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Abstract We derive in this paper a posteriori error estimates for discretizations
of convection–diffusion–reaction equations in two or three space dimensions. Our
estimates are valid for any cell-centered finite volume scheme, and, in a larger
sense, for any locally conservative method such as the mimetic finite difference,
covolume, and other. We consider meshes consisting of simplices or rectangular
parallelepipeds and also provide extensions to nonconvex cells and nonmatching
interfaces. We allow for the cases of inhomogeneous and anisotropic diffusion–
dispersion tensors and of convection dominance. The estimates are established in
the energy (semi-)norm for a locally postprocessed approximate solution preserv-
ing the conservative fluxes and are of residual type. They arefully computable
(all occurring constants are evaluated explicitly) and locally efficient (give a local
lower bound on the error times an efficiency constant), so that they can serve both
as indicators for adaptive refinement and for the actual control of the error. They
are semi-robust in the sense that the local efficiency constant only depends on lo-
cal variations in the coefficients and becomes optimal as thelocal Péclet number
gets sufficiently small. Numerical experiments confirm their accuracy.
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1 Introduction

We consider in this paper the convection–diffusion–reaction problem

−∇ · (S∇p)+∇ · (pw)+ rp = f in Ω , (1.1a)

p = g on ΓD, (1.1b)

−S∇p·n = u on ΓN, (1.1c)

whereS is a diffusion–dispersion tensor (which can be inhomogeneous and ani-
sotropic),w is a possibly dominating velocity field,r is a reaction function,f is
a source term, andg andu prescribe the Dirichlet and Neumann boundary con-
ditions, respectively. We suppose thatΩ ⊂ Rd, d = 2,3, is a polygonal (meaning
alternatively also polyhedral) domain (open, bounded, andconnected set), that
ΓD ∩ΓN = /0, ΓD ∪ΓN = Γ := ∂ Ω , that|ΓD| 6= 0, where|ΓD| is the measure of the
setΓD, and thatΓin := {x ∈ ∂ Ω ;w · n < 0} ⊂ ΓD. Finally, n stands for the unit
normal vector of∂ Ω , outward toΩ . Our purpose is to derive a posteriori error
estimates for finite volume, and, in a larger sense, any locally conservative dis-
cretizations of the problem (1.1a)–(1.1c).

Residual a posteriori error estimates are nowadays well established for dis-
cretizations of the pure diffusion form of (1.1a)–(1.1c) (i.e., w = r = 0) by the
finite element method, cf. for example the survey by Verfürth [45]. In most cases,
however, the analysis is only given forS being an identity matrix; an in-depth
analysis for the general inhomogeneous (and anisotropic) diffusion tensor was pre-
sented by Bernardi and Verfürth [14]. In recent years a posteriori error estimates
have been extended to convection–diffusion problems as well. We cite in partic-
ular Verfürth [46], who derived estimates in the energy norm for the conforming
Galerkin method and its stabilized SUPG version. His estimates are both reliable
and locally efficient and, moreover, the efficiency constantbecomes optimal as
the local Péclet number gets sufficiently small. Similar results have been obtained
in the framework of nonconforming finite element methods by Ainsworth [7] for
the inhomogeneous pure diffusion case and by El Alaoui et al.in [26] for the
convection–diffusion case. Recently, Verfürth [47] improved his results while giv-
ing estimates which are fully robust with respect to convection dominance in a
norm incorporating a dual norm of the convective derivative. The new norm is,
however, not computable, there is no local lower bound, and the estimators do not
change with respect to [46] and hence the adaptive strategies will remain the same.

The theory of a posteriori error estimation is much less developed for finite
volume methods. For vertex-centered schemes, the analogy with the finite ele-
ment case is usually exploited in order to obtain a posteriori error estimates—this
is, e.g., the case of the works of Afif et al. [4], Bergam et al. [13] or Lazarov
and Tomov [35] (cf. also [18]). Still less work has been done for cell-centered
schemes. Agouzal and Oudin [6] simply note that one can exploit the relations
between the lowest-order Raviart–Thomas mixed finite element, the lowest-order
nonconforming finite element, and the cell-centered finite volume methods on tri-
angular meshes in order to obtain an error indicator under a saturation-like hy-
pothesis. Rigorous a posteriori error estimates are obtained by Achdou et al. [2],
however, only for two particular schemes. Equivalence of the discrete forms of the
schemes with some finite element ones is used for this purpose. Nicaise [36,37]
gives a posteriori estimates for Morley-type interpolantsof the original piecewise
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constant finite volume approximation. Finally, yet a different approach, yielding
an estimate in theL1-norm, independent of the size of the diffusion tensor, is
given by Ohlberger [38,39], whereas one of the first results on a posteriori er-
ror estimation in finite volume methods were obtained by Angermann [8] and
Angermann et al. [9]. In the two years refereeing period of this paper, a few new
references appeared. Kim [34] presents estimates applicable to any locally con-
servative method, as we do it here. Both approximation to−S∇p (which we shall
term here as “velocity”) and top (which we shall term here as “potential”) have to
be specified first. Then bounds up to an undetermined constantare given for this
couple in a mesh-dependent norm, which contains a weighted jump term for the
potential. Beirão da Veiga [44] gives a posteriori error estimates for the mimetic
finite difference method, more precisely for the known velocity and a piecewise
linear postprocessing of the originally piecewise constant potential. Again a mesh-
dependent norm is used and the estimator features an unknowngeneric constant.

The purpose of this paper is to develop a sufficiently generaland unified
framework for a posteriori error estimation in the finite volume method, and, in
a larger sense, in any locally conservative method. The derived estimates are first
of all independent of particular schemes. Any cell-centered finite volume scheme,
cf. Eymard et al. [27], the schemes proposed in [22,29,30,32], “multi-point flux-
approximation” schemes [1,25], “discrete duality finite volume” schemes [23],
and “mixed finite volume” schemes [24] can be considered. Similarly, the es-
timates are valid for the mimetic finite difference, cf. [16], covolume, cf. [21],
and other locally conservative methods. The only requirement we have is that the
scheme satisfies a conservation equation over each computational cell, and pre-
scribes in particular the discrete fluxes. We focus on boundsfor the error measured
in the natural energy norm for the (postprocessed) potential only. Bounds for the
error in the approximate velocity only are established in a general setting covering
all the methods considered here in [54, Section 6]. Similarly, bounds for the error
in the couple of velocity and potential approximations are stated therein. Next,
our estimates hold and have the same form from pure diffusioncases to the full
convection–diffusion–reaction ones. As an important point, we derive them for
very general meshes containing nonconvex cells and nonmatching interfaces. For
the sake of completeness of the analysis, we also consider general inhomogeneous
Dirichlet or Neumann boundary conditions. The derived estimators are associated
with the mesh cells, are locally and easily computable, and they are also fully com-
putable in the sense that all occurring constants are evaluated explicitly. This in
particular means that they can serve not only as indicators for adaptive refinement,
which is the usual practice, but also for the actual control of the error. In the devel-
oped independent theory, no equivalence with a different (finite element or mixed
finite element) case is necessary. Also, no convexity of the domain, no additional
regularity of the weak solution, and no saturation assumption are needed.

The basis of our approach is to exploit the particular feature of the considered
schemes, which is the conservativity of the discrete fluxes across the sides (edges if
d = 2, faces ifd = 3) of the mesh. Inspired by the results of Eymard et al. [28] and
of the author [51], we first build a postprocessed approximate potential ˜ph which
preserves exactly the given discrete diffusive fluxes and whose mean or point value
is in each cell fixed by the original constant approximation.The interest of such
a postprocessing is twofold. First of all, we obtain an approximate potential suit-
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able for energy error measuring (recall that the piecewise gradient of the original
cellwise constant approximation is zero, so that it gives nosense to measure the
energy error in it). Secondly, by such a construction,−S∇p̃h lies in theH(div,Ω )
space. In the finite volume case, moreover, using the fixationof p̃h by the original
cell values, we are able to prove the convergence of ˜ph and to give a priori error
estimates, under the condition that the original scheme satisfies some necessary
properties. The construction of the postprocessed potential is particularly easy
for simplices (triangles ifd = 2 and tetrahedra ifd = 3) or, whenS is diagonal,
for rectangular parallelepipeds (rectangles ifd = 2, rectangular parallelepipeds if
d = 3); in this case ˜ph is a second-order polynomial whose gradient (times mi-
nusS) is constructed as in the lowest-order Raviart–Thomas mixed finite element
method, cf. [15,42]. The crucial advantage−S∇p̃h ∈ H(div,Ω ) is, however, com-
pensated by the fact that ˜ph is nonconforming in the sense that ˜ph 6∈ H1(Ω ). We
describe all the above results in detail in Section3, after collecting some prelim-
inary remarks, notation, assumptions, and details on the continuous problem in
Section2. In this section, we also recall the Oswald interpolation operator and
describe its generalization to arbitrary grids and boundary conditions.

Section4 is then devoted to our a posteriori error estimates. They consist of
several independent estimators, the principal of which penalize the fact that ˜ph is
nonconforming and that its residual is nonzero. For pure diffusion problems, only
these estimators (plus possibly still a Neumann boundary one) are present. When
there is some convection, additional convection and upwinding estimators appear,
and for cases with reaction, a reaction quadrature estimator may be present as
well. We next prove that the principal (nonconformity, convection, and residual)
estimators represent local lower bounds for the error as well, where in particular
the efficiency constants are of the formc1 + c2min

{
Pe,ρ

}
, where Pe (the local

Péclet number) andρ are given below by (4.12) and wherec1,c2 only depend on
local variations inS(i.e., on local inhomogeneities and anisotropies), on local vari-
ations inw andr, on the space dimension, on the polynomial degree of ˜ph, f ,w, r,
and on the shape-regularity parameter of the mesh. These estimators are thus in
particular optimally efficient as the local Péclet number gets sufficiently small. We
are not able to obtain similar results for the upwinding estimator but numerical ex-
periments suggest that this estimator represents a higher-order term as soon as the
local Péclet number gets sufficiently small. A more detailed discussion, as well as
several other remarks, is given in Section4.3.

We finally in Section5 discuss a particular approach to meshes consisting of
arbitrary polygons (we use this notation also for polyhedrons) which may be non-
matching and consist of elements which are not necessarily convex. It consists in
subdividing each mesh element into a simplicial submesh andthen directly using
the theory established previously. Finally, we illustratethe accuracy of the de-
rived estimates in Section6 on several numerical experiments and conclude by
some technical lemmas in Section7. This paper is a detailed description, comple-
tion, and extension of the results previously announced in [50] and [53]. Robust a
posteriori error estimates for vertex-centered-like finite volume methods are then
presented in [52] and [19]. For a complementary approach to a posteriori error es-
timation in locally conservative methods, evaluating the error in the velocity only
(and alternatively in the velocity and the potential), we refer to [54].
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2 Preliminaries

We introduce here the notation, define admissible partitions of the domainΩ , re-
call some inequalities which will be important in the sequel, state the assumptions
on the data, give details on the continuous problem (1.1a)–(1.1c), and finally recall
and give some extensions on the Oswald interpolation operator. In what follows,
we conceptually denote byCA, cA constants basically dependent on a quantityA
but always independent of the discretization parameterh.

