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Abstract We derive in this paper a posteriori error estimates forrdiszations
of convection—diffusion—reaction equations in two or thspace dimensions. Our
estimates are valid for any cell-centered finite volume s@heand, in a larger
sense, for any locally conservative method such as the nairiieite difference,
covolume, and other. We consider meshes consisting of siegpbr rectangular
parallelepipeds and also provide extensions to noncornss @and nonmatching
interfaces. We allow for the cases of inhomogeneous ana@ogsc diffusion—
dispersion tensors and of convection dominance. The estinaae established in
the energy (semi-)norm for a locally postprocessed apprate solution preserv-
ing the conservative fluxes and are of residual type. Theyfdiye computable
(all occurring constants are evaluated explicitly) andlbycefficient (give a local
lower bound on the error times an efficiency constant), sothiey can serve both
as indicators for adaptive refinement and for the actualrobaf the error. They
are semi-robust in the sense that the local efficiency cohetdy depends on lo-
cal variations in the coefficients and becomes optimal asoted Péclet number
gets sufficiently small. Numerical experiments confirm tlagicuracy.
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2 Martin Vohralik

1 Introduction

We consider in this paper the convection—diffusion—reecgiroblem

—0-(SOp)+0-(pw)+rp=1f in Q, (1.1a)
p=g onlp, (1.1b)
—SOp-n=u on/ly, (1.1c)

whereS is a diffusion—dispersion tensor (which can be inhomogasemd ani-
sotropic),w is a possibly dominating velocity field,is a reaction functionf is

a source term, and andu prescribe the Dirichlet and Neumann boundary con-
ditions, respectively. We suppose thatc RY, d = 2,3, is a polygonal (meaning
alternatively also polyhedral) domain (open, bounded, emrhected set), that
bNy=0,lpUly =T :=0Q, that|lp| # 0, where|lp| is the measure of the
setlp, and thati, := {x € dQ;w-n < 0} C I'p. Finally, n stands for the unit
normal vector ofd Q, outward toQ. Our purpose is to derive a posteriori error
estimates for finite volume, and, in a larger sense, any lipcahservative dis-
cretizations of the problemi(19—(1.19.

Residual a posteriori error estimates are nowadays welbksied for dis-
cretizations of the pure diffusion form ol.(l§—(1.19 (i.e.,w =r = 0) by the
finite element method, cf. for example the survey by VeH{i]. In most cases,
however, the analysis is only given f&being an identity matrix; an in-depth
analysis for the general inhomogeneous (and anisotroiffa$itin tensor was pre-
sented by Bernardi and Verfurtti4]. In recent years a posteriori error estimates
have been extended to convection—diffusion problems als Welcite in partic-
ular Verfurth 6], who derived estimates in the energy norm for the confogmin
Galerkin method and its stabilized SUPG version. His edésare both reliable
and locally efficient and, moreover, the efficiency constaetomes optimal as
the local Péclet number gets sufficiently small. Similautes have been obtained
in the framework of nonconforming finite element methods tysvorth [7] for
the inhomogeneous pure diffusion case and by El Alaoui eindl26] for the
convection—diffusion case. Recently, VerfurY]improved his results while giv-
ing estimates which are fully robust with respect to conegctiominance in a
norm incorporating a dual norm of the convective derivatiee new norm is,
however, not computable, there is no local lower bound, beestimators do not
change with respect tdf] and hence the adaptive strategies will remain the same.

The theory of a posteriori error estimation is much less lipes for finite
volume methods. For vertex-centered schemes, the analdbythve finite ele-
ment case is usually exploited in order to obtain a postiegioor estimates—this
is, e.g., the case of the works of Afif et all]] Bergam et al. 13] or Lazarov
and Tomov B5] (cf. also [18]). Still less work has been done for cell-centered
schemes. Agouzal and Oudifi] [simply note that one can exploit the relations
between the lowest-order Raviart—-Thomas mixed finite eténtlee lowest-order
nonconforming finite element, and the cell-centered finiteime methods on tri-
angular meshes in order to obtain an error indicator undetwation-like hy-
pothesis. Rigorous a posteriori error estimates are aidedy Achdou et al.q],
however, only for two particular schemes. Equivalence efdiscrete forms of the
schemes with some finite element ones is used for this purpbsaise B6,37]
gives a posteriori estimates for Morley-type interpolaftthe original piecewise
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constant finite volume approximation. Finally, yet a di#fet approach, yielding
an estimate in thél-norm, independent of the size of the diffusion tensor, is
given by Ohlbergerd8,39], whereas one of the first results on a posteriori er-
ror estimation in finite volume methods were obtained by Angen B] and
Angermann et al.g]. In the two years refereeing period of this paper, a few new
references appeared. Kir34] presents estimates applicable to any locally con-
servative method, as we do it here. Both approximation$alp (which we shall
term here as “velocity”) and tp (which we shall term here as “potential”) have to
be specified first. Then bounds up to an undetermined corestargiven for this
couple in a mesh-dependent norm, which contains a weighteg ferm for the
potential. Beirdo da Veigalfl] gives a posteriori error estimates for the mimetic
finite difference method, more precisely for the known viloand a piecewise
linear postprocessing of the originally piecewise congtatential. Again a mesh-
dependent norm is used and the estimator features an unkgemwenic constant.

The purpose of this paper is to develop a sufficiently genana unified
framework for a posteriori error estimation in the finite wole method, and, in
a larger sense, in any locally conservative method. Therelgestimates are first
of all independent of particular schemes. Any cell-cerdéirdte volume scheme,
cf. Eymard et al.27], the schemes proposed 22 29,30, 32], “multi-point flux-
approximation” schemesl[25], “discrete duality finite volume” schemeg3],
and “mixed finite volume” scheme£4] can be considered. Similarly, the es-
timates are valid for the mimetic finite difference, c16], covolume, cf. 1],
and other locally conservative methods. The only requirgme have is that the
scheme satisfies a conservation equation over each conopalatell, and pre-
scribes in particular the discrete fluxes. We focus on botordse error measured
in the natural energy norm for the (postprocessed) potestiig. Bounds for the
error in the approximate velocity only are established ielaggal setting covering
all the methods considered here &#] Section 6]. Similarly, bounds for the error
in the couple of velocity and potential approximations aegesl therein. Next,
our estimates hold and have the same form from pure diffuséses to the full
convection—diffusion—reaction ones. As an important poire derive them for
very general meshes containing nonconvex cells and nohimgtmterfaces. For
the sake of completeness of the analysis, we also considergenhomogeneous
Dirichlet or Neumann boundary conditions. The derivedneators are associated
with the mesh cells, are locally and easily computable, haeg are also fully com-
putable in the sense that all occurring constants are eealweplicitly. This in
particular means that they can serve not only as indicabosdaptive refinement,
which is the usual practice, but also for the actual contithe error. In the devel-
oped independent theory, no equivalence with a differemitéfelement or mixed
finite element) case is necessary. Also, no convexity of tmeain, no additional
regularity of the weak solution, and no saturation assurngre needed.

The basis of our approach is to exploit the particular featiithe considered
schemes, which is the conservativity of the discrete fluresss the sides (edges if
d = 2, faces ifd = 3) of the mesh. Inspired by the results of Eymard et28] dnd
of the author $1], we first build a postprocessed approximate potemiabfich
preserves exactly the given discrete diffusive fluxes anob@imean or point value
is in each cell fixed by the original constant approximatidhe interest of such
a postprocessing is twofold. First of all, we obtain an agppnate potential suit-



4 Martin Vohralik

able for energy error measuring (recall that the piecewiadignt of the original
cellwise constant approximation is zero, so that it gives@ase to measure the
energy error in it). Secondly, by such a constructie®Jp, lies in theH (div, Q)
space. In the finite volume case, moreover, using the fixatigi by the original
cell values, we are able to prove the convergencp,aind to give a priori error
estimates, under the condition that the original schenisfigst some necessary
properties. The construction of the postprocessed paleistiparticularly easy
for simplices (triangles ifl = 2 and tetrahedra il = 3) or, whenSis diagonal,
for rectangular parallelepipeds (rectangleg i 2, rectangular parallelepipeds if
d = 3); in this casepy is a second-order polynomial whose gradient (times mi-
nusYS) is constructed as in the lowest-order Raviart—-Thomas dnfiixéte element
method, cf. 15,42]. The crucial advantage SO, € H(div, Q) is, however, com-
pensated by the fact thak s nonconforming in the sense that ¢ H(Q). We
describe all the above results in detail in Sectpafter collecting some prelim-
inary remarks, notation, assumptions, and details on théramus problem in
Section2. In this section, we also recall the Oswald interpolatioerapor and
describe its generalization to arbitrary grids and boupdanditions.

Section4 is then devoted to our a posteriori error estimates. Thegisbof
several independent estimators, the principal of whichapeathe fact thapy'is
nonconforming and that its residual is nonzero. For purfeisidn problems, only
these estimators (plus possibly still a Neumann boundagy are present. When
there is some convection, additional convection and upwqedstimators appear,
and for cases with reaction, a reaction quadrature estmmady be present as
well. We next prove that the principal (nhonconformity, ceation, and residual)
estimators represent local lower bounds for the error ak whkre in particular
the efficiency constants are of the folen+ c; min{Pep}, where Pe (the local
Péclet number) and are given below by4.12 and wherec;, ¢, only depend on
local variations irS(i.e., on local inhomogeneities and anisotropies), onl hed-
ations inw andr, on the space dimension, on the polynomial degrem, of , W, r,
and on the shape-regularity parameter of the mesh. Theiseaémsts are thus in
particular optimally efficient as the local Péclet numbetsgsufficiently small. We
are not able to obtain similar results for the upwindingraator but numerical ex-
periments suggest that this estimator represents a higter-term as soon as the
local Péclet number gets sufficiently small. A more dethdescussion, as well as
several other remarks, is given in SecttB.

