29822 5.50000 6.50000 0.20000

50 EO1 15.82567 5.50008 6.50008 0.10650

EO2 16.04526 5.50008 6.50008 0.10196

EOS 16.05873 5.50019 6.50023 0.10593

EOI 15.83821 5.50004 6.50003 0.11159

100 EO1 16.06191 5.50020 6.50023 0.10849

EO2 16.07651 5.50023 6.50026 0.10225

EOS 16.08611 5.50028 6.50039 0.10886

EOI 16.09204 5.50019 6.50021 0.11058

200 EO1 16.08896 5.50026 6.50035 0.10551

EO2 16.10939 5.50028 6.50037 0.10183

EOS 16.09543 5.50031 6.50047 0.10635

EOI 16.09969 5.50026 6.50034 0.10711



Identification of parameters for a model of sedimentation processes 20

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

volumetric concentration

he
ig

ht
J=10

EO1
EO2
EOS
EOI
Obs

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

volumetric concentration

he
ig

ht

J=50

EO1
EO2
EOS
EOI
Obs

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

volumetric concentration

he
ig

ht

J=100

EO1
EO2
EOS
EOI
Obs

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

volumetric concentration

he
ig

ht

J=200

EO1
EO2
EOS
EOI
Obs

Figure 3. Numerical and observed concentration curves at T = 12144 for test 1.

Phenomenological theory of sedimentation processes: numerical simulation of flocculated

suspensions in an ideal batch or continuous thickener Int. J. Miner. Process. 55 267-282.

[3] Bürger R. and Wendland W. L. 1998 Entropy boundary and jump conditions in the theory of

Sedimentation with compression. Math. Meth. Appl. Sci. 21 865-882

[4] Bürger R. and Wendland W. L. 1998 Existence, uniqueness and stability of generalized solutions

of an initial-boundary problem for a degenerating quasilinear parabolic equation. J. Math. Anal.

Appl. 218 207-239

[5] Bürger R. and Concha F. 1998 Mathematical model and numerical simulation of the settling of

flocculated suspensions Int. J. Multiphase Flow24 1005-1023

[6] Bürger R., Wendland W. L. and Concha F. 2000 Model equations for gravitational sedimentation-

consolidation processes. ZAMM 80 79-92

[7] Bürger R., Evje S., Karlsen K. H. and Lie K.-A. 2000 Numerical methods for the simulation of

the settling of flocculated suspensions. Chem. Eng. J. 80 91-104.

[8] Bürger R., Concha F., Fjelde K.-K. and Karlsen K. H. 2000 Numerical simulation of the settling

of polydisperse suspensions of spheres. Powder Technol. 113 30-54.

[9] Bürger R. and Karlsen K. H. 2001 On some upwind difference schemes for the phenomenological

sedimentation-consolidation process. J. Eng. Math. 41 145-166.

[10] Bürger R., Evje S. and Karlsen K. H.2000 On strongly convection-diffusion problems modeling

sedimentation-consolidation processes J. Math. Anal. Appl. 247 517-556

[11] Bürger R., Concha F. and Tiller F. M. 2000 Applications of the phenomenological theory to several

published experimental cases of sedimentation process. Chem. Eng. J. 80 105-117.



Identification of parameters for a model of sedimentation processes 21

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

he
ig

ht

φ=0.20 

φ=0.18 

φ=0.16 

φ=0.14 

φ=0 

φ=0.05 

φ=0.05 

φ=0.12 

φ=φ
c
 

φ=0.07 

Figure 4. Isoconcentrations curves for test 1 with M = 200, T = 30000. We denote

by . − .− the results for EO1, by · · · for EO2, by − for EOS, by −− for EOI and by

+ + + for the observation data.

[12] Bustos M. C. and F. Concha 1988 Simulation of batch sedimentation with compression. AIChE J.

34 859-861

[13] Bustos M. C., Concha F., Bürger R. and Tory M. 1999 Sedimentation and Thickening. (Dodrecht:

Kluwer Academic Publishers)

[14] Cannon J. R. and Zachmann D. 1982 Parameter determination in parabolic partial differential

equations from overspecified boundary data Int. J. Engng. Sci. 20 779-788

[15] Cannon J. R. 1964 Determination of certain parameters in heat conduction problems J. of Math.

Anal. and Appl. 8 188-201

[16] Carrillo J. 1999 Entropy solutions for nonlinear degenerate problems Arch. Rational Mech. Anal.

147(4) 269-361

[17] Chavent G. 1979 Identification of distributed parameters: about the output least square method,

its implementation, and identifiability Proceeding of the 5th. IFAC Symposium of Identification

and System Parameter Estimations Pergamon Press, Vol 1 85-97

[18] Chavent G. and Cohen G. 1977 Numerical Approximations and Identification in 1-D Parabolic

Degenerate non linear Diffusion and Transport Equation. Proceeding of the 7th. IFIP Conference

on Optimization Methods, Würzburg, FRG

[19] Cockburn B. and Gripenberg G. 1999 Continuous dependence on the nonlinearities of solutions of

degenerate parabolic equations. J. Differential Equations 151(2) 231-251

[20] Concha F., Enero 2002, Private communication.



Identification of parameters for a model of sedimentation processes 22

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1
J=10

volumetric concentartion 

he
ig

ht

EO1
EO2
EOS
EOI
Obs

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1
J=50

volumetric concentartion 

he
ig

ht

EO1
EO2
EOS
EOI
Obs

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1
J=100

volumetric concentartion

he
ig

ht

EO1
EO2
EOS
EOI
Obs

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1
J=200

volumetric concentartion

he
ig

ht

EO1
EO2
EOS
EOI
Obs

Figure 5. Numerical and observed concentration curves at T = 12144 for test 2.

[21] Evje S., Karlsen K. H. and Risebro N. H. 2001 A continuous dependence result for nonlinear

degenerate parabolic equations with spatially dependent flux function In H. Freistüler and G.
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Figure 7. Numerical and observed concentration curves at T = 12144 for test 3.
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Figure 8. Isoconcentrations curves for test 2 with M = 200, T = 30000. We denote

by . − .− the results for EO1, by · · · for EO2, by − for EOS, by −− for EOI and by

+ + + for the observation data.