2.1 Function spaces

For a domainS⊂ Rd, we denote byLl (S) and L l (S) = [Ll (S)]d the Lebesgue
spaces, by(·, ·)S the L2(S) or L2(S) inner product, and by‖ · ‖S the associated
norm. We mean by|S| the Lebesgue measure ofS, by |σ | the(d−1)-dimensional
Lebesgue measure ofσ ⊂ Rd−1, and in particular by|s| the length of a segment
s. At the same time,|A| is the cardinality of a setA. Next, H l (S) is the Sobolev
space of functions with square-integrable weak derivatives up to orderl ; H1

D(S)

is a subspace ofH1(S) of functions with traces vanishing onΓD andH1/2(ΓD)
is the trace space onΓD. Next, H(div,S) is the space of functions with square-
integrable weak divergences,H(div,S) = {v ∈ L2(S);∇ · v ∈ L2(S)}, and〈·, ·〉∂S
stands for (d−1)-dimensional inner product on∂S. Finally, for a partitionTh of
Ω as defined below, we will use the “broken Sobolev space”H l (Th), H l (Th) :=
{ϕ ∈ L2(Ω );ϕ|K ∈ H l (K) ∀K ∈ Th}. We refer to Adams [3] for more details.

2.2 Partitions of the domain

We consider in this paper partitionsTh of Ω into closed polygons such thatΩ =⋃
K∈Th

K and such that the intersections of their interiors are pairwise empty. For
K ∈ Th, we denote byEK the set of such subsetsσ of ∂K that there existsL ∈
Th, L 6= K, such thatσ = σK,L := ∂K ∩ ∂L has a positive(d− 1)-dimensional
Lebesgue measure. We callσ a side andK and L neighbors. We note that for
matching meshes (containing no hanging nodes) consisting of convex elements,
σ are simply the sides in the geometrical sense, which is not necessarily the case
on general polygonal meshes, see Figure2.1. The setEK is completed by the
(geometrical) sides ofK lying at the boundary; we suppose in this case that each
σ lies entirely either inΓD or in ΓN. We next denote byEh the set of all, byE int

h the
set of interior, and byE ext

h the set of exterior sides ofTh. Also, letE N
h stand for the

sides contained inΓN, E D
h for those contained inΓD, EK for σ ∈ E int

h which share
at least a vertex withK ∈Th, andTK for all elements sharing at least a vertex with
K ∈ Th. A family of meshes{Th}h is parameterized byh := maxK∈Th

hK , where
hK stands for the diameter ofK; we also denote byhσ the diameter ofσ ∈ Eh.

For matching meshes consisting of simplices or rectangularparallelepipeds,
we will in some parts of the paper need the following assumption (κK := |K|/hd

K):

Assumption (A) (Shape regularity of matching meshes consisting of simplices or
rectangular parallelepipeds)

There exists a constantκT > 0 such thatminK∈Th
κK ≥ κT for all h > 0.
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ΩTh T̂M

L

K

M

σK,L
σK,M

Fig. 2.1 Considered meshes and notation

Let ρK denote the diameter of the largest ball inscribed inK. Then Assump-
tion (A) is equivalent to the usual requirement of the existence of a constant
θT > 0 such that maxK∈Th

hK/ρK ≤ θT for all h > 0.
In the general case, we make the following shape regularity assumption:

Assumption (B) (Shape regularity of arbitrary polygonal meshes)

(B1) There exists a constantκT > 0 such thatminK∈Th
κK ≥ κT for all h > 0;

(B2) there exists a constantξT > 0 such thatmaxK∈Th
|EK| ≤ ξT for all h > 0;

(B3) there exist matching refinementŝTh of Th which consist of simplices or rect-
angular parallelepipeds and satisfy Assumption (A).

By Assumption (B), the elements ofTh are not “flat”, the number of their sides
is limited, and eachTh admits a matching refinement̂Th. In the sequel, as for the
meshTh, we will use the notation̂E int

h , Ê ext
h , ÊK , ÊK , andT̂K also forT̂h. We also

denote byT̂K the partition ofK ∈ Th by the elements of̂Th.

2.3 Poincaré, Friedrichs, and trace inequalities

Let K be a convex polygon,σ its (geometrical) side, andϕ ∈ H1(K). Three in-
equalities will play an essential role in the derivation of our a posteriori error
estimates.

First, the Poincaré inequality states that

‖ϕ −ϕK‖2
K ≤CP,Kh2

K‖∇ϕ‖2
K , (2.1)

whereϕK is the mean ofϕ over K given by ϕK := (ϕ,1)K/|K| and where the
constantCP,K can for each convexK be evaluated as 1/π2, cf. [40,12].

Second, the generalized Friedrichs inequality states that

‖ϕ −ϕσ‖2
K ≤CF,K,σ h2

K‖∇ϕ‖2
K , (2.2)

whereϕσ is the mean ofϕ over σ ∈ EK given byϕσ := 〈ϕ,1〉σ /|σ |. It follows
from [48, Lemma 4.1] thatCF,K,σ = 3d for a simplexK and its sideσ . For a
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general convexK, CF,K,σ can be evaluated from the proof of [27, Lemma 9.4]
and [28, Lemma 3] in the formChd−1

K /|σ | with C only depending ond andκK .
Finally, the trace inequality states that

‖ϕ −ϕσ‖2
σ ≤ Ct,K,σ hK‖∇ϕ‖2

K , (2.3a)

‖ϕ −ϕK‖2
σ ≤ C̃t,K,σ hK‖∇ϕ‖2

K , (2.3b)

cf. the proof of [27, Lemma 9.4] and [28, Lemma 1]. It has in particular been
shown in [36, Lemma 3.5] thatCt,K,σ = Ct,dhK/hσ for a simplex, whereCt,d ≈
1.55416 ifd = 2 andCt,d ≈ 11.53557 ifd = 3. Similarly, it follows from the proof
of [48, Lemma 4.1] that̃Ct,K,σ = 3dhK |σ |/|K| for a simplex. Finally,C̃t,K,σ only
depends ond andκK for a general convexK and its sideσ .

The above inequalities are also valid for nonconvex polygons K or whenσ is
only a general part of∂K such that|σ |> 0, cf. [27, Lemma 10.4]. The dependen-
cies onK andσ are in this case, however, more complicated in general.

2.4 Assumptions on the data

We suppose that there exists a basic partitioñTh of Ω such that the data of the
problem (1.1a)–(1.1c) are related tõTh in the following way:

Assumption (C) (Data)

(C1) SK := S|K is a constant, symmetric, bounded, and uniformly positive definite
tensor such that cS,K v·v≤SKv·v≤CS,K v·v, cS,K > 0, CS,K > 0, for all v∈Rd

and all K∈ T̃h;
(C2) w ∈ H(div,Ω ) and each component ofw is a polynomial of degree at most

k on each K∈ T̃h such that
∣∣w|K

∣∣≤Cw,K , Cw,K ≥ 0, for all K ∈ T̃h;

(C3) r is a polynomial of degree at most k on each K∈ T̃h;
(C4) 1

2∇ ·w|K + r|K ≥ cw,r,K and
∣∣∇ ·w|K + r|K

∣∣ ≤Cw,r,K , cw,r,K ≥ 0, Cw,r,K ≥ 0,

for all K ∈ T̃h;
(C5) f is a polynomial of degree at most k on each K∈ T̃h;
(C6) g∈ H1/2(ΓD);
(C7) u∈ L2(ΓN);
(C8) if cw,r,K = 0, then Cw,r,K = 0.

The assumptions thatS is piecewise constant and thatw, r, and f are piecewise
polynomial are made only for the sake of simplicity and are usually satisfied in
practice. They are in fact only needed for the local efficiency proofs of our a
posteriori error estimates. If the functions at hand do not fulfill these requirements,
interpolation can be used. Also, note that Assumption (C8) allowscw,r,K = 0 but
w|K 6= 0.
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2.5 Continuous problem

Let Th be, as throughout the whole paper, a refinement ofT̃h. We define a bilinear
form B by

B(p,ϕ) := ∑
K∈Th

{
(S∇p,∇ϕ)K +(∇ · (pw),ϕ)K +(rp,ϕ)K

}
p,ϕ ∈ H1(Th)

(2.4)
and the corresponding energy (semi-)norm by

|||ϕ|||2Ω := ∑
K∈Th

|||ϕ|||2K, (2.5)

|||ϕ|||2K := ‖S1/2∇ϕ‖2
K +‖(1

2∇ ·w+ r)1/2ϕ‖2
K ϕ ∈ H1(Th).

In this wayB(·, ·) and ||| · |||Ω are well-defined forp,ϕ ∈ H1(Ω ) as well as for
p,ϕ that are only piecewise regular. We remark that||| · |||Ω is always a norm on
H1

D(Ω ), whereas it is a norm onH1(Th) only whencw,r,K > 0 for all K ∈ Th.
The weak formulation of the problem (1.1a)–(1.1c) is then to findp∈ H1(Ω )

with p|ΓD = g in the sense of traces such that

B(p,ϕ) = ( f ,ϕ)Ω −〈u,ϕ〉ΓN ∀ϕ ∈ H1
D(Ω ). (2.6)

Assumptions (C1)–(C7), the Green theorem, and the Cauchy–Schwarz inequality
imply that

B(ϕ,ϕ) ≥ |||ϕ|||2Ω ∀ϕ ∈ H1
D(Ω ), (2.7)

B(ϕ,ϕ) = |||ϕ|||2Ω + 1
2 ∑

K∈Th

〈ϕ2,w ·n〉∂K ∀ϕ ∈ H1(Th), (2.8)

B(p,ϕ) ≤ max

{
1, max

K∈Th

{
Cw,r,K

cw,r,K

}}
|||p|||Ω |||ϕ|||Ω

+ max
K∈Th

{
Cw,K√

cS,K

}
|||p|||Ω‖ϕ‖Ω ∀p,ϕ ∈ H1(Th) (2.9)

and problem (2.6) under Assumption (C) in particular admits a unique solution.

Remark 2.1 (Notation)In estimate (2.9), if cw,r,K = 0, then the termCw,r,K/cw,r,K
should be evaluated as zero; since Assumption (C8) for this case givesCw,r,K = 0,
the term withCw,r,K in fact does not even enter the estimate. To simplify notation,
we will systematically use the convention 0/0 = 0 throughout the text.

Remark 2.2 (Different partitions)We clarify here the relations between the dif-
ferent partitions ofΩ considered. First of all, the partitioñTh is only used so as
to describe the different parts ofΩ with different data (materials). Next,Th is the
“computational” partition and we suppose thatTh is a refinement of̃Th. Finally,
for general (nonmatching) polygonal meshes, we shall sometimes need a matching
refinementT̂h of Th consisting of simplices or rectangular parallelepipeds.
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2.6 Oswald interpolation operator

The Oswald operator, previously considered, e.g., in [2,33] and studied in detail
in [33,17], associates to a discontinuous piecewise polynomial function p̃h its
conforming (continuous, contained inH1(Ω )) interpolant. We briefly recall it here
and present its extension to arbitrary grids and boundary conditions.