We finally in Sectiorb discuss a particular approach to meshes consisting of
arbitrary polygons (we use this notation also for polyhedjavhich may be non-
matching and consist of elements which are not necessanilyex. It consists in
subdividing each mesh element into a simplicial submestifzani directly using
the theory established previously. Finally, we illustrdie accuracy of the de-
rived estimates in Sectio® on several numerical experiments and conclude by
some technical lemmas in SectiénThis paper is a detailed description, comple-
tion, and extension of the results previously announce8Ghdnd [53]. Robust a
posteriori error estimates for vertex-centered-like éniblume methods are then
presented ing2] and [L9]. For a complementary approach to a posteriori error es-
timation in locally conservative methods, evaluating therin the velocity only
(and alternatively in the velocity and the potential), wiereo [54].
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2 Preliminaries

We introduce here the notation, define admissible parstafrthe domain?, re-
call some inequalities which will be important in the seqg&te the assumptions
on the data, give details on the continuous problgérmg—(1.19, and finally recall
and give some extensions on the Oswald interpolation opetatwhat follows,
we conceptually denote by, ca constants basically dependent on a quarkity
but always independent of the discretization paranteter

2.1 Function spaces

For a domainS ¢ RY, we denote byL'(S) andL'(S) = [L'(S)]? the Lebesgue
spaces, by-,-)s the L?(S) or L?(S) inner product, and by - ||s the associated
norm. We mean byS the Lebesgue measureQfby |o| the (d — 1)-dimensional
Lebesgue measure of C R4, and in particular bys| the length of a segment
s. At the same timelA| is the cardinality of a seA. Next, H'(S) is the Sobolev
space of functions with square-integrable weak derivatiye to ordei; H3(S)

is a subspace dfi1(S) of functions with traces vanishing dft, and HY/2(Ip)

is the trace space ofp. Next, H(div,S) is the space of functions with square-
integrable weak divergenceddiv,S) = {v € L(S);0-v € L?(S)}, and (-, )gs
stands for § — 1)-dimensional inner product a?S. Finally, for a partition%, of

Q as defined below, we will use the “broken Sobolev spat&’7;), H! (%) :=

{¢ €L2(Q); 9|k € H'(K) VK € F5}. We refer to Adamsd] for more details.

2.2 Partitions of the domain

We consider in this paper partition&, of Q into closed polygons such th& =
Ukez, K and such that the intersections of their interiors are pagempty. For
K € %, we denote bysk the set of such subsets of JK that there exists €
h, L #K, such thato = ok := dKNJL has a positivgd — 1)-dimensional
Lebesgue measure. We calla side andK andL neighbors. We note that for
matching meshes (containing no hanging nodes) consistingrvex elements,
o are simply the sides in the geometrical sense, which is ressarily the case
on general polygonal meshes, see Fig2re The seték is completed by the
(geometrical) sides df lying at the boundary; we suppose in this case that each
o lies entirely either irfp or in My. We next denote by, the set of all, by™ the
set of interior, and by the set of exterior sides of,. Also, let&N stand for the
sides contained ifiy, &P for those contained ifp, ¢ for o € &™ which share
at least a vertex witk € .%,, and% for all elements sharing at least a vertex with
K € . A family of mesheq %}, is parameterized bly := maxc 5 hx, where
hk stands for the diameter &f; we also denote bk, the diameter ot € &;,.

For matching meshes consisting of simplices or rectangdaallelepipeds,
we will in some parts of the paper need the following assuompfik := |K|/hd):

Assumption (A) (Shape regularity of matching meshes damgisf simplices or
rectangular parallelepipeds)

There exists a constart; > 0 such thaiminkc 5 Kk > Kz forallh > 0.
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Fig. 2.1 Considered meshes and notation

Let px denote the diameter of the largest ball inscribe&inrhen Assump-
tion (A) is equivalent to the usual requirement of the existeof a constant
87 > 0 such that max 4, hk /px < 85 forallh> 0.

In the general case, we make the following shape regulasgyraption:

Assumption (B) (Shape regularity of arbitrary polygonalstnes)

(B1) There exists a constart; > 0 such thaiminkc z Kk > Kz for allh > 0;
(B2) there exists a constaéty > 0 such thatmaxc #, |6k | < &7 forall h > 0;
(B3) there exist matching refinemerifg of .7, which consist of simplices or rect-

angular parallelepipeds and satisfy Assumption (A).

By Assumption (B), the elements 6k, are not “flat”, the number of their sides
is limited, and each’, admits a matching refinemes,. In the sequel, as for the
mesh.Z, we will use the notatios}™, &, &k, €, andTk also for.Z,. We also
denote by the partition ofK € %, by the elements of,.

2.3 Poincaré, Friedrichs, and trace inequalities

Let K be a convex polygong its (geometrical) side, and € HY(K). Three in-
equalities will play an essential role in the derivation efr @ posteriori error
estimates.

First, the Poincaré inequality states that

16 — x|z <CpxhZ |02, (2.1)

where ¢k is the mean ofp over K given by ¢x = (¢,1)k/|K| and where the
constanCpk can for each conveK be evaluated as/I?, cf. [40,12].
Second, the generalized Friedrichs inequality states that

16 — dol|Z < Crx.ohZ |02, (2.2)

where ¢, is the mean ofp over o € &k given by ¢y := (¢,1)5/|0]|. It follows
from [48, Lemma 4.1] thaCrk o = 3d for a simplexK and its sideo. For a
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general conveX, Crk o can be evaluated from the proof d@7, Lemma 9.4]
and P8, Lemma 3] in the fornﬁhﬂfl/\o\ with C only depending ol andk .
Finally, the trace inequality states that

16 — o2 < Cix.ochc||D9 |2, (2.3a)
1 — k|2 < Cix.ohi||00 ]2, (2.3b)

cf. the proof of R7, Lemma 9.4] and48, Lemma 1]. It has in particular been
shown in B6, Lemma 3.5] thaCik o = C;ghk /hs for a simplex, whereC; 4 ~
1.55416 ifd = 2 andC; 4 ~ 11.53557 ifd = 3. Similarly, it follows from the proof
of [48, Lemma 4.1] thaCik o = 3dhk |a]|/|K| for a simplex. FinallyCix s only
depends ol andky for a general conveK and its sideg.

The above inequalities are also valid for nonconvex polgdoior wheno is
only a general part dK such thato| > 0, cf. [27, Lemma 10.4]. The dependen-
cies onK ando are in this case, however, more complicated in general.

2.4 Assumptions on the data

We suppose that there exists a basic partitﬁmf Q such that the data of the
problem (.19—(1.1¢ are related ta%; in the following way:

Assumption (C) (Data)

(C1) S« := S|k is a constant, symmetric, bounded, and uniformly positafmde
tensor such thatgy v-v < Scv-v < Csk V-V, Csk >0, Csk > 0, for all v e R
andallK e ﬁ;

(C2) w € H(div,Q) and each component @f is a polynomial of degree at most
k on each Ke 7, such thajw|k | < Cwk, Cux >0, for all K € J;

(C3) ris a polynomial of degree at most k on eack Kh;
(C4) 30-wlk +NF|K > cwrk and |0- Wk +rlk| < Cwrk, Gurk =0, Curk >0,
forallK € %;

(C5) f is a polynomial of degree at most k on eachk K#,;
(C6) ge HY?(Ip);

(C7) ue L2(I\);

(C8) ifayrk =0, then Gk =0.

The assumptions th&tis piecewise constant and thatr, andf are piecewise
polynomial are made only for the sake of simplicity and areally satisfied in
practice. They are in fact only needed for the local efficjepmoofs of our a
posteriori error estimates. If the functions at hand do alfiflfthese requirements,
interpolation can be used. Also, note that Assumptio8) @lows cyrk = 0 but
wlk # 0.
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2.5 Continuous problem

Let % be, as throughout the whole paper, a refinementpie define a bilinear
form % by

#(p.¢):= 5 {(SOp,0¢)k +(0-(pW), @) + (rp. )k} P.¢ €HY(F)

KeJh
(2.4)
and the corresponding energy (semi-)norm by
Hellz = 5 el (2.5)

Keh
19ll% := ISY200 [+ (30-w+n) "2z ¢ € HY(F).

In this way %(-,-) and||| - ||| o are well-defined fop, ¢ € H1(Q) as well as for
p, ¢ that are only piecewise regular. We remark that||o is always a norm on
HL(Q), whereas it is a norm oA () only whencyk > 0 for allK € .

The weak formulation of the probler.(Lg—(1.19 is then to findp € H(Q)
with p|r, = g in the sense of traces such that

B(p.¢)=(f.¢)o—(Ud)r, V¢ €H5(Q). (2.6)

Assumptions (@)—(C7), the Green theorem, and the Cauchy—Schwarz inequality
imply that

#9.0) = I8k Vo eHB(Q), 2.7)
#.¢) = loll5+3 ;<¢2,w~n>aK Ve € HY (), (2.8)
Ke I,

Cw,r,K
#(0.0) < max{ 1. max{ 2 1911

] S jiplalgle o) (@9)
€% Csk

and problem2.6) under Assumption (C) in particular admits a unique sohutio

Remark 2.1 (Notationn estimate 2.9), if cyrk = 0, then the ternCy r k /Cw.rk
should be evaluated as zero; since Assumptid) {@ this case give€y;x =0,
the term withC,rx in fact does not even enter the estimate. To simplify natatio
we will systematically use the conventiofi@= 0 throughout the text.

Remark 2.2 (Different partitions)Ve clarify here the relations between the dif-

ferent partitions of2 considered. First of all, the partitiofé?; is only used so as
to describe the different parts &f with different data (materials). Next;, is the

“computational” partition and we suppose that is a refinement of%. Finally,
for general (honmatching) polygonal meshes, we shall samstneed a matching

refinement%, of %, consisting of simplices or rectangular parallelepipeds.
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2.6 Oswald interpolation operator

The Oswald operator, previously considered, e.g.2j83] and studied in detail
in [33,17], associates to a discontinuous piecewise polynomialtiong, its
conforming (continuous, containedk' (Q)) interpolant. We briefly recall it here
and present its extension to arbitrary grids and boundamgitons.

Let .%, be matching, consisting of simplices or rectangular pelegglipeds,
and satisfying Assumption (A). ¥, consists of simplices, |1&, (%) :=P (%)
denote the space of polynomials of total degree at tnasteach simplex (without
any continuity requirement at the sides). Similarly,Z consists of rectangular
parallelepipeds, 1R, (%) := Q| (.%,) denote the space of piecewise polynomials
of degree at most in each variable. The Oswald interpolation operat@ss :

R (%h) — R(Zh) NH(Q) is defined as follows: given a functiahy € R (%),
the value of Zo5(¢n) is prescribed at the Gauss—Lobatto nodes on rectangular
parallelepipeds and suitable (e.g., Lagrangian on tremglhen = 2) nodes on
simplices, seell7, Sections 3 and 5] oR,(.7,) NH(Q) by the average of the
values of@y, at this node, Zos(¢n)(V) = Skex, dnlk(V)/| K|, where % is the
set of suckK € %, that contain the nodé€. Note that the interpolant is in particular
equal todn|k (V) at a node/ lying in the interior of som& € . Let [[¢n] be the
jump of a functiong, across a side: if o = dKNJL, then[[¢y] is the difference
of the value of¢y, in K andL (the order ofK andL has no influence on what
follows) and[[¢n]] := O otherwise. The following result has been provedid] [
see Lemmas 3.2 and 5.3 and Remark 3.2 in this reference:

Lemma 2.1 (Oswald interpolation operator)Let.%, be matching, consisting of
simplices or rectangular parallelepipeds, and satisfyfkgsumption (A). Let next
on € R () and letZos(¢n) be constructed as described above. Then

I¢n— Fos(Pn)llk <C1 S holllgn]ll3,

geCy

I0(¢n— Fos(dn)llk <C2 Y ho lenll5

oeCg

for all K € 94, where the constants;CC, only depend on the space dimension d,
on the maximal polynomial degree |, and on the shape regylpdarameter 5.

If 7 is nonmatching or consists of arbitrary polygons,ﬁtbe its conform-

—

ing submesh of Assumption @ Then eactp, € R, (%) also belongs t&®, ().
Hence we can defingos( i) on %, as in the previous paragraph. We finally de-
fine 75(Bn) € H1(Q), differing from “os( i) only on suctK € .7, that contain

a boundary side, by

IL(Bn)lr, =g  in the sense of traces (2.10a)

(AW nlo=Wko Voes. (2.10b)
HereWk o are the given scheme convective fluxes, cf. Sect®asd4 below. In
particular, for the finite volume schem®.0)—(3.12 below, ifw-n is constant but

nonzero on a givew < &, then @.100 prescribes the mean value of\((fn)
on this side by\k ¢ /(w-n,1)g, i.e., bypg.
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3 Cell-centered finite volume schemes and postprocessing

This section is devoted to the example of the cell-centerewfiyolume method
for the problem 1.19—(1.19. We also demonstrate here the construction of the
locally postprocessed approximatippwhich will serve later as the basis for our
a posteriori error estimates.

3.1 The cell-centered finite volume method

A general cell-centered finite volume scheme for the prok{ledg—(1.19 can be
written in the following form: findpk , K € %, the approximations tp such that

Y Skot Y WkotrkpklKl=fklK| VK e G, (3.1)

o€k oEék

where fx := (f,1)/|K|, rx := (r,1)/|K|, and where& , andWk o are, respec-
tively, the diffusive and convective fluxes through the sideof an elemenk,
functions ofpk, K € %, of the mesh, and of the data. For the a posteriori error
estimates presented in this paper, we do not need the sgeaifiof the diffusive
and convective fluxes; our analysis, however, relies on thigefvolume concept
of their continuity, imposing thak ¢, = —S g, andWk o, = —WL g, for
all o € @@'m Note also that for nonmatching grids,is not necessarily a side
of K in the geometrlcal sense, see Secfldh To fix ideas, we give an example.
When % is admissible in the sense &7, Definition 9.1], which is satisfied,
e.g., when.%;, is matching, consists of convex elements, and when themd exi
pointsxk in the interior of eactK € . such that the straight lines connectixg
andx_ for two neighboring elements andL are orthogonal t@k | = dKNdJL
and finally when an analogous orthogonality condition haldshe Dirichlet part
of the boundary, and under the additional assumption3gat s¢Id for all K
h, the following choices fo6 ¢ andWk o are possible:

|0k L|

Ko = —SKL—7F— e (DL—p ) o=okL e (3.2)
_ ﬂ _ D
o = Sy (9o — Px) oe€skNéy, (3.3)
K.o
So=Uslo| oTe&knNEY, (3.4)
Wk.o = PoWK, o 0 € &k. (3.5)

Heredk | = [xk — x|, the Euclidean distance &k andx_, dk ¢ is the Euclidean
distance ok ando € & N &P, and

<g’ 1>0 . <U, 1>0
) g -
o] o]

Jo = ;. Wko:=(W-n1lyg (3.6)
are, respectively, the mean value of the Dirichlet boundaryditiong on a side
0 € &P, the mean value of the Neumann boundary condition a sideo € &,
and the flux of the velocity fielav through a sides of K. For the valuesg |,
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we have two choices, corresponding respectively to tharagtic and harmonic
averaging in the diffusion—dispersion tensor,

Sk +SL
KL= (3.7a)
2s¢S.
= . 3.7b
vy (3.7b)

Finally, ps is the weighted upwind value, given for interior or Dirichlundary
sides by

Po := VoPo + (1—Vo)Pg, (3.8)
wherepy is the upwind value ang,, the centered value, given respectively by
. if weg>0 _

if o is an interior side between elemertandL and

. if wg >0
Po = { SE i WE’Z <0 P = %(pK +9o) (3.10)

if o € &k is a Dirichlet boundary side. Finally,
Po = Pk (3.12)

if o € ék is a Neumann boundary side. In the above definitiogss [0,1] is a
coefficient of the amount of upstream weighting. The fulivind scheme (with
vg = 1 for all o € &) is classical, se€?[7, Section 9]. The introduction of the
parametev, is done in order to guarantee the stability of the schemeavgimihul-
taneously reducing the excessive numerical diffusion ddgethe full upstream
weighting. An optimal choice fow, (cf. [20,31]) is (for wk s # O, otherwise
Vg :i=1)

. [ 2 o] . ;
1— mm{M,l} if ok € &M,

Vo =193 1_min M,l if 0 € &P andwk ¢ > 0,
dK,a‘WK,U| ’

(3.12)

if o € &P andwi g < 0.

Remark 3.1 (Local eclet upstream weighting)he local Péclet upstream weight-
ing (3.8—(3.12 for the scheme3.1)—(3.7H on polygonal meshes;, admissible
in the sense ofd7, Definition 9.1] guarantees, whe8x = s¢Id for all K € 7,
I'n = 0, and under appropriate assumptionswgm, and f, the discrete maximum
principle, while reducing the excessive numerical diftusadded by the full up-
stream weighting, cf.d1, Theorem 4.5] and7, Proposition 9.2]. Moreover, the
inequality

S PoWkoPk >3 S PR(0-w, 1)k (3.13)

KeJh oedk KeJh

holds, seej1, Lemma 6.5]. Another possibility for still more precise aistiza-
tion of the convection term would be to define the centeredes); by the value
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that takes a linear function given Ipk in xk and byp, in x_ onok | € ggnt com-
mon toK, L € .%,, i.e., to take into account the distancesgfandx, from the side
ok, instead of puttingd, := (pk + pL)/2, and similarly at the boundary. While
under appropriate modification d3.(.2 and under the above-mentioned assump-
tions, the discrete maximum principle would still hold,slwvould not in general

be the case for the inequalitg.(3. This inequality is, however, very useful al-
ready while proving the existence and unigueness of theatssolution when
there is no discrete maximum principle (recall that thisipiple can in general
only be satisfied ifSis not anisotropic and under some conditions on the mesh),
cf. [31, Theorems 4.3 and 4.4] andq, Lemma 9.2].

Remark 3.2 (Inhomogeneous diffusion—dispersion tensgirs)larly as for the
convection term, instead of directly using.7g or (3.7H, we may take into ac-
count the distances ok andx_ from the sideok | € éﬂm common toK,L €
for the discretization of inhomogeneous diffusion—disp@r tensors.

3.2 Postprocessing for cell-centered finite volumes

The approximate finite volume solution is only piecewisestant, given by the
value pk in eachK € %, In order to derive a posteriori error estimates, we con-
struct in this paper a postprocessed approximation whismiae regularity. We
use for this purpose the additional knowledge that we hawa & finite volume
scheme: the fluxes.