Let Th be matching, consisting of simplices or rectangular parallelepipeds,
and satisfying Assumption (A). IfTh consists of simplices, letRl (Th) := Pl (Th)
denote the space of polynomials of total degree at mostl on each simplex (without
any continuity requirement at the sides). Similarly, ifTh consists of rectangular
parallelepipeds, letRl (Th) := Ql (Th) denote the space of piecewise polynomials
of degree at mostl in each variable. The Oswald interpolation operatorIOs :
Rl (Th) → Rl (Th)∩H1(Ω ) is defined as follows: given a functionϕh ∈ Rl (Th),
the value ofIOs(ϕh) is prescribed at the Gauss–Lobatto nodes on rectangular
parallelepipeds and suitable (e.g., Lagrangian on triangles whenl = 2) nodes on
simplices, see [17, Sections 3 and 5] ofRl (Th)∩H1(Ω ) by the average of the
values ofϕh at this node,IOs(ϕh)(V) = ∑K∈TV

ϕh|K(V)/|TV |, whereTV is the
set of suchK ∈Th that contain the nodeV. Note that the interpolant is in particular
equal toϕh|K(V) at a nodeV lying in the interior of someK ∈Th. Let [[ϕh]] be the
jump of a functionϕh across a sideσ : if σ = ∂K∩∂L, then[[ϕh]] is the difference
of the value ofϕh in K andL (the order ofK andL has no influence on what
follows) and[[ϕh]] := 0 otherwise. The following result has been proved in [17],
see Lemmas 3.2 and 5.3 and Remark 3.2 in this reference:

Lemma 2.1 (Oswald interpolation operator)LetTh be matching, consisting of
simplices or rectangular parallelepipeds, and satisfyingAssumption (A). Let next
ϕh ∈ Rl (Th) and letIOs(ϕh) be constructed as described above. Then

‖ϕh−IOs(ϕh)‖2
K ≤ C1 ∑

σ∈EK

hσ‖[[ϕh]]‖2
σ ,

‖∇(ϕh−IOs(ϕh))‖2
K ≤ C2 ∑

σ∈EK

h−1
σ ‖[[ϕh]]‖2

σ

for all K ∈Th, where the constants C1, C2 only depend on the space dimension d,
on the maximal polynomial degree l, and on the shape regularity parameterκT .

If Th is nonmatching or consists of arbitrary polygons, let̂Th be its conform-
ing submesh of Assumption (B3). Then each ˜ph ∈Rl (Th) also belongs toRl (T̂h).
Hence we can defineIOs(p̃h) on T̂h as in the previous paragraph. We finally de-
fineI Γ

Os(p̃h) ∈ H1(Ω ), differing fromIOs(p̃h) only on suchK ∈ Th that contain
a boundary side, by

I
Γ
Os(p̃h)|ΓD = g in the sense of traces, (2.10a)

〈I Γ
Os(p̃h)w ·n,1〉σ = WK,σ ∀σ ∈ E

N
h . (2.10b)

HereWK,σ are the given scheme convective fluxes, cf. Sections3 and4 below. In
particular, for the finite volume scheme (3.1)–(3.12) below, if w ·n is constant but
nonzero on a givenσ ∈ E N

h , then (2.10b) prescribes the mean value ofI Γ
Os(p̃h)

on this side byWK,σ/〈w ·n,1〉σ , i.e., bypσ .
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3 Cell-centered finite volume schemes and postprocessing

This section is devoted to the example of the cell-centered finite volume method
for the problem (1.1a)–(1.1c). We also demonstrate here the construction of the
locally postprocessed approximation ˜ph which will serve later as the basis for our
a posteriori error estimates.

3.1 The cell-centered finite volume method

A general cell-centered finite volume scheme for the problem(1.1a)–(1.1c) can be
written in the following form: findpK , K ∈ Th, the approximations top such that

∑
σ∈EK

SK,σ + ∑
σ∈EK

WK,σ + rK pK |K| = fK|K| ∀K ∈ Th, (3.1)

where fK := ( f ,1)/|K|, rK := (r,1)/|K|, and whereSK,σ andWK,σ are, respec-
tively, the diffusive and convective fluxes through the sides σ of an elementK,
functions ofpK , K ∈ Th, of the mesh, and of the data. For the a posteriori error
estimates presented in this paper, we do not need the specificform of the diffusive
and convective fluxes; our analysis, however, relies on the finite volume concept
of their continuity, imposing thatSK,σK,L = −SL,σK,L andWK,σK,L = −WL,σK,L for
all σK,L ∈ E int

h . Note also that for nonmatching grids,σ is not necessarily a side
of K in the geometrical sense, see Section2.2. To fix ideas, we give an example.

WhenTh is admissible in the sense of [27, Definition 9.1], which is satisfied,
e.g., whenTh is matching, consists of convex elements, and when there exist
pointsxK in the interior of eachK ∈ Th such that the straight lines connectingxK
andxL for two neighboring elementsK andL are orthogonal toσK,L = ∂K ∩∂L
and finally when an analogous orthogonality condition holdson the Dirichlet part
of the boundary, and under the additional assumption thatSK = sK Id for all K ∈
Th, the following choices forSK,σ andWK,σ are possible:

SK,σ = −sK,L
|σK,L|
dK,L

(pL − pK) σ = σK,L ∈ E
int
h , (3.2)

SK,σ = −sK
|σ |
dK,σ

(gσ − pK) σ ∈ EK ∩E
D
h , (3.3)

SK,σ = uσ |σ | σ ∈ EK ∩E
N
h , (3.4)

WK,σ = pσ wK,σ σ ∈ EK . (3.5)

HeredK,L = |xK −xL|, the Euclidean distance ofxK andxL, dK,σ is the Euclidean
distance ofxK andσ ∈ EK ∩E D

h , and

gσ :=
〈g,1〉σ
|σ | , uσ :=

〈u,1〉σ
|σ | , wK,σ := 〈w ·n,1〉σ (3.6)

are, respectively, the mean value of the Dirichlet boundaryconditiong on a side
σ ∈ E D

h , the mean value of the Neumann boundary conditionu on a sideσ ∈ E N
h ,

and the flux of the velocity fieldw through a sideσ of K. For the valuesK,L,
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we have two choices, corresponding respectively to the arithmetic and harmonic
averaging in the diffusion–dispersion tensor,

sK,L :=
sK +sL

2
, (3.7a)

sK,L :=
2sKsL

sK +sL
. (3.7b)

Finally, pσ is the weighted upwind value, given for interior or Dirichlet boundary
sides by

pσ := νσ p̂σ +(1−νσ )pσ , (3.8)

wherep̂σ is the upwind value andpσ the centered value, given respectively by

p̂σ :=

{
pK if wK,σ ≥ 0
pL if wK,σ < 0 , pσ := 1

2(pK + pL) (3.9)

if σ is an interior side between elementsK andL and

p̂σ :=

{
pK if wK,σ ≥ 0
gσ if wK,σ < 0 pσ := 1

2(pK +gσ ) (3.10)

if σ ∈ EK is a Dirichlet boundary side. Finally,

pσ := pK (3.11)

if σ ∈ EK is a Neumann boundary side. In the above definitions,νσ ∈ [0,1] is a
coefficient of the amount of upstream weighting. The full-upwind scheme (with
νσ = 1 for all σ ∈ Eh) is classical, see [27, Section 9]. The introduction of the
parameterνσ is done in order to guarantee the stability of the scheme while simul-
taneously reducing the excessive numerical diffusion added by the full upstream
weighting. An optimal choice forνσ (cf. [20,31]) is (for wK,σ 6= 0, otherwise
νσ := 1)

νσ :=





1−min

{
2sK,L|σK,L|
dK,L|wK,σ |

,1

}
if σK,L ∈ E int

h ,

1−min

{
2sK |σ |

dK,σ |wK,σ |
,1

}
if σ ∈ E D

h andwK,σ > 0,

1 if σ ∈ E D
h andwK,σ < 0.

(3.12)

Remark 3.1 (Local Ṕeclet upstream weighting)The local Péclet upstream weight-
ing (3.8)–(3.12) for the scheme (3.1)–(3.7b) on polygonal meshesTh admissible
in the sense of [27, Definition 9.1] guarantees, whenSK = sK Id for all K ∈ Th,
ΓN = /0, and under appropriate assumptions onw, r, and f , the discrete maximum
principle, while reducing the excessive numerical diffusion added by the full up-
stream weighting, cf. [31, Theorem 4.5] and [27, Proposition 9.2]. Moreover, the
inequality

∑
K∈Th

∑
σ∈EK

pσ wK,σ pK ≥ 1
2 ∑

K∈Th

p2
K(∇ ·w,1)K (3.13)

holds, see [51, Lemma 6.5]. Another possibility for still more precise discretiza-
tion of the convection term would be to define the centered value pσ by the value
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that takes a linear function given bypK in xK and bypL in xL onσK,L ∈ E int
h com-

mon toK,L∈Th, i.e., to take into account the distances ofxK andxL from the side
σK,L instead of puttingpσ := (pK + pL)/2, and similarly at the boundary. While
under appropriate modification of (3.12) and under the above-mentioned assump-
tions, the discrete maximum principle would still hold, this would not in general
be the case for the inequality (3.13). This inequality is, however, very useful al-
ready while proving the existence and uniqueness of the discrete solution when
there is no discrete maximum principle (recall that this principle can in general
only be satisfied ifS is not anisotropic and under some conditions on the mesh),
cf. [31, Theorems 4.3 and 4.4] and [27, Lemma 9.2].

Remark 3.2 (Inhomogeneous diffusion–dispersion tensors)Similarly as for the
convection term, instead of directly using (3.7a) or (3.7b), we may take into ac-
count the distances ofxK andxL from the sideσK,L ∈ E int

h common toK,L ∈ Th
for the discretization of inhomogeneous diffusion–dispersion tensors.

3.2 Postprocessing for cell-centered finite volumes

The approximate finite volume solution is only piecewise constant, given by the
valuepK in eachK ∈ Th. In order to derive a posteriori error estimates, we con-
struct in this paper a postprocessed approximation which has more regularity. We
use for this purpose the additional knowledge that we have from a finite volume
scheme: the fluxes.

Developing the ideas of Eymard et al. [28] or of the author [51], the most
general postprocessed approximation ˜ph ∈ H1(Th) that we consider in this paper
is defined as the weak solution of the following local Neumannproblems:

−∇ · (S∇p̃h) =
1
|K| ∑

σ∈EK

SK,σ ∀K ∈ Th, (3.14a)

(1−µK)
(p̃h,1)K

|K| + µK p̃h(xK) = pK ∀K ∈ Th, (3.14b)

−S∇p̃h|K ·n =
SK,σ
|σ | ∀σ ∈ EK , ∀K ∈ Th. (3.14c)

Here,µK = 0 or 1, depending on whether the particular scheme (3.1) represents
by pK the approximate mean value onK ∈Th or the approximate point value in a
point xK (for simplicity assumed insideK) and also on the expected regularity of
p̃h. It is immediate to see that such ˜ph verifies−S∇p̃h ∈ H(div,Ω ). For general
elements, it is not clear how to practically find such ˜ph; it is, however, easy in two
particular cases treated below. We also show below that ˜ph is a good approxima-
tion of the weak solutionp under some conditions on the original scheme.

3.2.1 Postprocessing on simplices for general diffusion–dispersion tensors

For matching triangular or tetrahedral meshes, it is immediate to show that ifS=
Id, p̃h given by (3.14a)–(3.14c) is a piecewise second-order polynomial of the
form p̃h|K = aK(x2+y2)+bKx+cKy+dK if d = 2 andp̃h|K = aK(x2+y2+z2)+
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bKx+ cKy+ dKz+ eK if d = 3. If S 6= Id, then p̃h verifying (3.14a)–(3.14c) is a
full second-order polynomial on eachK ∈ Th (the symmetry ofS is important in
this case). Simply, (3.14c) imposes the normal derivative of ˜ph on the sides ofK,
(3.14b) imposes the mean of ˜ph overK or a point value inxK , and (3.14a) follows
by the Green theorem and by the fact that−∇ · (SK∇p̃h) is constant. Note also
that the proposed postprocessing is local on each element and that one only has
to build a second-order polynomial on eachK ∈ Th from the prescribed degrees
of freedom, so that its cost is negligible. The postprocessed approximation ˜ph is,
however, in general nonconforming, not included inH1(Ω ) but only inH1(Th).

3.2.2 Postprocessing on rectangular parallelepipeds for diagonal
diffusion–dispersion tensors

For S diagonal and matching meshes consisting of rectangles or rectangular par-
allelepipeds, ˜ph verifying (3.14a)–(3.14c) is a piecewise second-order polyno-
mial of the form p̃h|K = aKx2 + bKy2 + cKx+ dKy+ eK if d = 2 and p̃h|K =
aKx2+bKy2+cKz2+dKx+eKy+ fKz+gK if d = 3. Again, the postprocessing is
local and the new variable ˜ph is nonconforming in the sense that it is in general
only in H1(Th) (but−S∇p̃h belongs toH(div,Ω )).

Remark 3.3 (Comparison with mixed finite elements)Similar postprocessing was
used in [51] for the lowest-order Raviart–Thomas mixed finite element method on
simplicial meshes. IfΓD = ∂ Ω andg= 0, it is proved in the above reference that in
this case, the means of ˜ph on interior sides are continuous and its means on exterior
sides are equal to zero, so that we have at least some continuity of p̃h. For pure
diffusion problems (w = r = 0), it is possible to show the same result also for the
cell-centered finite volume scheme (3.1)–(3.7b), but only under the conditionf =
0. It turns out that in general, ˜ph ∈ H1(Th) only. Note also that for pure diffusion
problems, cell-centered finite volumes and lowest-order Raviart–Thomas mixed
finite elements only differ by numerical integration, cf., e.g., Agouzal et al. [5] or
Arbogast et al. [10]. In the general case and on simplicial meshes, lowest-order
mixed finite elements are directly, without any numerical integration, equivalent
to a particular finite volume scheme, see [49] and also Younès et al. [55].

3.2.3 A priori error estimate for the postprocessed approximation

We give in this section an a priori error estimate for the finite volume postpro-
cessed approximation ˜ph given by (3.14a)–(3.14c).

Theorem 3.1 (A priori error estimate for p̃h) Let a basic partitionT̃h be given
and let its refinementTh be matching, consisting of convex elements, and satisfy-
ing Assumptions (B1)–(B2). Let p, the weak solution of the problem(1.1a)–(1.1c)
given by(2.6), be such that p∈H2(T̃h) and−S∇p∈H(div,Ω ). Next, let the finite
volume scheme(3.1) be such that

∑
K∈Th

hK

(

∑
σ∈EK

‖(SK,σ + 〈S∇p·n,1〉σ )|σ |−1‖σ

)2

≤ Ch2,

∑
K∈Th

‖p− pK‖2
K ≤ Ch2,
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where the constant C> 0 only depends on p, d,κT , ξT , the data, andΩ . Finally,
let p̃h be the postprocessed solution given by(3.14a)–(3.14c). Then

∑
K∈Th

‖∇(p− p̃h)‖2
K ≤ Ch2,

‖p− p̃h‖2
Ω ≤ Ch2,

where the constant C> 0 only depends on p, d,κT , ξT , the data, andΩ .

Proof We first study the estimate on the gradient, following the proof of [28, The-
orem 2]. We have, for eachK ∈ Th,

cS,K‖∇(p− p̃h)‖2
K ≤ (S∇(p− p̃h),∇(p− p̃h))K

= −(∇ · (S∇p),(p− p̃h))K + 〈S∇(p− p̃h) ·n,(p− p̃h)〉∂K

≤ ‖∇ · (S∇p)‖KC1/2
P,KhK‖∇(p− p̃h)‖K

+ ∑
σ∈EK

C̃1/2
t,K,σ h1/2

K ‖S∇(p− p̃h) ·n‖σ‖∇(p− p̃h)‖K ,

using Assumption (C1), the Green theorem, the fact that‖∇(p− p̃h)‖K does not
depend on shifting ˜ph by a constant and fixing temporarily(p̃h,1)K by (p,1)K in-
stead of (3.14b), which makes the term(∇ ·(S∇p̃h),(p− p̃h))K disappear by virtue
of (3.14a), and finally using the Schwarz inequality, the Poincaré inequality (2.1),
and the trace inequality (2.3b). Thus

cS,K‖∇(p− p̃h)‖K ≤C1/2
P,KhK‖∇ · (S∇p)‖K +h1/2

K ∑
σ∈EK

C̃1/2
t,K,σ‖S∇(p− p̃h) ·n‖σ .

(3.15)
Next, the triangle inequality and (3.14c) imply that

‖S∇(p− p̃h) ·n‖σ ≤ ‖S∇p·n−〈S∇p·n,1〉σ |σ |−1‖σ

+‖(〈S∇p·n,1〉σ +SK,σ )|σ |−1‖σ

and we have

‖S∇p·n−〈S∇p·n,1〉σ |σ |−1‖σ ≤ CS,K‖∇p·n−〈∇p·n,1〉σ |σ |−1‖σ

≤ CS,KC1/2
K h1/2

K ‖p‖H2(K)

using Assumption (C1) and [28, Lemma 2]; here the constantCK only depends on
d andκK . Thus, squaring (3.15), summing over allK ∈Th, and using the triangle,
Cauchy–Schwarz, and the above inequalities gives

∑
K∈Th

cS,K‖∇(p− p̃h)‖2
K ≤ ∑

K∈Th

3
cS,K

{
CP,Kh2

K‖∇ · (S∇p)‖2
K

+C2
S,KCKh2

K‖p‖2
H2(K)

(

∑
σ∈EK

C̃1/2
t,K,σ

)2

+hK

(

∑
σ∈EK

C̃1/2
t,K,σ‖(SK,σ + 〈S∇p·n,1〉σ )|σ |−1‖σ

)2}
.
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Using the assumptions of the theorem, this concludes the proof of the bound for
the error in the gradient.

We now turn to theL2(Ω )-estimate onp− p̃h. We have

‖p− p̃h‖2
Ω = ∑

K∈Th

‖p− p̃h‖2
K ≤ 2 ∑

K∈Th

{
‖p− pK‖2

K +‖pK − p̃h‖2
K

}

≤ 2 ∑
K∈Th

{
‖p− pK‖2

K +CP,Kh2
K‖∇p̃h‖2

K

}
(3.16)

≤ 2 ∑
K∈Th

{
‖p− pK‖2

K +2CP,Kh2
K‖∇(p̃h− p)‖2

K +2CP,Kh2
K‖∇p‖2

K

}
,

using the triangle and Cauchy–Schwarz inequalities, (3.14b), and the Poincaré in-
equality (2.1) whenµK = 0 or its continuous version whenµK = 1. The assump-
tions of the theorem and the previously obtained bound on thegradient ofp− p̃h
conclude the proof of this second estimate and thus of the whole theorem. ⊓⊔

Remark 3.4 (Meaning of Theorem3.1and an example)Theorem3.1simply guar-
antees that ifSK,σ from the finite volume scheme (3.1) areO(h) approximations of
the diffusive fluxes through the sidesσ of all elementsK ∈ Th and if the original
piecewise constant approximation given bypK in eachK ∈ Th converges top as
O(h) in the L2(Ω )-norm, then ˜ph converges top asO(h) in the brokenH1(Ω )-
norm. LetS= Id, ΓN = /0, andp∈H2(Ω ). Then this is for example the case, under
some additional regularity assumptions onw, r, andg and under the assumption
thatdK,L ≈ hK ≈ hL for all σK,L ∈ E int

h anddK,σ ≈ hK for all σ ∈ E D
h and appro-

priateK, for the scheme (3.1)–(3.10) (with νσ = 1 for all σ ∈ Eh) on polygonal
meshesTh admissible in the sense of [27, Definition 9.1], see [27, Theorem 9.4
and Remark 9.12].

3.2.4 Convergence for the postprocessed approximation

For the sake of completeness, we state here the following result, discussing the
convergence of ˜ph whenp∈ H1(Ω ) only.

Theorem 3.2 (Convergence of̃ph) Let w = r = 0, S = Id, ΓN = /0, and g= 0.
Let Th be admissible in the sense of [27, Definition 9.1] and satisfying Assump-
tions (B1)–(B2) and let the finite volume scheme be given by(3.1)–(3.7b). Let
finally p be the weak solution of the problem(1.1a)–(1.1c) given by(2.6) and let
p̃h be the postprocessed solution given by(3.14a)–(3.14c). Then

∑
K∈Th

‖∇(p− p̃h)‖2
K → 0 as h→ 0,

‖p− p̃h‖2
Ω → 0 as h→ 0.

The convergence of the gradient of ˜ph to the gradient ofp was proved in [28].
The convergence of ˜ph to p then follows using the estimate (3.16).
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4 A posteriori error estimates for locally conservative methods

In this section, we present our a posteriori error estimatesfor the discretization
of the problem (1.1a)–(1.1c) by locally conservative methods. The developments
here are completely independent of Section3 on finite volumes; the only assump-
tion that we make is that we are given a function ˜ph, cell valuespK , K ∈ Th,
and convective fluxesWK,σ , K ∈ Th, σ ∈ EK (locally conservative, i.e.,WK,σK,L =

−WL,σK,L for all σK,L ∈ E int
h ) such that

p̃h ∈ Rl (Th), (4.1)

−S∇p̃h ∈ H(div,Ω ), (4.2)(
f +∇ · (S∇p̃h)− rpK ,1

)
K − ∑

σ∈EK

WK,σ = 0 ∀K ∈ Th, (4.3)

−S∇p̃h ·n = uσ ∀σ ∈ E
N
h , (4.4)

whereuσ are the mean values of the Neumann boundary condition given by (3.6).
In the finite volume case, the way to obtain ˜ph satisfying (4.1), (4.2), and (4.4)
was shown in Section3.2. The relation (4.3) then easily follows from (3.1) by the
Green theorem and by (3.14c), which gives(∇ · (S∇p̃h),1)K = 〈S∇p̃h ·n,1〉∂K =
−∑σ∈EK

SK,σ . We consider general meshesTh but we are aware of the fact that
finding p̃h satisfying (4.1)–(4.4) may not be practically feasible for nonmatching
meshes or elements other than simplices or rectangular parallelepipeds. Thus an
alternative approach for general meshes is developed in Section 5 below. We first
state here the a posteriori error estimate and its local efficiency, then give several
remarks, and finally present the proofs of the estimate and ofits local efficiency.