Developing the ideas of Eymard et a8 or of the author $1], the most
general postprocessed approximatige H(.%,) that we consider in this paper
is defined as the weak solution of the following local Neumproblems:

—0-(SOpy) = 1 Y So VKE T, (3.14a)
|K‘ oE8k
(ﬁh,l)K
K]

(1— k) + Uk Pr(xx) = P VK € Th, (3.14Db)

— SOk -n = % Vo € &, VK€ . (3.14c)

Here,ux = 0 or 1, depending on whether the particular sche®® fepresents
by pk the approximate mean value Bne .%, or the approximate point value in a
point xk (for simplicity assumed insid&) and also on the expected regularity of
Pr. It is immediate to see that suglh Verifies—SOf, € H(div, Q). For general
elements, it is not clear how to practically find sygh ifis, however, easy in two
particular cases treated below. We also show belowgh#t & good approxima-
tion of the weak solutiom under some conditions on the original scheme.

3.2.1 Postprocessing on simplices for general diffusigspeatsion tensors

For matching triangular or tetrahedral meshes, it is imigedio show that i =
Id, Pn given by 3.143—(3.149 is a piecewise second-order polynomial of the
form Ph|k = ax (X° +y?) +bxx+cky+dk if d =2 andph |k = ax (X +y* +22) +
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bkx+cky+dkz+ex if d= 3. If S#£1d, thenpy, verifying (3.149—(3.149 is a
full second-order polynomial on ea¢he 7, (the symmetry oSis important in
this case). Simply,3.149 imposes the normal derivative pf, dn the sides oK,
(3.14h imposes the mean g, dverK or a point value irxg, and @3.143 follows
by the Green theorem and by the fact thdfl - (S<Ofy) is constant. Note also
that the proposed postprocessing is local on each elemdrthahone only has
to build a second-order polynomial on ea€he %, from the prescribed degrees
of freedom, so that its cost is negligible. The postproodsggroximationpy is,
however, in general nonconforming, not includeddin( Q) but only inH(.%,).

3.2.2 Postprocessing on rectangular parallelepipeds fagdnal
diffusion—dispersion tensors

For S diagonal and matching meshes consisting of rectanglesctangular par-
allelepipeds,py, verifying (3.149—(3.149 is a piecewise second-order polyno-
mial of the form phlk = axx® + by? + ckx + dky + e if d =2 and phlk =

ak X2 + b y? 4 ez + d x+ exy + fkz+ gk if d = 3. Again, the postprocessing is
local and the new variablp, is nonconforming in the sense that it is in general
only in HY(.%) (but —SOpy belongs taH (div, Q)).

Remark 3.3 (Comparison with mixed finite eleme8ts)ilar postprocessing was
used in p1] for the lowest-order Raviart—Thomas mixed finite elemeatiod on
simplicial meshes. Ifp = 0 Q andg =0, itis proved in the above reference that in
this case, the means pf 6n interior sides are continuous and its means on exterior
sides are equal to zero, so that we have at least some contfilf,. For pure
diffusion problems\w =r = 0), it is possible to show the same result also for the
cell-centered finite volume schen®&1)—(3.7b), but only under the conditioh =

0. It turns out that in generafy, € H(.7,) only. Note also that for pure diffusion
problems, cell-centered finite volumes and lowest-ordeside-Thomas mixed
finite elements only differ by numerical integration, cfg.e Agouzal et al.§] or
Arbogast et al. 10]. In the general case and on simplicial meshes, lowestrorde
mixed finite elements are directly, without any numericaégnation, equivalent

to a particular finite volume scheme, sd€][and also Younes et al5§].

3.2.3 A priori error estimate for the postprocessed apprdion

We give in this section an a priori error estimate for the éniblume postpro-
cessed approximatiop, given by 3.1439—(3.149.

Theorem 3.1 (A priori error estimate for f,) Let a basic partition;, be given

and let its refinemen#;, be matching, consisting of convex elements, and satisfy-
ing Assumptions (B—(B2). Let p, the weak solution of the probl€in1g—1.19
given by(2.6), be such that g H?(.%,) and—SOp € H(div, Q). Next, let the finite
volume schemg.1) be such that

2
KEZthK (Ué}(|(S(,U+<8Dp.n,1>a)o-—1”a> §Ch2,

S Ilp—pxlk < CI¥,
KeJh



14 Martin Vohralik

where the constant € 0 only depends on p, &, {7, the data, and2. Finally,
let B, be the postprocessed solution given(®y149—3.149. Then

S 0(p— B2 < CF,
KeJh

Ip—pnl% < CHP,
where the constant € 0 only depends on p, &, ~, the data, and?2.

Proof We first study the estimate on the gradient, following theopad [28, The-
orem 2]. We have, for eadk € %,

csk||D(p—Pn)ll& < (SO(p— Pn),O(P— Pn))k
= —(0-(SOp),(P—Pn))k + (SO(p—Pn) -n, (P— Pn)) ok
< |0~ (SOp) [kCaehk [1D(p— Bn) Ik
+ Y Gond?1Sa(p— Bn) - nllollO(p— Bn)llx.

€Sk

using Assumption (@), the Green theorem, the fact tHaf(p— pn) ||k does not
depend on shiftingy, by a constant and fixing temporarilpn, 1)k by (p, 1)k in-
stead of 8.14h, which makes the terrfid- (SOfn), (p— Pr) )k disappear by virtue
of (3.143, and finally using the Schwarz inequality, the Poincaggjirality @.1),
and the trace inequality2(3b). Thus

csk[[0(p— Bn)lk < CHghk]|0- (STp)[lk +h* T CHZ,1ISD(p— Bn) -nllo-

ek
(3.15)
Next, the triangle inequality an® (149 imply that
ISO(p—Bn) - nlle < [[STp-n—(S0p-n,1)s[0| s
+[((SOp-n, )6 +Sc.o)l0] o
and we have
ISOp-n—(SOp-n,1)slo| lo < Csk[|Op- n—<Dp n,Lolo| Yl
< Csk G 2 lPllee

using Assumption (€) and 8, Lemma 2]; here the constaBg only depends on
d andkk. Thus, squaring3.15, summing over alK € .%,, and using the triangle,
Cauchy—Schwarz, and the above inequalities gives

. 3
Y csklOp=Plk < 5 {CPKh 10 (SOp) |l
KEZ K&, OSK
2
~1/2
+C§.,KCKh§|p|a2(K)< z ,/K,U>
o€k

2
( > Gl |<s&,o+<smp-n,1>a>|o|1||o> }

oESK
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Using the assumptions of the theorem, this concludes thaf pfahe bound for
the error in the gradient.
We now turn to the-?(Q)-estimate orp — fin. We have

Ip=Pnlle = 5 lIp—pnlk <2 ;{Hp_pKnﬁ"’HpK_ﬁhH%}
Ke %

Keh
<2 5 {llp—pxll +CrxhilOpnllk } (3.16)
KeJh
<2 5 {llp—pcllk +2Cekh 10(Bn — p)Ilk +2Cexhi | OPlIk }
KeJh

using the triangle and Cauchy—Schwarz inequalit@44, and the Poincaré in-
equality @.1) whenpk = 0 or its continuous version wheux = 1. The assump-
tions of the theorem and the previously obtained bound oigithgient ofp — f,
conclude the proof of this second estimate and thus of théentheorem. O

Remark 3.4 (Meaning of Theoredriland an exampleyheorem3.1simply guar-
antees that i » from the finite volume schem& (1) areO(h) approximations of
the diffusive fluxes through the sidesof all elementK € % and if the original
piecewise constant approximation given iy in eachK € %, converges t@ as
O(h) in the L?(Q)-norm, thenp;; converges tg asO(h) in the brokenH(Q)-
norm. LetS=1d, Iy = 0, andp € H?(Q). Then this is for example the case, under
some additional regularity assumptionswnr, andg and under the assumption
thatdk | ~ hk ~ h_ for all ok | € éﬁ”t anddg ¢ ~ hg for all o € é”hD and appro-
priateK, for the scheme3(1)—(3.10 (with vs = 1 for all o € &) on polygonal
meshes?;, admissible in the sense d27, Definition 9.1], seed7, Theorem 9.4
and Remark 9.12].

3.2.4 Convergence for the postprocessed approximation

For the sake of completeness, we state here the followingdtyeiscussing the
convergence ofywhenp € H(Q) only.

Theorem 3.2 (Convergence ofy,) Letw=r =0, S=1d, 'y =0, and g= 0.
Let 9, be admissible in the sense &7 Definition 9.1] and satisfying Assump-
tions (BL)—-(B2) and let the finite volume scheme be given(®)—3.7h. Let
finally p be the weak solution of the problgin19—1.1¢ given by(2.6) and let
Pn be the postprocessed solution given®y149—3.149. Then

> I0(p—fn)lk =0 as h—0,
Kegn

|lp—pn|3 — 0 as h—o.

The convergence of the gradientftd the gradient op was proved in28§].
The convergence gi,to p then follows using the estimat8.(6).
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4 A posteriori error estimates for locally conservative mehods

In this section, we present our a posteriori error estimftieghe discretization

of the problem {.19—(1.1¢ by locally conservative methods. The developments
here are completely independent of SecBan finite volumes; the only assump-
tion that we make is that we are given a functipgn Cell valuespk, K € %,
and convective fluxedk o, K € 7, 0 € &k (locally conservative, i.eWk g, =

~WL g, forall ok € &™) such that

ﬁh €R|(yh)7 (41)

—SOpy € H(div, Q), (4.2)

(f+D~(SDﬁh)—er,1)K— Z \/\4(,020 VKE%a (4-3)
0EEK

—SOph-n=us, VYoe&, (4.4)

whereu, are the mean values of the Neumann boundary condition giv€.6).