4.1 A posteriori error estimate

We state here our a posteriori error estimate. Let us first put

m2
K := min

{
CP,K

h2
K

cS,K
,

1
cw,r,K

}

for all K ∈ Th, whereCP,K is the constant from the Poincaré inequality (2.1). We
define theresidual estimatorηR,K by

ηR,K := mK‖ f +∇ · (S∇p̃h)−∇ · (p̃hw)− r p̃h‖K . (4.5)

Let I Γ
Os(p̃h) be the modification of the Oswald interpolateIOs(p̃h) at the bound-

ary given by (2.10a)–(2.10b), see Section2.6. Denotev := p̃h −I Γ
Os(p̃h). Then

thenonconformity estimatorηNC,K is given by

ηNC,K := |||v|||K (4.6)

and theconvection estimatorηC,K by

ηC,K := min

{‖∇ · (vw)− 1
2v∇ ·w‖K +‖∇ · (vw)‖K√

cw,r,K
,

(
CP,Kh2

K‖∇v ·w‖2
K

cS,K
+

9‖v∇ ·w‖2
K

4cw,r,K

)1/2}
. (4.7)
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Next, let

m2
σ := min

{
max

K;σ∈EK

{
CF,K,σ

|σ |h2
K

|K|cS,K

}
, max
K;σ∈EK

{ |σ |
|K|cw,r,K

}}
(4.8)

for interior or Dirichlet boundary sides. HereCF,K,σ is the constant from the gen-
eralized Friedrichs inequality (2.2). Theupwinding estimatorηU,K is given by

ηU,K := ∑
σ∈EK\E N

h

mσ‖(WK,σ −〈I Γ
Os(p̃h)w ·n,1〉σ )|σ |−1‖σ . (4.9)

Finally, thereaction quadrature estimatorηRQ,K is given by

ηRQ,K :=
1

√
cw,r,K

‖rK pK − (r p̃h,1)K |K|−1‖K (4.10)

and theNeumann boundary estimatorηΓN,K by

ηΓN,K := 0+

√
hK√

cS,K
∑

σ∈EK∩E N
h

√
Ct,K,σ ‖uσ −u‖σ , (4.11)

whereCt,K,σ is the constant from the trace inequality (2.3a). We then have the
following a posteriori error estimate:

Theorem 4.1 (A posteriori error estimate on the meshTh) Let p be the weak
solution of the problem(1.1a)–(1.1c) given by(2.6) and let p̃h satisfy(4.1)–(4.4).
Then

|||p− p̃h|||Ω ≤
{

∑
K∈Th

η2
NC,K

}1/2

+

{

∑
K∈Th

(ηR,K +ηC,K +ηU,K +ηRQ,K +ηΓN,K)2

}1/2

.

4.2 Local efficiency of the estimate

Let the local Péclet number PeK andρK be given by

PeK := hK
Cw,K

cS,K
, ρK :=

Cw,K√
cw,r,K

√
cS,K

. (4.12)

Next, let

α∗,K := cS,K

(
CS,K

cS,K
+8ρ2

K

)
, β∗,K := ‖1

2∇ ·w+ r‖∞,K +
5‖∇ ·w‖2

∞,K

cw,r,K
,

α#,K := cS,K

(
CS,K

cS,K
+CP,KPe2

K

)
, β#,K := ‖1

2∇ ·w+ r‖∞,K +
9‖∇ ·w‖2

∞,K

4cw,r,K
,



18 Martin Vohralı́k

and, forϕ ∈ H1(K),

|||ϕ|||2∗,K := α∗,K‖∇ϕ‖2
K +β∗,K‖ϕ‖2

K , |||ϕ|||2#,K := α#,K‖∇ϕ‖2
K +β#,K‖ϕ‖2

K .

Finally, let
cS,TK := min

L∈TK
cS,L, cw,r,TK := min

L∈TK
cw,r,L,

and, forϕ ∈ H1(Th),

|||ϕ|||2♭,EK
:= cS,TK ∑

σ∈EK

h−1
σ ‖〈[[ϕ]],1〉σ |σ |−1‖2

σ

+cw,r,TK ∑
σ∈EK

hσ‖〈[[ϕ]],1〉σ |σ |−1‖2
σ .

The theorem below discusses the local efficiency of the a posteriori error estima-
tors of Theorem4.1.

Theorem 4.2 (Local efficiency of the a posteriori error estimators on Theo-
rem 4.1) Suppose that the assumptions of Theorem4.1are verified. Let moreover
Th satisfy Assumption (B). Then, for the residual estimatorηR,K (4.5) on each
K ∈ Th, there holds

ηR,K ≤C3|||p− p̃h|||K
{√

CS,K

cS,K
max

{
1,

Cw,r,K

cw,r,K

}
+min

{
PeK ,

√
CS,K

cS,K
ρK

}}
,

(4.13)
where the constant C3 only depends on the space dimension d, onmaxK∈Th

CP,K ,
on the shape of the elements K∈ Th and in particular on the regularity param-
eter κT , on the polynomial degree l of̃ph, and on the polynomial degree k of
f , w, and r (see Lemma4.8 below). Let next for K∈ T̂h, the nonconformity and
convection estimatorsηNC,K and ηC,K be respectively given by(4.6) and (4.7).
Then

η2
NC,K +η2

C,K ≤ C4min

{
α∗,K
cS,T̂K

+min

{
β∗,K

cw,r,T̂K

,
β∗,Kh2

K

cS,T̂K

}
,

α#,K

cS,T̂K

+min

{
β#,K

cw,r,T̂K

,
β#,Kh2

K

cS,T̂K

}}
(
|||p− p̃h|||2

T̂K
+ |||p− p̃h|||2♭,ÊK

)

+C4β∗,K inf
sh∈Rl (T̂h)∩H1(Ω )

‖p−sh‖2
T̂K

(4.14)

+2max
{
|||IOs(p̃h)−I

Γ
Os(p̃h)|||2∗,K , |||IOs(p̃h)−I

Γ
Os(p̃h)|||2#,K

}

with the constant C4 only depending on d,κ
T̂

, and the polynomial degree l of̃ph
(see Lemma4.9below).

4.3 Various remarks

We give several remarks in this section. For further comments on this type of
estimators, we refer to [51, Section 5].
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4.3.1 Nature of the estimate and comparisons with differentestimators

The basis for our a posteriori error estimates is the construction of the postpro-
cessed approximation ˜ph satisfying (4.1)–(4.4). This approximation is more reg-
ular than the original piecewise constant one and gives sense to the energy error.
In comparison with a posteriori error estimates used in the Galerkin finite element
method, ˜ph has the crucial advantage that the normal traces of−S∇p̃h are by (4.2)
continuous across interior sides. Hence the side error estimators penalizing the
mass balance common in Galerkin finite element methods (cf. [46]) do not appear
here at all. This advantage is, however, compensated by the fact that ˜ph is noncon-
forming in the sense that it is not included inH1(Ω ), so that the estimator (4.6),
penalizing in fact the jumps in ˜ph (cf. (4.17) in the proof of Lemma4.9 below)
comes in place. Next, whereas in the lowest-order Galerkin finite element method,
∇ · (SK∇ph)|K is always equal to zero on allK ∈ Th, the element residuals (4.5)
are relevant even when the original solution is elementwiseconstant.

Nicaise [36,37] also proposed a posteriori error estimators for the finite vol-
ume method. His basic idea is also to first postprocess the original piecewise
constant finite volume approximation. He uses for this purpose Morley-type in-
terpolants. However, only the means of the fluxes of this interpolant through the
mesh sides are continuous, so that, in the general case, one has to penalize both the
improper mass balance of−S∇p̃h and the nonconformity of ˜ph. We note, however,
that in certain cases, the Morley interpolant is conforming(contained inH1(Ω )),
so that the nonconformity penalization disappears. Another remark in this com-
parison may be that the postprocessed approximation presented in [36,37] has to
be constructed differently in dependence on whether convection and reaction are
present. This on the one hand permits to prove the local efficiency of the estimates
(see the next section for the discussion of the efficiency of our estimates), but
it on the other one complicates the implementation. Finally, the question of the
a priori error estimates (convergence) of the postprocessed approximation is not
investigated in [36,37].

4.3.2 The estimate and its efficiency with respect toSandw

Concerning the estimators of Theorem4.1, we first remark that the only constants
appearing are those of the inequalities (2.1), (2.2), and (2.3a). They are known
for matching meshes consisting of simplices or rectangularparallelepipeds. Note,
however, that their evaluation may be more complicated in the general case and
that some precaution should be made here. In particular, on nonmatching meshes
when convection is present, the assumption that|σ | ≈ hd−1

K for all σ ∈ EK (now
not necessarily the sides ofK in the geometrical sense, see Section2.2) it is prac-
tically necessary in order that the constantCF,K,σ of (4.8) does not explode. Let us
also note that, as the numerical experiments of Section6 below and in particular
Figure6.5 show, all the estimators featuring these constants are superconvergent
and only important on rough grids or in the singular limits.

Concerning the efficiency of Theorem4.2, we remark that the residual, non-
conformity, and convection estimators are semi-robust with respect to the inhomo-
geneities in the sense that the local efficiency does not depend on the maximal ratio
of the inhomogeneities over the whole domain, but for a givenelementK, only on
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the maximal ratio overK and elements sharing a vertex withK; this is the mean-

ing of the term
√

α∗,K/cS,T̂K
from Theorem4.2. The local efficiency with respect

to anisotropy is then expressed by
√

CS,K/cS,K and is always local in a givenK.
Next, one can easily see that the local efficiency gets to optimal values as soon as
only the local Péclet number (4.12), not the global one, gets sufficiently small. We
finally remark that for the nonconformity and convection estimators, the above
statements are only valid up to higher-order terms (the partinfsh∈Rl (T̂h)∩H1(Ω )

),

which is, however, only present when12∇ ·w+ r > 0. Moreover, it follows from
Lemma4.9 that these terms disappear when only the termsβ∗,Kh2

K/cS,T̂K
and not

the minimum of these terms and ofβ∗,K/cw,r,T̂K
(and similarly for #) in (4.14) are

present. The efficiency on the original gridTh (if different from T̂h) could be eas-
ily obtained using the fact that|||p̃h−IOs(p̃h)|||2∗,K = ∑L∈T̂K

|||p̃h−IOs(p̃h)|||2∗,L
for anyK ∈Th. Note also that the error in the approximation of the boundary con-
ditions is left aside from these considerations by the last term of the estimate (4.14)
on η2

NC,K +η2
C,K . We finally point on the conceptual difference with the mixedfi-

nite element methods, see [51, Theorem 4.4]. There ˜ph is such that〈[[p̃h]],1〉σ = 0
for all σ ∈ E int

h and one has the local efficiency in the original energy norm. Here,
in contrast, the additional term|||p− p̃h|||2♭,ÊK

appears, see also Remark3.3in this
respect.

Next, note that the reaction quadrature estimator is zero wheneverr is piece-
wise constant andµK from (3.14b) is set to zero. If this is not the case, its influ-
ence is as that of a quadrature formula—see Section6.2 below for an example
of its influence in a numerical experiment. One could eliminate this estimator by
considering directly(r p̃h,1

)
K in (4.3). In what concerns the Neumann boundary

estimator, it only penalizes the fact that the Neumann boundary condition is not
exactly satisfied by the approximate solution ˜ph when it is not given by a piecewise
constant function. It has a form similar to Neumann boundaryestimators from the
finite element method, see [46].

Finally, the fact that the upwinding estimator cannot in general give a lower
bound for the error is quite obvious and explained in [51, Section 5.2]. The nu-
merical experiments for finite volumes presented below in Section 6.2, however,
show that this estimator represents a higher-order term as soon as the local Péclet
number gets small and when the upstream weighting (3.8)–(3.12), modified in
the sense of Remark3.1, is used. Similarly to the reaction quadrature estimator,
this estimator would completely disappear while employingI Γ

Os(p̃h) in the dis-
cretization of the convective term. We, however, notice that such a convective
flux does not seem too much appealing for practical computations: whereas the
scheme (3.1)–(3.12) on admissible triangular meshes is very simple and leads to
a 4-point stencil, employingI Γ

Os(p̃h) in the discretization of the convection term
would complicate the definition of the scheme and imply instead of 4 at around 20
nonzero values on each matrix row.

4.3.3 The estimate for pure diffusion problems

Whenw = r = 0, on simplices or on a rectangular parallelepipeds whenS is di-
agonal and with ˜ph constructed as in Section3.2.1or 3.2.2, (4.3) implies−∇ ·
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(SK∇p̃h)= fK for all K ∈Th. Thus using the fact thats∈H1(Ω ) such thats|ΓD = g
in the sense of traces in Lemma4.2below can be chosen arbitrarily, our a posteri-
ori error estimate becomes

|||p− p̃h|||Ω ≤ inf
s∈H1(Ω ),s|ΓD

=g
|||p̃h−s|||Ω +

{

∑
K∈Th

(ηR,K +ηΓN,K)2

}1/2

. (4.15)

Note that the residual estimator becomesηR,K = hK
√

CP,K/
√

cS,K‖ f − fK‖K , a
superconvergent term usually considered separately and called “data oscillation”.
Apparently, it is for this reason that our estimators are almost asymptotically exact
and robust in the numerical experiments presented below in Section6. For further
remarks on this point, we refer to [51, Section 5.3] and to [54].

4.3.4 Further generalizations of Theorem4.1

We remark that for the a posteriori estimate of Theorem4.1 itself, p̃h does not
necessarily have to be a polynomial on eachK ∈ Th, p̃h ∈ H1(Th) would be suf-
ficient. The assumption that ˜ph ∈ Rl (Th) is only necessary in the given proof of
the local efficiency. The postprocessed approximation ˜ph could thus be, in the fi-
nite volume setting, obtained from (3.14a)–(3.14c) on general elements. As this,
however, not at all practical, a different approach is developed in Section5 below.

4.4 Proof of the a posteriori error estimate

We give in this section a proof of Theorem4.1. To begin with, we recall the fol-
lowing lemma ([51, Lemma 7.1]):

Lemma 4.1 (Abstract framework) Let p,s∈H1(Ω ) be such that p−s∈H1
D(Ω )

and letp̃∈ H1(Th) be arbitrary. Then

|||p− p̃|||Ω ≤ |||p̃−s|||Ω +

∣∣∣∣B
(

p− p̃,
p−s

|||p−s|||Ω

)
+

∑
K∈Th

(
∇ · ((p̃−s)w)− 1

2(p̃−s)∇ ·w,
p−s

|||p−s|||Ω

)

K

∣∣∣∣.

Consequently, the following bound for the error|||p− p̃h|||Ω holds:

Lemma 4.2 (Abstract error estimate)Let the assumptions of Theorem4.1 be
verified and let s∈ H1(Ω ) such that s|ΓD = g in the sense of traces be arbitrary.
Then

|||p− p̃h|||Ω ≤ |||p̃h−s|||Ω + sup
ϕ∈H1

D(Ω ), |||ϕ|||Ω =1

{
TR(ϕ)+TC(ϕ)

+TU(ϕ)+TRQ(ϕ)+TΓN(ϕ)
}
,



22 Martin Vohralı́k

where

TR(ϕ) := ∑
K∈Th

(
f +∇ · (S∇p̃h)−∇ · (p̃hw)− r p̃h,ϕ −ϕK

)
K ,

TC(ϕ) := ∑
K∈Th

{(
∇ · ((p̃h−s)w)− 1

2(p̃h−s)∇ ·w,ϕ
)

K

+〈(s− p̃h)w ·n,ϕK〉∂K

}
,

TU(ϕ) := ∑
K∈Th

∑
σ∈EK

〈(WK,σ −〈sw ·n,1〉σ)|σ |−1,ϕK〉σ ,

TRQ(ϕ) := ∑
K∈Th

(rK pK − (r p̃h,1)K |K|−1,ϕK)K ,

TΓN(ϕ) := ∑
σ∈E N

h

〈uσ −u,ϕ −ϕσ 〉σ ,

and whereϕK is the mean ofϕ over K∈ Th, ϕK := (ϕ,1)K/|K|, and ϕσ is the
mean ofϕ overσ ∈ Eh, ϕσ := 〈ϕ,1〉σ /|σ |.
Proof Let us consider an arbitraryϕ ∈ H1

D(Ω ). We have, using the bilinearity of
B(·, ·), the definition (2.6) of the weak solutionp, and the Green theorem in each
K ∈ Th,

B(p− p̃h,ϕ) (4.16)

= ( f ,ϕ)Ω −〈u,ϕ〉ΓN − ∑
K∈Th

{
(S∇p̃h,∇ϕ)K +

(
∇ · (p̃hw),ϕ

)
K +(r p̃h,ϕ)K

}

= ∑
K∈Th

{(
f +∇ · (S∇p̃h)−∇ · (p̃hw)− r p̃h,ϕ

)
K + ∑

σ∈EK∩ΓN

〈uσ −u,ϕ〉σ

}
.

Note that we have in particular used the continuity of the normal trace ofS∇p̃h
across interior sides following from (4.2), the fact that〈S∇p̃h · n,ϕ〉σ = 0 for
σ ∈ E D

h following by ϕ ∈ H1
D(Ω ), and finally (4.4) for Neumann boundary sides.

If σ ∈ E N
h , notice, moreover, that〈uσ −u,ϕ〉σ = 〈uσ −u,ϕ −ϕσ 〉σ , since〈uσ −

u,ϕσ 〉σ = 0 by (3.6) (recall thatϕσ is a constant).
Now by the local conservativity assumption (4.3), it follows that
(

f +∇ · (S∇p̃h)−∇ · (p̃hw)− r p̃h,ϕK
)

K + 〈p̃hw ·n,ϕK〉∂K −ϕK ∑
σ∈EK

WK,σ

+(r p̃h,ϕK)K −ϕKrK pK |K|± 〈sw ·n,ϕK〉∂K = 0 ∀K ∈ Th,

using thatϕK is the constant mean ofϕ overK and that(∇ · (p̃hw),1)K = 〈p̃hw ·
n,1〉∂K by the Green theorem. Hence we can subtract this term from each sum-
mand in (4.16). To conclude the proof, if now suffices to use Lemma4.1. ⊓⊔
Remark 4.1 (Upwinding and reaction quadrature estimators)Using the fact that
ϕK is constant, we have subtracted in the above proof the term〈sw ·n,1〉σ |σ |−1

instead ofsw ·n in TU(ϕ). As for a functionψ ∈ L2(σ), ‖〈ψ,1〉σ |σ |−1‖σ ≤‖ψ‖σ ,
this can considerably reduce the size of the upwinding estimator and it was indeed
necessary in the numerical experiments of Section6.2 below. A similar remark
applies toTRQ(ϕ) as well.
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We now estimate the termsTR, TC, TU, TRQ, andTΓN separately, puttings =

I Γ
Os(p̃h) in Lemma4.2.

Lemma 4.3 (Residual estimate)Letϕ ∈ H1
D(Ω ) be arbitrary. Then

TR(ϕ) ≤ ∑
K∈Th

ηR,K |||ϕ|||K,

whereηR,K is given by(4.5).

Proof The Schwarz inequality and Lemma7.1from Section7 below imply

TR(ϕ) ≤ ∑
K∈Th

∥∥ f +∇ · (S∇p̃h)−∇ · (p̃hw)− r p̃h
∥∥

K‖ϕ −ϕK‖K

≤ ∑
K∈Th

ηR,K |||ϕ|||K. ⊓⊔

Lemma 4.4 (Convection estimate)Letϕ ∈ H1
D(Ω ) be arbitrary. Then

TC(ϕ) ≤ ∑
K∈Th

ηC,K |||ϕ|||K,

whereηC,K is given by(4.7).

Proof Denotev := p̃h−I Γ
Os(p̃h). Then, for eachK ∈ Th,

(
∇ · (vw)− 1

2v∇ ·w,ϕ
)

K −〈vw ·n,ϕK〉∂K

=
(
∇ · (vw)− 1

2v∇ ·w,ϕ
)

K − (∇ · (vw),ϕK)K

≤ ‖∇ · (vw)− 1
2v∇ ·w‖K +‖∇ · (vw)‖K√

cw,r,K
|||ϕ|||K,

using the Green theorem. Alternatively,

(∇v ·w,ϕ −ϕK)K +
(

1
2v∇ ·w,ϕ

)
K − (v∇ ·w,ϕK)K

≤
√

CP,KhK‖∇v ·w‖K√
cS,K

√
cS,K‖∇ϕ‖K +

3‖v∇ ·w‖K

2
√

cw,r,K

√
cw,r,K‖ϕ‖K

≤
(

CP,Kh2
K‖∇v ·w‖2

K

cS,K
+

9‖v∇ ·w‖2
K

4cw,r,K

)1/2

|||ϕ|||K,

employing the Cauchy–Schwarz inequality and the Poincaréinequality (2.1). ⊓⊔

Lemma 4.5 (Upwinding estimate)Letϕ ∈ H1
D(Ω ) be arbitrary. Then

TU(ϕ) ≤ ∑
K∈Th

ηU,K |||ϕ|||K,

whereηU,K is given by(4.9).
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Proof We have

TU(ϕ) = ∑
σK,L∈E int

h

〈(WK,σK,L −〈I Γ
Os(p̃h)w ·nK,1〉σK,L)|σK,L|−1,ϕK −ϕL〉σK,L

+ ∑
σK∈E D

h

〈(WK,σK −〈I Γ
Os(p̃h)w ·nK ,1〉σK )|σK |−1,ϕK〉σK ,

using thatw · n as well asI Γ
Os(p̃h) are continuous across interelement sides, a

similar continuity of the finite volume convective fluxesWK,σ , and (2.10b). Let
σK,L ∈ E int

h and let us putϕσK,L := 〈ϕ,1〉σK,L/|σK,L|. Then

‖ϕK −ϕL‖σK,L ≤ ‖ϕK −ϕσK,L‖σK,L +‖ϕL −ϕσK,L‖σK,L

≤ max
M={K,L}

{
CF,M,σK,L

|σK,L|h2
M

|M|cS,M

}1/2

(|||ϕ|||K + |||ϕ|||L)

by the triangle inequality and the first estimate of Lemma7.2 from Section7
below. At the same time,

‖ϕK −ϕL‖σK,L ≤ ‖ϕK‖σK,L +‖ϕL‖σK,L

≤ max
M={K,L}

{ |σK,L|
|M|cw,r,M

}1/2

(|||ϕ|||K + |||ϕ|||L),

using the triangle inequality and the second estimate of Lemma7.2. Similar esti-
mates on‖ϕK‖σK for σK ∈ E D

h follow directly from Lemma7.2using thatϕσK = 0
on Dirichlet boundary sides byϕ ∈ H1

D(Ω ). Hence, withmσ given by (4.8),

TU(ϕ) ≤ ∑
σ∈Eh\E N

h

{
mσ‖(WK,σ −〈I Γ

Os(p̃h)w ·n,1〉σ )|σ |−1‖σ ∑
K;σ∈EK

|||ϕ|||K
}

= ∑
K∈Th

{

∑
σ∈EK\E N

h

mσ‖(WK,σ −〈I Γ
Os(p̃h)w ·n,1〉σ )|σ |−1‖σ

}
|||ϕ|||K.