In the finite volume case, the way to obtgip Satisfying @.1), (4.2), and @.4)
was shown in SectioB.2 The relation 4.3) then easily follows from3.1) by the
Green theorem and bg.149, which gives(O- (SOpn), L)k = (SOpn- N, 1)sk =

— Y oes .o We consider general meshgg but we are aware of the fact that
finding py, satisfying @.1)—(4.4) may not be practically feasible for nonmatching
meshes or elements other than simplices or rectangulaltgdapipeds. Thus an
alternative approach for general meshes is developed tim8&&chelow. We first
state here the a posteriori error estimate and its localefity, then give several
remarks, and finally present the proofs of the estimate aiitd twfcal efficiency.

4.1 A posteriori error estimate

We state here our a posteriori error estimate. Let us first put
. h2 1
m = mln{Cp_K—K, }
" Csk Cwrk

for all K € 95, whereCp is the constant from the Poincaré inequal2ylj. We
define theresidual estimatong k by

NrRK = n’k”f—|—[|~(SDﬁh)—D-(ﬁhW)—rﬁhHK. (45)

Let .#L,(Pn) be the modification of the Oswald interpolat®s( ) at the bound-

ary given by 2.103—(2.108, see Sectior2.6. Denotev := fn — .#L(fn). Then
thenonconformity estimatagnc k is given by

Nnek = [[IVI[[k (4.6)
and theconvection estimatafc x by

(10 (wv) — 3vO- Wl +[|0- (W) [
= min ,
ek { Cw,rK

1/2
<cp,Kh§||Dv-w|ﬁ +9||vD~vv|%> / }
Csk 4cy r K

4.7)
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Next, let

m ;= min{ max {Crk |olhg max ol (4.8)
o K;oedék ""U|K|CsK "K;oedk |K|Cw,r.,K .

for interior or Dirichlet boundary sides. He@ k ¢ is the constant from the gen-
eralized Friedrichs inequalit2(2). Theupwinding estimatony k is given by

nuk= Y MollWk.o—{Lbs(Br)w-n,1)o)[0] o (4.9)

ged\&N

Finally, thereaction quadrature estimatoyrqk is given by

1

= re P — (P, D)k |K |1 4.10
NRQK \/WHKDK (rPn, DK Ik (4.10)
and theNeumann boundary estimatgr, x by
vh
Mk =0+~ Y /Cixollus—ulo, (4.11)

/CsK
SK gedianaN

whereCik o is the constant from the trace inequali®.3g. We then have the
following a posteriori error estimate:

Theorem 4.1 (A posteriori error estimate on the mesh?;) Let p be the weak
solution of the problen(il.1§—(1.1¢) given by(2.6) and letf, satisfy(4.1)—4.4).
Then

1/2
llp— Bnlllo S{ > Ur%:c,K} +

KeJh

1/2
{ > (MrRk+Nck+Nuk+Nrek + f]rN,K)z} :
KeJh

4.2 Local efficiency of the estimate

Let the local Péclet number Rendpk be given by

P i hy 2K Ok = _ Gk (4.12)
Csk +/COw,r,K4/CsK
Next, let
Cs, 5(/0-wl|2 «
Qs K ‘= CsK <—'K+8p§ o Bk =130 WA feog + ————,
Cs, Cw,rK

910-w|lZ «
4Cy 1k

)

Csk
agK ‘= Csk (a +Cp_,KPq’g> . Bek = ||%D-W+r\|m7K+
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and, forg € H(K),

1912k = axl|OP IR +Bex @R, NNFk = cuxlIDDIIR + Bex
Finally, let

|1I%-

Css, .= MiNCs, Cw. ‘= MiNn CyrL
S, Tk LeTy SL» JLEK LeTy Loy
and, forg € HY(%),

19117 e, =csmc S o IKI9]. Dalol 5

ok

+ewrse Y holl(I9], Dolol 5.

oe€k

The theorem below discusses the local efficiency of the aeposterror estima-
tors of Theoremt.1

Theorem 4.2 (Local efficiency of the a posteriori error estinators on Theo-
rem 4.1) Suppose that the assumptions of Theofehare verified. Let moreover
h satisfy Assumption (B). Then, for the residual estimaigk (4.5 on each
K € %, there holds

5 G Cu, . C
i < Callp= Bl /2 max{ 1, S5 Lt min P [ 1.
Csk Cw,r.K CsK
)

(4.13

where the constant{only depends on the space dimension dym@xc % Cpk,
on the shape of the elementseK%, and in particular on the regularity param-
eter k7, on the polynomial degree | dj,, and on tb\e polynomial degree k of
f, w, and r (see Lemma4.8 below). Let next for ke %, the nonconformity and
convection estimatorgnc k and nck be respectively given big.6) and (4.7).
Then

C C

WL%K SfK

| a, . 3 2| «
r),f,c_’KJrnéKgCA;mm{c—;Kerm{ B:x ,:B.,K K}7 4K
S, Tk

S%K

| Bek  Bukhi ~ ~

+m'”{%,T§K (|Hp—ph|\|2§K+|Hp—ph|\|i@K)
s 2K , 2K

+Cafx inf  |p-si (4.14)
sheR (Fh)NHY(Q) :

+2max{ |[|-os(Bn) — 78« Bn) 12 k. Il Zos( Bn) — Lo Bn) lléx }

with the constant £only depending on d -, and the polynomial degree | @,
(see Lemmd.9below).

4.3 Various remarks

We give several remarks in this section. For further comsent this type of
estimators, we refer t&[l, Section 5].
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4.3.1 Nature of the estimate and comparisons with diffezstimators

The basis for our a posteriori error estimates is the coctétm of the postpro-
cessed approximatiopy, Satisfying é.1)—(4.4). This approximation is more reg-
ular than the original piecewise constant one and givesserthe energy error.
In comparison with a posteriori error estimates used in takein finite element
method,py has the crucial advantage that the normal tracesSif py, are by @.2)
continuous across interior sides. Hence the side erramagirs penalizing the
mass balance common in Galerkin finite element methods4@}. flo not appear
here at all. This advantage is, however, compensated buthéatp, is noncon-
forming in the sense that it is not includedktt(Q), so that the estimato#(6),
penalizing in fact the jumps ip,7(cf. (4.17) in the proof of Lemmat.9 below)
comes in place. Next, whereas in the lowest-order Galenkitefelement method,
O- (S<Opn)|k is always equal to zero on &l € 7, the element residualg.6)
are relevant even when the original solution is elementadsestant.

Nicaise B6,37] also proposed a posteriori error estimators for the finde v
ume method. His basic idea is also to first postprocess tlggnatipiecewise
constant finite volume approximation. He uses for this psep®lorley-type in-
terpolants. However, only the means of the fluxes of thigjpakant through the
mesh sides are continuous, so that, in the general caseaste penalize both the
improper mass balance efS[fy, and the nonconformity gfy,. We note, however,
that in certain cases, the Morley interpolant is conforncantained irH(Q)),
so that the nonconformity penalization disappears. Aratark in this com-
parison may be that the postprocessed approximation pessen[36,37] has to
be constructed differently in dependence on whether cdioreand reaction are
present. This on the one hand permits to prove the localefitgi of the estimates
(see the next section for the discussion of the efficiencyufestimates), but
it on the other one complicates the implementation. Findtg question of the
a priori error estimates (convergence) of the postproceapproximation is not
investigated in36,37].

4.3.2 The estimate and its efficiency with respe& émdw

Concerning the estimators of Theordmi, we first remark that the only constants
appearing are those of the inequalitiesl), (2.2), and @.39. They are known
for matching meshes consisting of simplices or rectangasallelepipeds. Note,
however, that their evaluation may be more complicated éngneral case and
that some precaution should be made here. In particularppmatching meshes
when convection is present, the assumption tbats th*1 for all o € &k (now
not necessarily the sides kifin the geometrical sense, see Secd?) it is prac-
tically necessary in order that the const@ak o of (4.8) does not explode. Let us
also note that, as the numerical experiments of Se@ioelow and in particular
Figure 6.5 show, all the estimators featuring these constants arecupargent
and only important on rough grids or in the singular limits.

Concerning the efficiency of Theorefn2, we remark that the residual, non-
conformity, and convection estimators are semi-robust véspect to the inhomo-
geneitiesin the sense that the local efficiency does notabpethe maximal ratio
of the inhomogeneities over the whole domain, but for a gelemenK, only on



20 Martin Vohralik

the maximal ratio oveK and elements sharing a vertex wih this is the mean-
ing of the term, /a. k /Cs 2 from Theoremd.2 The local efficiency with respect

to anisotropy is then expressed b/jC_SK /csk and is always local in a giveK.
Next, one can easily see that the local efficiency gets tor@tvalues as soon as
only the local Péclet numbe4 (12, not the global one, gets sufficiently small. We
finally remark that for the nonconformity and convectionirestors, the above

statements are only valid up to higher-order terms (the 'péie& (7 ﬁHl(Q))’

which is, however, only present wh%ﬂ w+r > 0. Moreover, it follows from
Lemma4.9that these terms disappear when only the teBmeh /cSz and not

the minimum of these terms and Bfk /c wr i (and similarly for #) in 4.14) are

present. The efficiency on the original grig (if different from ﬂh) could be eas-
ily obtained using the fact thait o — Zos(Pn)[l|2 « = Y17 1B — Fos(Bn) 2
for anyK € .%,. Note also that the error in the approximation of the boupdan-
ditions is left aside from these considerations by the &shof the estimatel(14)
onndcx +né k- We finally point on the conceptual difference with the mified
nite element methods, se&l] Theorem 4.4]. Thergyis such that[[fn], 1) = 0
forall o € @ﬁi]”t and one has the local efficiency in the original energy norereid
in contrast, the additional tertfip— ﬁh|\|b2@K appears, see also Rem&Rin this

respect.