Noticing the definition ofηU,K by (4.9) concludes the proof. ⊓⊔

Lemma 4.6 (Reaction quadrature estimate)Letϕ ∈ H1
D(Ω ) be arbitrary. Then

TRQ(ϕ) ≤ ∑
K∈Th

ηRQ,K |||ϕ|||K,

whereηRQ,K is given by(4.10).

Proof The Schwarz inequality and the definition of||| · |||K by (2.5) imply

TR(ϕ) ≤ ∑
K∈Th

∥∥rK pK − (r p̃h,1)K |K|−1‖K‖ϕ‖K ≤ ∑
K∈Th

ηRQ,K |||ϕ|||K. ⊓⊔
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Lemma 4.7 (Neumann boundary estimate)Letϕ ∈ H1
D(Ω ) be arbitrary. Then

TΓN(ϕ) ≤ ∑
K∈Th

ηΓN ,K |||ϕ|||K,

whereηΓN,K is given by(4.11).

Proof We have, using the trace inequality (2.3a) and the definition of||| · |||K
by (2.5),

TΓN(ϕ) = ∑
K∈Th

∑
σ∈EK∩E N

h

〈uσ −u,ϕ −ϕσ 〉σ

≤ ∑
K∈Th

‖∇ϕ‖Kh1/2
K ∑

σ∈EK∩E N
h

C1/2
t,K,σ ‖uσ −u‖σ ≤ ∑

K∈Th

ηΓN,K |||ϕ|||K. ⊓⊔

Lemmas4.1–4.7 and the Cauchy–Schwarz inequality prove Theorem4.1.

4.5 Proof of the local efficiency of the estimate

We give in this section a proof of Theorem4.2.

Lemma 4.8 (Local efficiency of the residual estimator)Let K ∈ Th, and let
ηR,K be the residual estimator given by(4.5). Then(4.13) holds true.

The proof of this lemma follows the one given in [46], is based on the equiv-
alence of norms on finite-dimensional spaces, the inverse inequality, and the defi-
nition of ||| · |||K by (2.5), see [51, Lemma 7.6] for the simplicial case.

Lemma 4.9 (Local efficiency of the nonconformity and velocity estimators)
Let K∈ T̂h and letηNC,K andηC,K be the nonconformity and velocity estimators
given respectively by(4.6) and (4.7). Then(4.14) holds true.

Proof Let us first recall thatK ∈ T̂h, whereT̂h is the matching submesh ofTh
consisting of simplices or rectangular parallelepipeds ofAssumption (B). Recall
also that by construction of Section2.6, IOs(p̃h)∈Rl (T̂h)∩H1(Ω ) is the Oswald
interpolate of ˜ph taken as an element ofRl (T̂h). We will use this fact in the proof.

To begin, it is easy to show that

η2
NC,K +η2

C,K ≤ min
{
|||p̃h−I

Γ
Os(p̃h)|||2∗,K , |||p̃h−I

Γ
Os(p̃h)|||2#,K

}

with ||| · |||∗,K and||| · |||#,K defined in Section4.2. Thus

η2
NC,K +η2

C,K ≤ 2min
{
|||p̃h−IOs(p̃h)|||2∗,K , |||p̃h−IOs(p̃h)|||2#,K

}

+2max
{
|||IOs(p̃h)−I

Γ
Os(p̃h)|||2∗,K , |||IOs(p̃h)−I

Γ
Os(p̃h)|||2#,K

}

follows immediately. The rest of the proof, devoted to showing a bound on|||p̃h−
IOs(p̃h)|||∗,K , follows the path of that given in [51, Lemma 7.7]. The proof for
|||p̃h−IOs(p̃h)|||#,K can be established likewise.
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Let henceforthC denote a constant only depending ond, κ
T̂

, andl , not nec-
essarily the same at each occurrence. It follows directly from Lemma2.1 and the
definition of ||| · |||∗,K that

|||p̃h−IOs(p̃h)|||2∗,K ≤C

(
α∗,K ∑

σ∈ÊK

h−1
σ ‖[[p̃h]]‖2

σ +β∗,K ∑
σ∈ÊK

hσ‖[[p̃h]]‖2
σ

)
.

(4.17)
We will next use the inequality

h−1/2
σ ‖[[ψh]]‖σ ≤C ∑

L;σ∈ÊL

‖∇(ψh−ϕ)‖L, (4.18)

whereσ ∈ Ê int
h , ψh ∈ H1(T̂h) such that〈[[ψh]],1〉σ = 0, andϕ ∈ H1(Ω ) are ar-

bitrary. This inequality was established in [2, Theorem 10] for simplicial meshes
and it generalizes easily to rectangular parallelepipeds.The triangle inequality, the
fact that〈[[p]],1〉σ = 0, and a few manipulations then imply

h−1/2
σ ‖[[p̃h]]‖σ ≤C ∑

L;σ∈ÊL

‖∇(p̃h−ϕ)‖L +h−1/2
σ ‖〈[[p− p̃h]],1〉σ |σ |−1‖σ .

Thus, finally,

hγ
σ‖[[p̃h]]‖2

σ ≤ Chγ+1
σ

minL;σ∈ÊL
cS,L

∑
L;σ∈ÊL

‖S∇(p̃h−p)‖2
L +2hγ

σ‖〈[[p− p̃h]],1〉σ |σ |−1‖2
σ ,

where we putγ =−1,1. Next, for an arbitraryψh ∈Rl (T̂h) such that〈[[ψh]],1〉σ =

0 and an arbitrarysh ∈ Rl (T̂h)∩H1(Ω ),

h1/2
σ ‖[[ψh]]‖σ ≤ hσC ∑

L;σ∈ÊL

‖∇(ψh−sh)‖L ≤C ∑
L;σ∈ÊL

hL‖∇(ψh−sh)‖L

≤ C ∑
L;σ∈ÊL

‖ψh−sh‖L ≤C ∑
L;σ∈ÊL

‖ψh− p‖L +C ∑
L;σ∈ÊL

‖p−sh‖L,

using (4.18), the inverse inequality, and the triangle inequality. Hence

hσ‖[[p̃h]]‖2
σ ≤ C

1
minL;σ∈ÊL

cw,r,L
∑

L;σ∈ÊL

‖(1
2∇ ·w+ r)1/2(p̃h− p)‖2

L (4.19)

+C ∑
L;σ∈ÊL

‖p−sh‖2
L +2hσ‖〈[[p− p̃h]],1〉σ |σ |−1‖2

σ

holds as well, which gives a sense when allcw,r,L for L such thatσ ∈ ÊL are
nonzero. Combining estimates (4.17)–(4.19) while estimating minL;σ∈ÊL

cL for a
sideσ such thatσ ∩K 6= /0 from below by minL∈T̂K

cL concludes the proof. ⊓⊔

Lemmas4.8–4.9 together prove Theorem4.2.
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5 Estimates on arbitrary polygonal grids by the solution of local Neumann
problems

We propose here an approach alternative to finding ˜ph satisfying (4.1)–(4.4), which
may be difficult (impossible) to carry out practically on arbitrary polygonal grids.
This approach is motivated by the simple postprocessing (3.14a)–(3.14c) of the
finite volume case on simplices. We only consider in this section pure diffusion
problems (w = r = 0).

Let thusTh be a (nonmatching) grid consisting of arbitrary polygons and let
T̂h be its matching refinement consisting of simplices and satisfying Assump-
tion (A) (cf. Assumption (B3)). Let a locally conservative scheme be given on
Th. This scheme then should define discrete diffusive fluxesSK,σ , K ∈ Th and
σ ∈ EK , and relation like (3.1) should hold. Now instead of directly searching
p̃h verifying (4.1)–(4.4), let us consider approximations by, e.g., the given locally
conservative method to the local Neumann problems (3.14a)–(3.14c) on the sim-
plicial gridsT̂K of K, for all K ∈Th. Suppose moreover that forK ∈Th, the given
scheme preserve exactly the given Neumann boundary fluxesSK,σ , σ ∈ EK (this is
the case of the majority of locally conservative methods) and note that by (3.14b),
the approximate valuespL, L ∈ T̂K , will be closely related to the originalpK .

Now since the mesĥTh is simplicial, we can immediately use the postprocess-
ing (3.14a)–(3.14c) on T̂h in order to construct a piecewise second-order polyno-
mial p̃h satisfying (4.1)–(4.4) on the mesĥTh and have all the results of Section4
for this p̃h. Note in particular that ifT̂K for someK ∈ Th only containsK, i.e.,
whenK is itself a simplex, then the present approach coincides with constructing
p̃h|K directly by (3.14a)–(3.14c).

We summarize the above results in the following theorem:

Theorem 5.1 (A posteriori error estimate for pure diffusion problems on ar-
bitrary polygonal grids by the solution of local Neumann problems)Let p be
the weak solution of the problem(1.1a)–(1.1c) given by(2.6), with w = r = 0. Let
Th satisfy Assumption (B) and let̂Th be its matching refinement, consisting of sim-
plices. Next, let a locally conservative scheme of the form(3.1) onTh be given and
let p̃h be given by the approximations of(3.14a)–(3.14c) on the simplicial grids
T̂K of K for all K ∈ Th and the subsequent postprocessing by(3.14a)–(3.14c) on
T̂h in the sense described above. Thenp̃h satisfies(4.1)–(4.4) and all the results
of Section4 hold true for thisp̃h on the mesĥTh.

Remark 5.1 (Relation to a posteriori error estimates based on the solution of lo-
cal Neumann problems in the finite element method)Bank and Weiser [11] derive
a posteriori error estimates in the finite element method on the basis of approxi-
mate solution of local Neumann problems. In their case, the solutions of the local
problems serve to define an a posteriori error estimator for the original finite ele-
ment approximation. Contrarily, we have in this section used the solutions of the
local problems in order to define a new approximate solution,for which we can
easily give an a posteriori estimate.
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6 Numerical experiments

We test our a posteriori error estimates on two model problems in this section. The
first problem contains a strongly inhomogeneous diffusion–dispersion tensor and
the second one is convection-dominated. In both cases, the analytical solution is
known.