Next, note that the reaction quadrature estimator is zeeneverr is piece-
wise constant angk from (3.140 is set to zero. If this is not the case, its influ-
ence is as that of a quadrature formula—see Sed&i@melow for an example
of its influence in a numerical experiment. One could elirtértais estimator by
considering directl;(rf)h,l)K in (4.3). In what concerns the Neumann boundary
estimator, it only penalizes the fact that the Neumann bagndondition is not
exactly satisfied by the approximate solutignwhen itis not given by a piecewise
constant function. It has a form similar to Neumann bound@stymators from the
finite element method, seé4q.

Finally, the fact that the upwinding estimator cannot ine@hgive a lower
bound for the error is quite obvious and explained5a, [Section 5.2]. The nu-
merical experiments for finite volumes presented below ictiSe 6.2, however,
show that this estimator represents a higher-order termm@sas the local Péclet
number gets small and when the upstream weighth§-(3.12, modified in
the sense of Remai& 1, is used. Similarly to the reaction quadrature estimator,
this estimator would completely disappear while employm(gs( Pr) in the dis-
cretization of the convective term. We, however, notice thach a convective
flux does not seem too much appealing for practical computatiwhereas the
scheme §.1)—(3.12 on admissible triangular meshes is very simple and leads to
a 4-point stencil, employingﬁgs( Pr) in the discretization of the convection term
would complicate the definition of the scheme and imply iadtef 4 at around 20
nonzero values on each matrix row.

4.3.3 The estimate for pure diffusion problems

Whenw =r = 0, on simplices or on a rectangular parallelepipeds whiendi-
agonal and withpy constructed as in Sectidh2.1or 3.2.2 (4.3) implies —0-
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(SkOpn) = fk forallK € . Thus using the fact thate Hl(Q) suchthas|, =9
in the sense of traces in Lemma& below can be chosen arbitrarily, our a posteri-
ori error estimate becomes

12
P—Phllle < inf Bn— 9|0 + NRK + Nk )? . (4.15)
Il Il s€H1<Q)7s|rD:g|H | {KEZ%( : oK) }

Note that the residual estimator becommgsc = hk /Cpk/,/Csk || f — fk|lk, @
superconvergent term usually considered separately tdata oscillation”.
Apparently, it is for this reason that our estimators arecginasymptotically exact
and robust in the numerical experiments presented belowdti@6. For further
remarks on this point, we refer t61, Section 5.3] and to54].

4.3.4 Further generalizations of Theorehi

We remark that for the a posteriori estimate of Theorketitself, p, does not
necessarily have to be a polynomial on e&ch %, pn € H(.%,) would be suf-
ficient. The assumption tha, € R, (%) is only necessary in the given proof of
the local efficiency. The postprocessed approximagipoould thus be, in the fi-
nite volume setting, obtained fron3.(49—(3.149 on general elements. As this,
however, not at all practical, a different approach is depedl in Sectiod below.

4.4 Proof of the a posteriori error estimate

We give in this section a proof of Theorefil To begin with, we recall the fol-
lowing lemma (b1, Lemma 7.1]):

Lemma 4.1 (Abstract framework) Let ps€ H1(Q) be such that p-se H3(Q)
and letp € HY(.%,) be arbitrary. Then

- ~ ~ P—sS
—Bllle < IB—sllo+ @( ~ ,7>+
lIp=pllo < 11p-slla+ | (p- P

(F— A _ow PTS
KEZ%(D (B=sjw) ~3(P—9)0 W’||p—s|g>K'

Consequently, the following bound for the ertiop— fy||| o holds:

Lemma 4.2 (Abstract error estimate) Let the assumptions of Theoretrl be
verified and let s= H1(Q) such that &;, = g in the sense of traces be arbitrary.
Then

llp—Pnllla < Il —slllo+ sup {Tr(9) +Tc(9)
¢eH3(Q),lI9lo=1

+Tu() + Tra(9) + Try (9) ]
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where

Tr(9) = Zﬁ(f+D'(SDﬁh)—D~(ﬁhW)—fﬁh,¢—¢K)K,
KE

Te(0)i= 3 {(0-(Br-9w)— 3(r-90-w.0),
Keh
+((s— ﬁh)W'na¢K>(7K},

Tu(¢) = (Wk,o— (sw-n,1)5)|o] %, ¢k) o,
Ke g o€ék

Tro(9) = Zg(erK_(rﬁh,l)K|K|_1,¢K)Ka
KET

Trn(9) = Z (Ug—U, ¢ —dg)0,
oesN

and wheregy is the mean ofp over Ke %, ¢k := (¢,1)k/|K|, and ¢, is the
mean ofp overo € &, g :=(¢$,1)s/|0].

Proof Let us consider an arbitragy € H3(Q). We have, using the bilinearity of
A(-,-), the definition 2.6) of the weak solutiorp, and the Green theorem in each
K€ h,

B(P—Pn, 9) (4.16)
=(f,0)o—(ud)r— > {(SOpn, 0¢)k + (- (Brw), @) + (rPn, ¢ )k }

Ke 7
— Kezyh{(f + 0 (SOpn) — O+ (Phw) —rPn, @) +U€%N_N<ug - u,d))a}.

Note that we have in particular used the continuity of thewadrtrace ofSUfy
across interior sides following fron4(2), the fact that(SOf, - n,¢)s = O for
o € &P following by ¢ € H3(Q), and finally @.4) for Neumann boundary sides.
If o€ éah'\', notice, moreover, thaty; —u, ) = (Ug — U, ¢ — ¢5) o, SiNce(Uy —
u,ds)o = 0 by 3.6) (recall thatd, is a constant).

Now by the local conservativity assumptiohd), it follows that

(f+0-(SOpn) — O (Brw) — 1P, @k ) + (Baw N,k )ok — $ > Wko

(X4
+(r P, Ok )k — Pk P [K|[ £ (sw-n, dk)ok =0 VK € G,

using thatpg is the constant mean @f overK and that(d - (ppw), 1)k = (Prw -
n,1),x by the Green theorem. Hence we can subtract this term from sao-
mand in 4.16). To conclude the proof, if now suffices to use Lemdina O

Remark 4.1 (Upwinding and reaction quadrature estimatbtising the fact that
¢ is constant, we have subtracted in the above proof the tesmn, 1),|o| !
instead obw-nin Ty(¢). As for a functiony € L?(o), ||(W, Vo]0 Yo < ||¢]|o,
this can considerably reduce the size of the upwinding edtinand it was indeed
necessary in the numerical experiments of Secfi@below. A similar remark
applies toTro(¢) as well.
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We now estimate the tern&, Tc, Tu, Tro, and Ty, separately, putting =
IL(Br) in Lemmad.2

Lemma 4.3 (Residual estimate)et$ € H3(Q) be arbitrary. Then

Tr(9) < :
rR(9) _KEZ%”R’KHWHK

wherenrk is given by(4.5).
Proof The Schwarz inequality and Lemrial from Section7 below imply

Tr(¢) < 5 [|f+0-(SOfn) — O (Baw) —rbnl 16 — Ik
Keh

< > nrkliglik. O

Kegn

Lemma 4.4 (Convection estimate)et$ € H3(Q) be arbitrary. Then

Te(@) < > nexllidlix.

KeJ
wherenck is given by(4.7).
Proof Denotev := p, — .#L4(fn). Then, for eac € %,
(D : (V\N) - %VD 'W?¢)K - <V\N na¢K>(7K
= (D : (V\N) - %VD 'W7¢)K - (D : (V\N)7¢K)K
< 8- (w) — V0wl + HD(V\N)IIK|H4JIHK
N v/Cw,r,K ’

using the Green theorem. Alternatively,

(DV'Wvd) - ¢K)K + (%VD'Wvd))K - (VD'W7 ¢K)K

Cp_KhKHDV-WHK 3HVD'W”K
< ’ Csk |0 T VCw,
e VeIl 5 ek 4
1/2
3 (cp.,Khﬁmv-wnﬁ +9|vD-w||ﬁ> g
- Csk 40y K ’

employing the Cauchy—Schwarz inequality and the Poiniceeguality .1). O

Lemma 4.5 (Upwinding estimate)Let¢ € H3(Q) be arbitrary. Then
@) < S nullidllik.

Keh

whereny k is given by(4.9).
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Proof We have

Tu@) = 5 (Wkae — (ZEs(Bn)W-n, Lo 0k |~ $k — L) o,

aK‘Leé’ri]m

+ 5 ((Wka — (F(Br)W -k, Lo ) |0k | P o

ok EeEP

using thatw - n as well as.?{(pn) are continuous across interelement sides, a
similar continuity of the finite volume convective fluxeé », and @.100. Let

oL € &M and let us putpg,, = (9, 1) g, /|0k.L|. Then

N

H¢K - ¢LHUK.L = ||¢K - ¢UK,L HUK.L + ||¢L - ¢UK.L||UK,L

h 1/2
k.| M} (@1l + I1811)

A\
3
—N
(@)
S
<
=

by the triangle inequality and the first estimate of Lemw2 from Section7
below. At the same time,

1ok = bullowr < 19Kl + lI9Lllox.

|ok L | 12
éMLn{ExL} m (ol +l@lL),

using the triangle inequality and the second estimate ofrhah2 Similar esti-
mates orj| ¢k || o fOr ok € é"hD follow directly from Lemmar.2using thatp,, =0
on Dirichlet boundary sides bfy € H3(Q). Hence, withm, given by @.9),

Tu(@) < ) {moI(WK,a—<fors(f>h)w~n71>o)|0|1||o > ||¢||K}

ogesi\EN K;oesk

- Z{ > ma|<va,a—<f55<r>h>w-n,1>a>|o|-1||a}||¢||K.

Keh Loedk\gN
Noticing the definition ofjy k by (4.9) concludes the proof. O

Lemma 4.6 (Reaction quadrature estimate).et¢ < H3(Q) be arbitrary. Then

Tra(¢) < > nrokll®llk,
KeJh

wherenrgk is given by(4.10.

Proof The Schwarz inequality and the definition|Bf ||| by (2.5) imply

TR(®)< Y [Irkpc— (rBn, Dx K| HlklIgllk < Y nroxlli@llik. O
KeJh Keh
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Lemma 4.7 (Neumann boundary estimate) et € H3(Q) be arbitrary. Then

T’—N<¢)§ z n’—N-,K|H¢H|K,

KeJh
wherenr, k is given by(4.11).

Proof We have, using the trace inequalit®.39 and the definition ofl|| - |||k

TI-N<¢)

(Ug—U, ¢ —dg)o

KeTh geskng

1/2 1/2
< 3 09Ikh® Y Gsluo—ulo< S nakligllik. ©
Keh gesnNEN KeTh

Lemmas4.1-4.7 and the Cauchy—Schwarz inequality prove Theodein

4.5 Proof of the local efficiency of the estimate

We give in this section a proof of Theorefr2

Lemma 4.8 (Local efficiency of the residual estimator)lLet K € %, and let
Nrk be the residual estimator given p4.5). Then(4.13 holds true.

The proof of this lemma follows the one given ], is based on the equiv-
alence of norms on finite-dimensional spaces, the inveesgality, and the defi-
nition of ||| - |||k by (2.5, see b1, Lemma 7.6] for the simplicial case.

Lemma 4.9 (Local efficiency of the nonconformity and velocit estimators)

LetKe f?;and letnnck andnck be the nonconformity and velocity estimators
given respectively bi4.6) and (4.7). Then(4.14 holds true.

Proof Let us first recall thaK ¢ f?ﬁ Whereﬁ is the matching submesh df

consisting of simplices or rectangular parallelepipedésgumption (B). Recall
also that by construction of Secti@rb, .os(fn) € R (Zh) NH(Q) is the Oswald

o~

interpolate ofp, taken as an element & (.%,). We will use this fact in the proof.
To begin, it is easy to show that

Niick +néx < min{[[Bn — A8 Bl . l1Bn — 7o Br)llExc }

with ||| - |||k and||| - ||#k defined in Sectiod.2 Thus

Nfick + &k < 2min{ | — Fos(Bn)l2 k., [l Br — Fos(Bn)lIZk }
+2max{|[|Zos(Bn) — ZbsPn)lIIZ k. [I|-Los( Br) — Fbs(Bn) I3 }
follows immediately. The rest of the proof, devoted to shrayé bound o|| f, —

Jos(Pn)l||+k, follows the path of that given irbfl, Lemma 7.7]. The proof for
|| Br — Fos(Pn)||l#k can be established likewise.
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Let henceforttC denote a constant only dependingarx -, andl, not nec-
essarily the same at each occurrence. It follows directi;mftemma2.1 and the
definition of ||| - |||, k that

[1Bn — Zos(Bn) 11 SC(OI*,K > ho AR5 + Bk > hol[[ph]}||§>~
ok ok
(4.17)
We will next use the inequality

hoZ[wllo <C 3 1I0gh— )l (4.18)

Lioed.

whereo € &M, g € HY( ) such that{[yn]],1)s = 0, and$ € H1(Q) are ar-
bitrary. This inequality was established & [Theorem 10] for simplicial meshes
and it generalizes easily to rectangular parallelepipBads triangle inequality, the
fact that([[p]], 1) s = 0, and a few manipulations then imply

ho2l[Plllo <C 3 1I0(B—@)ll+ o™ ([p— P, Dolo] -

L;oedL

Thus, finally,

N chst N . _
WS IIBIE < 5 ST(Bn— )2+ 205 o~ Bl Dol 3.
Lioed Sk Locé,

o~

where we puy = —1,1. Next, for an arbitrary, € R, (%) such that[[yn]], 1) o =
0 and an arbitrarg, € R (%) NHY(Q),

hs?|[nlllo <hoC 5 0Wh—s)lL<C 3 hellO(wh—s)le

LioesL Lioes
<C 5 h—sll=C > [[h—plL+C > [P—snllL,
L;UE(EL L;UE(EL L;aeﬁ

using @.18), the inverse inequality, and the triangle inequality. Een

1

holl[Br] |5 < C————— 1G0-w+n)Y2(pr - p)[2 (4.19)
o min,.;.z Cwrl L;cé& 2
+C ZA Ip—snll2 + 2o ||([p— Brll. Volo| 23

Lioeép
holds as well, which gives a sense when@J} for L such thato ¢ éA’L are
nonzero. Combining estimate$.{7)—(4.19 while estimating miU-ae@% c for a
sideo such thato NK # 0 from below by mirEE%K ¢, concludes the proof. O

Lemmas4.8-4.9together prove Theoreh2
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5 Estimates on arbitrary polygonal grids by the solution of bcal Neumann
problems

We propose here an approach alternative to fingipsptisfying @.1)—(4.4), which
may be difficult (impossible) to carry out practically on #réary polygonal grids.
This approach is motivated by the simple postprocess3nt§—(3.149 of the
finite volume case on simplices. We only consider in thisieagbure diffusion
problemsw =r = 0).

Let thus.%, be a (nonmatching) grid consisting of arbitrary polygond ket
Iy be its matching refinement consisting of simplices and fyatig Assump-
tion (A) (cf. Assumption (B)). Let a locally conservative scheme be given on
Zh. This scheme then should define discrete diffusive fluses, K € %, and
o € &k, and relation like 8.1) should hold. Now instead of directly searching
P verifying (4.1)—(4.4), let us consider approximations by, e.qg., the given lgcall
conservative method to the local Neumann probleBas4g—(3.149 on the sim-
plicial grids 7k of K, for all K € .%,. Suppose moreover that fire .%,, the given
scheme preserve exactly the given Neumann boundary fixgso € &k (this is
the case of the majority of locally conservative methods) rote that by 3.14H,

the approximate valugg , L € L/?E will be closely related to the origingu .

Now since the meslf/V; is simplicial, we can immediately use the postprocess-
ing (3.1439—(3.149 on ﬁ in order to construct a piecewise second-order polyno-
mial py, satisfying 4.1)—(4.4) on the meshZ;, and have all the results of Sectidn
for this pn. Note in particular that it7 for somekK e Ih only containg, i.e.,
whenK is itself a simplex, then the present approach coincidds eanstructing
Pr|k directly by 3.149—(3.149.

We summarize the above results in the following theorem:

Theorem 5.1 (A posteriori error estimate for pure diffusion problems on ar-
bitrary polygonal grids by the solution of local Neumann problems)Let p be
the weak solution of the probleth.19—(1.1¢ given by(2.6), withw =r = 0. Let

I satisfy Assumption (B) and I€§, be its matching refinement, consisting of sim-
plices. Next, let a locally conservative scheme of the {&#) on .7, be given and
let By, be given by the approximations (8.148—3.149 on the simplicial grids
Tk of K for all K e h and the subsequent postprocessind§49—3.149 on

ﬁ in the sense described above. Thirsatisfieg4.1)—4.4) and all the results
of Sectiord hold true for thispy, on the mesl’ﬁﬁ.

Remark 5.1 (Relation to a posteriori error estimates basedhe solution of lo-
cal Neumann problems in the finite element metiaihk and Weiser][1] derive
a posteriori error estimates in the finite element methocdherbiasis of approxi-
mate solution of local Neumann problems. In their case, th&isns of the local
problems serve to define an a posteriori error estimatohotiginal finite ele-
ment approximation. Contrarily, we have in this sectionduges solutions of the
local problems in order to define a new approximate solufi@nywhich we can
easily give an a posteriori estimate.
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6 Numerical experiments

We test our a posteriori error estimates on two model proBliarthis section. The
first problem contains a strongly inhomogeneous diffusitispersion tensor and
the second one is convection-dominated. In both casesndigtizal solution is
known.

We use the finite volume schem@&. 1)—(3.12), which we extend from trian-
gular grids admissible in the sense @f7[ Definition 9.1] to strictly Delaunay
triangular meshes (the circumcircle of each triangle dagscantain any vertex
in its interior or on its boundary and no circumcenters ofrimary triangles lie
outside the domain or on its boundary), &7] Example 9.1]. The harmonic aver-
aging @.7b for the diffusion—dispersion tensor is employed while ifgdg it in
the sense of Remafk2 i.e., by taking into account the distances of the circum-
centersg, K € , from the sides oK. Whenoi | € 6™ andxk liesinL (which
may happen for strictly Delaunay triangular meshgs), = s_.. When convection
is present, we use the local Péclet upstream weighBi@H(3.12, modified in the
sense of RemarR.1 The postprocessed potentj@l i5 given by 8.143—(3.149
with pux = 1 for allK € .7, andxk being the circumcenter ¢f, see Sectio3.2.1
All these choices seem to be important for the presented ncaheesults of our
a posteriori error estimates.