We use the finite volume scheme (3.1)–(3.12), which we extend from trian-
gular grids admissible in the sense of [27, Definition 9.1] to strictly Delaunay
triangular meshes (the circumcircle of each triangle does not contain any vertex
in its interior or on its boundary and no circumcenters of boundary triangles lie
outside the domain or on its boundary), cf. [27, Example 9.1]. The harmonic aver-
aging (3.7b) for the diffusion–dispersion tensor is employed while modifying it in
the sense of Remark3.2, i.e., by taking into account the distances of the circum-
centersxK , K ∈Th, from the sides ofK. WhenσK,L ∈ E int

h andxK lies inL (which
may happen for strictly Delaunay triangular meshes),sK,L = sL. When convection
is present, we use the local Péclet upstream weighting (3.8)–(3.12), modified in the
sense of Remark3.1. The postprocessed potential ˜ph is given by (3.14a)–(3.14c)
with µK = 1 for all K ∈Th andxK being the circumcenter ofK, see Section3.2.1.
All these choices seem to be important for the presented numerical results of our
a posteriori error estimates.

6.1 Model problem with strongly inhomogeneous diffusion–dispersion tensor

This model problem is taken from [41,25] and is motivated by the fact that in
real-life applications, the diffusion–dispersion tensorSmay be discontinuous and
strongly inhomogeneous. We consider in particularΩ = (−1,1)× (−1,1) and the
equation (1.1a) with w = 0, r = 0, and f = 0. We suppose thatΩ is divided into
four subdomainsΩi corresponding to the axis quadrants (in the counterclockwise
direction) and thatS is constant and equal tosi Id in Ωi . Under such conditions,
analytical solution writing

p(r,θ)|Ωi = rα(ai sin(αθ)+bi cos(αθ))

in eachΩi can be found. Here(r,θ) are the polar coordinates inΩ , ai andbi
are constants depending onΩi , andα is a parameter. This solution is continuous
across the interfaces but only the normal component of its flux u = −S∇p is con-
tinuous; it finally exhibits a singularity at the origin. We assume Dirichlet bound-
ary conditions given by this solution and consider two sets of the coefficients,
with s1 = s3 = 5, s2 = s4 = 1 in the first case ands1 = s3 = 100,s2 = s4 = 1 in the
second one:

α = 0.53544095
a1 = 0.44721360 b1 = 1
a2 = −0.74535599 b2 = 2.33333333
a3 = −0.94411759 b3 = 0.55555556
a4 = −2.40170264 b4 = −0.48148148,
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Fig. 6.1 Estimated (left) and actual (right) error distribution,α = 0.53544095

α = 0.12690207
a1 = 0.1 b1 = 1
a2 = −9.60396040 b2 = 2.96039604
a3 = −0.48035487 b3 = −0.88275659
a4 = 7.70156488 b4 = −6.45646175 .

The original grid consisted of 112 triangles and we have refined it either uni-
formly (up to 4 refinements) or adaptively on the basis of our estimator. The latter
case is a little complicated, since we need the refined mesh tostill be strictly De-
launay, and hence the usual “longest edge” refinement or its variants cannot be
used. We thus use the following concept: to the given set of vertices, we first add
those which correspond to edges midpoints of such triangleswhere the estimated
||| · |||Ω -error is greater than the half of the maximum of the estimators. Then the
Triangle mesh generator, see Shewchuk [43], is used to produce a mesh which
comprises the given set of vertices, respects the four subdomains, and guarantees
a minimal angle (20 degrees in the given case). This mesh is then checked for
the (uniform) strict Delaunay condition: the sum of the two opposite angles for
each interior edge has to be less than or equal toπ −α whereα is a positive
constant and similarly at the boundary. If it does not satisfy this condition, fur-
ther vertices are added and the process is repeated until themesh is (uniformly)
strictly Delaunay. Sincef = 0, the residual estimatorsηR,K (4.5) are zero for each
K ∈ Th (recall that this would be the case for general piecewise constant f , cf.
Section4.3.3), and hence the a posteriori error estimate is entirely given by the
nonconformity estimatorηNC,K (4.6).

We give in Figure6.1an example of our a posteriori estimate on the error and
its distribution and the actual error and its distribution on an adaptively refined
mesh for the first test case. We can see that the predicted distribution is excel-
lent and that in particular even in this case where the solution is smoother, the
singularity is well recognized. Next, Figure6.2 gives an example of the approxi-
mate solution on an adaptively refined mesh and this mesh in the second test case.
Here, the singularity is much more important and consequently the grid is highly
refined around the origin (for an adaptively refined grid of 2000 triangles, the di-
ameter of the smallest triangles near the origin is 10−15 and 80% of the triangles
are contained in the circle of radius 0.1). Figure6.3then reports the estimated and
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Fig. 6.2 Approximate solution and the corresponding adaptively refined mesh,α = 0.12690207
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Fig. 6.3 Estimated and actual error against the number of elements inuniformly/adaptively
refined meshes forα = 0.53544095 (left) andα = 0.12690207 (right)
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Fig. 6.5 Estimated and actual error and the different estimators (left) and overall efficiency
(right) against the number of elements,ε = 1, a = 0.5

actual errors on uniformly/adaptively refined grids in the two test cases. The en-
ergy seminorm (2.5) was approximated with a 7-point quadrature formula in each
triangle. One can clearly substantially reduce the number of unknowns necessary
to attain the prescribed precision using the derived a posteriori error estimates and
adaptively refined grids. Finally, we can see in Figure6.4 the efficiency plots for
the two cases, giving the ratio of the estimated||| · |||Ω-error to the actual||| · |||Ω-
error. This quantity simply expresses how many times we haveoverestimated the
actual error—recall that there are no undetermined multiplicative constants in our
estimates. These plots confirm the theoretical results of Section4.3.3. Even while
only usingIOs(p̃h) instead of evaluating the infimum in (4.15), (approximate)
asymptotic exactness and robustness with respect to inhomogeneities is confirmed.

6.2 Convection-dominated model problem

This problem is a modification of a problem considered in [26]. We put Ω =
(0,1)×(0,1), w = (0,1), andr = 1 in (1.1a) and consider three cases withS= ε Id
andε equal to, respectively, 1, 10−2, and 10−4. The right-hand side termf , Neu-
mann boundary conditions on the upper side, and Dirichlet boundary conditions
elsewhere are chosen so that the solution was

p(x,y) = 0.5

(
1− tanh

(
0.5−x

a

))
.

This solution is in fact one-dimensional and possesses an internal layer of width
a which we set, respectively, equal to 0.5, 0.05, and 0.02. We start the computa-
tions from an unstructured grid ofΩ consisting of 46 triangles and refine it either
uniformly (up to 5 refinements) or adaptively.

For ε = 1 anda = 0.5 (diffusion-dominated regime), estimated and actual
errors in the energy norm (2.5), the different estimators, and the efficiency on
uniformly refined grids are reported in Figure6.5. Note in particular that in this
regime, the residual, convection, and upwinding estimators represent higher-order
terms and that the influence of the reaction quadrature estimator is limited. Finally,
our estimator reproduced very precisely the distribution of the error in this case.
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Fig. 6.9 Overall efficiency of the a posteriori error estimates against the number of elements in
uniformly/adaptively refined meshes forε = 10−2, a= 0.05 (left) andε = 10−4, a= 0.02 (right)

For ε = 10−2 anda = 0.05 (convection-dominated regime on coarse meshes
and diffusion-dominated regime with progressive refinement), still the distribution
of the error is predicted very well, cf. Figure6.6. Note in particular the correct lo-
calization of the error away from the center of the shock, as well as the sensitivity
of our estimator to the shape of the elements. Next, an example of an adaptively
refined mesh and of the corresponding solution forε = 10−4 anda= 0.02 is given
in Figure6.7. The problem with keeping the refined mesh uniformly strictly De-
launay reveals as very severe in this case. For this reason, much more vertices are
added at a time: the refinement criterion is set to 0.2- and 0.02-times the maximum
of the estimators forε = 10−2, a = 0.05, andε = 10−4, a = 0.02, respectively.
The estimated and actual errors for these cases are plotted against the number of
elements in uniformly/adaptively refined meshes in Figure6.8. Again, one can
see that we can substantially reduce the number of unknowns necessary to attain
the prescribed precision using the derived a posteriori error estimates and adap-
tively refined grids. Finally, the efficiency plots are givenin Figure6.9. In the first
case, the efficiency is almost optimal for finest grids, whereas in the second one,
not even the elements in the refined shock region start to leave the convection-
dominated regime, a point where the efficiency would start todecrease.

7 Auxiliary results

We give in this section two auxiliary results that were needed in the paper.

Lemma 7.1 Let K∈Th, letϕ ∈H1(K), and letϕK be the mean ofϕ over K given
by ϕK := (ϕ,1)K/|K|. Then

‖ϕ −ϕK‖2
K ≤ min

{
CP,K

h2
K

cS,K
,

1
cw,r,K

}
|||ϕ|||2K.

Proof The Poincaré inequality (2.1) and the definition of||| · |||K by (2.5) imply

‖ϕ −ϕK‖2
K ≤CP,Kh2

K‖∇ϕ‖2
K ≤CP,K

h2
K

cS,K
|||ϕ|||2K.
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Next, the estimate

‖ϕ −ϕK‖2
K ≤ ‖ϕ‖2

K ≤ 1
cw,r,K

|||ϕ|||2K

follows from the fact thatϕK is an orthogonal projection ofϕ onto a constant and
from the definition of||| · |||K by (2.5). ⊓⊔

Lemma 7.2 Let K ∈ Th, let ϕ ∈ H1(K), and letϕK be the mean ofϕ over K
given byϕK := (ϕ,1)K/|K| and ϕσ the mean ofϕ over σ ∈ EK given byϕσ :=
〈ϕ,1〉σ /|σ |, respectively. Then

‖ϕK −ϕσ‖2
σ ≤CF,K,σ

|σ |h2
K

|K|cS,K
|||ϕ|||2K

and

‖ϕK‖2
σ ≤ |σ |

|K|cw,r,K
|||ϕ|||2K.

Proof Let us putϕ̃ := ϕ −ϕσ andϕ̃K := (ϕ̃,1)K/|K|. We now note that̃ϕσ :=
〈ϕ̃,1〉σ /|σ | = 0 and that∇ϕ̃ = ∇ϕ, which allows us to estimate

‖ϕK −ϕσ‖2
σ = ϕ̃2

K |σ | ≤ |σ |
|K|‖ϕ̃‖2

K ≤CF,K,σ
|σ |h2

K

|K| ‖∇ϕ‖2
K ≤CF,K,σ

|σ |h2
K

|K|cS,K
|||ϕ|||2K,

using the generalized Friedrichs inequality (2.2) and the definition (2.5) of ||| · |||K.
For the second estimate, we have

‖ϕK‖2
σ = |σ |ϕ2

K ≤ |σ |
|K|‖ϕ‖2

K ≤ |σ |
|K|cw,r,K

|||ϕ|||2K,

using the definition of||| · |||K by (2.5). ⊓⊔
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