6.1 Model problem with strongly inhomogeneous diffusioispérsion tensor

This model problem is taken frond1,25] and is motivated by the fact that in
real-life applications, the diffusion—dispersion tenSanay be discontinuous and
strongly inhomogeneous. We consider in partic@a# (—1,1) x (—1,1) and the
equation .19 withw =0,r = 0, andf = 0. We suppose tha? is divided into
four subdomain®2; corresponding to the axis quadrants (in the counterclosdwi
direction) and tha§ is constant and equal ®Id in Q;. Under such conditions,
analytical solution writing

p(r,0)|q =r%(aisin(aB) +bicoga b))

in eachQ; can be found. Herér, 0) are the polar coordinates 2, a andb;
are constants depending @, anda is a parameter. This solution is continuous
across the interfaces but only the normal component of ksl —S[p is con-
tinuous; it finally exhibits a singularity at the origin. Wesaime Dirichlet bound-
ary conditions given by this solution and consider two sdtthe coefficients,
withs; =s3=5,5 =54 = 1 in the first case ansl = 3 = 100,5, = s4 = 1 inthe
second one:

o = 0.53544095
a; = 0.44721360 b= 1
ap = —0.74535599 b, = 2.33333333
az = —0.94411759 bs = 0.55555556
ay = —2.40170264 by = —0.48148148,
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Fig. 6.1 Estimated (left) and actual (right) error distributian= 0.53544095

a =0.12690207
ar 0.1 bl =1
a; = —9.60396040 b, = 296039604
az = —0.48035487 bs = —0.88275659
as= 7.70156488 by = —6.45646175 .

The original grid consisted of 112 triangles and we have e€fit either uni-
formly (up to 4 refinements) or adaptively on the basis of @tineator. The latter
case is a little complicated, since we need the refined mestiltbe strictly De-
launay, and hence the usual “longest edge” refinement oiiants cannot be
used. We thus use the following concept: to the given set iifces, we first add
those which correspond to edges midpoints of such trianvghese the estimated
Il - |llo-error is greater than the half of the maximum of the estimsafbhen the
Triangle mesh generator, see Shewchdl][ is used to produce a mesh which
comprises the given set of vertices, respects the four snauhs, and guarantees
a minimal angle (20 degrees in the given case). This mesheis ¢hecked for
the (uniform) strict Delaunay condition: the sum of the twaposite angles for
each interior edge has to be less than or equat toa wherea is a positive
constant and similarly at the boundary. If it does not sgatikfs condition, fur-
ther vertices are added and the process is repeated untitékb is (uniformly)
strictly Delaunay. Sincé = 0, the residual estimatorg k (4.5 are zero for each
K € % (recall that this would be the case for general piecewisesteonf, cf.
Section4.3.3, and hence the a posteriori error estimate is entirelyrgiwe the
nonconformity estimatonnc k (4.6).

We give in Figures.1an example of our a posteriori estimate on the error and
its distribution and the actual error and its distributiom an adaptively refined
mesh for the first test case. We can see that the predictaibdigin is excel-
lent and that in particular even in this case where the smius smoother, the
singularity is well recognized. Next, Figufe2 gives an example of the approxi-
mate solution on an adaptively refined mesh and this mesleisgbond test case.
Here, the singularity is much more important and consedyém grid is highly
refined around the origin (for an adaptively refined grid dd@@riangles, the di-
ameter of the smallest triangles near the origin is'®Gnd 80% of the triangles
are contained in the circle of radiusl). Figure6.3then reports the estimated and
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-1 1

Fig. 6.2 Approximate solution and the corresponding adaptivelyesfimeshg = 0.12690207

2

10" T T T T T o 107 T T T T T o
E —e— error uniform A r —e— error uniform
E —=— estimate uniform { L —=— estimate uniform [|
L -4 - error adapt. [ = -4 - error adapt.
L -4 - estimate adapt. r -4 - estimate adapt.
5 1
o 1 s |
5 1 ok E
@ 4 @ r B
& 4 f ]
107 ‘*::} E r ]
-2 Ll Ll L J el e il Ll
10 2 3 4 5 10 2 3 4
10 10 10 10 10 10 10

Number of triangles

10°
Number of triangles

Fig. 6.3 Estimated and actual error against the number of elemenisiformly/adaptively
refined meshes far = 0.53544095 (left) andr = 0.12690207 (right)
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Fig. 6.4 Overall efficiency of the a posteriori error estimates againe number of elements in
uniformly/adaptively refined meshes far= 0.53544095 (left) andr = 0.12690207 (right)
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Fig. 6.5 Estimated and actual error and the different estimatoft) @ad overall efficiency
(right) against the number of elements+=1,a= 0.5

actual errors on uniformly/adaptively refined grids in the test cases. The en-
ergy seminormZ.5) was approximated with a 7-point quadrature formula in each
triangle. One can clearly substantially reduce the numbanknowns necessary
to attain the prescribed precision using the derived a posterror estimates and
adaptively refined grids. Finally, we can see in Fig@réthe efficiency plots for
the two cases, giving the ratio of the estimalied||q-error to the actud|| - ||| o-
error. This quantity simply expresses how many times we baeeestimated the
actual error—recall that there are no undetermined midafile constants in our
estimates. These plots confirm the theoretical results ci@e4.3.3 Even while
only using %os(Pn) instead of evaluating the infimum i[5, (approximate)
asymptotic exactness and robustness with respect to indemedies is confirmed.

6.2 Convection-dominated model problem

This problem is a modification of a problem considered26].[ We put Q =
(0,1) x (0,1),w=(0,1), andr = 1in (1.19 and consider three cases whk- € |d
ande equal to, respectively, 1, 18, and 10“. The right-hand side terrh, Neu-
mann boundary conditions on the upper side, and Dirichlahtary conditions
elsewhere are chosen so that the solution was

p(x,y) = 0.5 (1— tanh(o'Sa_ X)) .

This solution is in fact one-dimensional and possessestamat layer of width

a which we set, respectively, equal td00.05, and 002. We start the computa-
tions from an unstructured grid @ consisting of 46 triangles and refine it either
uniformly (up to 5 refinements) or adaptively.

For e = 1 anda = 0.5 (diffusion-dominated regime), estimated and actual
errors in the energy norn2(5), the different estimators, and the efficiency on
uniformly refined grids are reported in FiguBeb. Note in particular that in this
regime, the residual, convection, and upwinding estinsatepresent higher-order
terms and that the influence of the reaction quadrature agiiris limited. Finally,
our estimator reproduced very precisely the distributibtine error in this case.
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Fig. 6.6 Estimated (left) and actual (right) error distributian= 102, a= 0.05
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Fig. 6.7 Approximate solution and the corresponding adaptivelynegfimeshg = 1074, a=
0.02
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Fig. 6.8 Estimated and actual error against the number of elemenisiiformly/adaptively
refined meshes fa = 102, a= 0.05 (left) ande = 10 4, a = 0.02 (right)
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Fig. 6.9 Overall efficiency of the a posteriori error estimates agfatine number of elements in
uniformly/adaptively refined meshes for= 102, a= 0.05 (left) ands = 10~%, a= 0.02 (right)

For e = 102 anda = 0.05 (convection-dominated regime on coarse meshes
and diffusion-dominated regime with progressive refinetpatill the distribution
of the error is predicted very well, cf. Figuée6. Note in particular the correct lo-
calization of the error away from the center of the shock, el & the sensitivity
of our estimator to the shape of the elements. Next, an exaofgn adaptively
refined mesh and of the corresponding solutiorefer 10-4 anda = 0.02 is given
in Figure6.7. The problem with keeping the refined mesh uniformly styi€ik-
launay reveals as very severe in this case. For this reasah more vertices are
added at a time: the refinement criterion is set & @nd 002-times the maximum
of the estimators foe = 102, a = 0.05, ande = 104, a = 0.02, respectively.
The estimated and actual errors for these cases are plgiagusathe number of
elements in uniformly/adaptively refined meshes in Figbu& Again, one can
see that we can substantially reduce the number of unknoegesseary to attain
the prescribed precision using the derived a posterioorerstimates and adap-
tively refined grids. Finally, the efficiency plots are givierFigure6.9. In the first
case, the efficiency is almost optimal for finest grids, wheri@ the second one,
not even the elements in the refined shock region start tee l#@ convection-
dominated regime, a point where the efficiency would stadeitrease.

7 Auxiliary results

We give in this section two auxiliary results that were nekidethe paper.
Lemma 7.1 LetK € %, letg € H1(K), and letgx be the mean of over K given
by ¢« := (¢, 1)k/|K]|. Then
h2 1
— 2<min{C —K,—} Z.
18~ gl < min) Corc . o= 1911k
Proof The Poincaré inequality2(1) and the definition of|| - |||k by (2.5 imply

h2
16 — ¢k |2 < Cpxh||0¢ | < CP,K&M‘NH%'
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Next, the estimate
2 2 1 2
16—k <lollk < —llllllk
Cw,rK

follows from the fact thatpk is an orthogonal projection @f onto a constant and
from the definition ofl|| - |||k by (2.5. O

Lemma7.2 Let K € %, let ¢ € HY(K), and letgx be the mean o over K
given by¢k := (¢,1)kx/|K| and ¢, the mean ofp overo € &k given by, :=
(¢,1)5/|0|, respectively. Then

|o|hg
H¢K_¢UH?ISCF,K,U|K|CK |H¢|HK
and | |
k|5 < 1911z

= [K[Cwrk

Proof Let us putd := ¢ — ¢o and dx := (¢,1)x /|K|. We now note thath, :=
(9,1)s/|0| =0 and thatlp = O¢, which allows us to estimate

o]
K]

ol
Klesk

(o)
1612 < Cero 2 06 2 < Cr o

|9 — 9612 = B2l0] < 1o X

l191I1%

using the generalized Friedrichs inequaly?] and the definitionZ.5) of ||| - |||k.
For the second estimate, we have

o] o]

18615 = 1910% < 191 < o —lIBIIR.

using the definition of| - |||k by (2.5. O
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