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Abstract

We consider a semi-classical Schrodinger operator —h%?A + V with
a degenerate potential V(x,y) =f(x) g(y) .
g is assumed to be a homogeneous positive function of m variables and
f is a strictly positive function of n variables, with a strict minimum.
We give sharp asymptotic behaviour of low eigenvalues bounded by
some power of the parameter h, by improving Born-Oppenheimer ap-
proximation.

1 Introduction

In our paper [MoTi] we have considered the Schrodinger operator on
L2(R" x RY)

77 2792 2792
Hy, = WDy + h"Dy + [f(x)g(y) (1.1)
with g € C*(R™\ {0}) homogeneous of degree a > 0,
g(py) = pg(y) > 0, Vpu>0andVy € R™\{0}.  (1.2)

! Keywords : eigenvalues, semi-classical asymptotics , Born-Oppenheimer approxima-
tion.
Mathematical Classification : 35P20.



h > 0 is a semiclassical parameter we assume to be small.
We have investigated the asymptotic behavior of the number of eigenval-
ues less then A of Hj, ,

N(A, ﬁh):tr(X}fOO,AKﬁh) = Z L. (1.3)

)\k(ﬁh)<>\

(tr(P) denotes the trace of the operator P ) .
If P is a self-adjoint operator on a Hilbert space H , we denote respectively
by sp(P), spess(P) and spg(P) the spectrum, the essential spectrum and
the discret spectrum of P .

When —oo < inf sp(P) < inf spess(P) , we denote by  (Ax(P))rso0
the increasing sequence of eigenvalues of P ., repeated according to their
multiplicity:

spa(P) ()] = o0, inf spess(P)[ = {M\(P)} . (1.4)

In this paper we are interested in a sharp estimate for some eigenvalues
of Hy, . We make the following assumptions on the other multiplicative part
of the potential:

f e CR"), Va e N, (|f(z)|+1)7'07 f(x) € L=(R")
0 < f0) = inl.ean f(2) L5
2f(0) >

0% f(a) denotes the hessian matrix:

aww:(azmﬂ .
al‘ial‘j 1<i,j<n

By dividing Hy, by f(0), we can change the parameter h and assume that

f(0)y=1. (1.6)

Let us define : & = h*+% and change y in yh; we can use the homo-
geneity of g (L.2) to get :

sp (Hy) = h*sp (H") (1.7)



with 0" = WD? + D2 + f(a)gly) = D2 + Q(a.y.D,) -

Q(z,y,Dy) = DI + f(x)g(y) .

Let us denote the increasing sequence of eigenvalues of DZ + g(y) , (on

L2R™) ), by ()50 -
The associated eigenfunctions will be denoted by (¢;); :

Dyei(y) + 9W)ei(y) = nip;i(y) (1.8)
(05 [ r) = Oji
and (g;); is a Hilbert base of L*(R™) .

By homogeneity ([3) the eigenvalues of Q.(y, D,) = D; + f(z)g(y) ,
on L*(R™) ), for a fixed x, are given by the sequence (\;());=0, where :

Ni(z) = py [T ()
So as in [MoTi| we get :

H" > [BPD? + mfY®9(x)] . (1.9)

This estimate is sharp as we will see below.
Then using the same kind of estimate as ([.9), one can see that

inf spess(H™) > p1 2@ (00) . (1.10)

We are in the Born-Oppenheimer approximation situation described by A.
Martinez in [Md] : the ”effective ” potential is given by Ay (x) = puy f2/C+9) (z),
the first eigenvalue of ()., and the assumptions on f ensure that this potential
admits one unique and nondegenerate well U = {0}, with minimal value equal
to p1. Hence we can apply theorem 4.1 of [Ma]| and get :

Theorem 1.1 Under the above assumptions, for any arbitrary C > 0, there
exists hg > 0 such that, if 0 < h < hq , the operator (H") admits a finite
number of eigenvalues Ey(h) in [u1, 1 + Ch], equal to the number of the
eigenvalues e, of D2 + #2= < 0°f(0) x, x > in [0,+C] such that :

Ex(R) = M(H™) = N, (2D? + py f¥* 9 (z)) + O(H?) . (1.11)
More precisely Ey(h) = Ak(ﬁ]ﬁ) has an asymptotic expansion

Ep(h) ~ o + h(ex + Y aph?). (1.12)

j=1



If Ex(h) is asymptotically non degenerated, then there exists a quasimode
Olz,y) ~ Bmre VY Ry () (1.13)
Jj=0
satisfying
Co ! < ||mee @ gz, y)|| < Cy
|nm e @ ay (2, y)|| < C;

| <Hﬁ — p1 — hey — E1§j§J akjﬁj/2>
ﬁ_mk€_¢(x)/ﬁ ZOS]SJ ﬁj/Qakj (x’ y) H S CJﬁ(J"’l)/Q

(1.14)

The formula ([.19) implies

Me(H") = puy + By (Di + 21—1(1 < Pf0)x, x >) + O(K*?), (1.15)

and when k = 1, one can improve O(#%*?2) into O(%%) . The function 1 is
defined by : ¢(x) = d(z,0) , where d denotes the Agmon distance related
to the degenerate metric p; f% 9 (z)dz?.

2 Lower energies

We are interested now with the lower energies of H"™ . Let us make the change
of variables

(@, y) = (z, [/ (@)y). (2.1)

The Jacobian of this diffeomorphism is f™/(>*%)(z), so we perform the change
of test functions : v — =™ (4+2“)(x)u , to get a unitary transformation.
Thus we get that R _
sp (") = sp (") (2.2

where H" is the self-adjoint operator on L?(R" x R™) given by
B" = BL*(2,5, Dy D)L, 3, Da Dy) + f2CH) (1) (D2 4 g(y) , (23)
with

b
(2+a)f(z)

4

L(z,y. D, D,) = D + (yD,) — i5 ]V ().



We decompose H" in four parts :

" = ﬁ2D2 + [ () (D2 + g(y))

1 7 (Vf( )D.)(yD,)

il gty (V@) = f@)AF (@) [(WDy) — %
2

+ 1 g | V(@) Py Dy)? + =]

Our goal is to prove that the only significant role up to order 2 in A will be
played by the first operator namely : H" = R2D2 + f2/(2+a)(y) (D2 +9g(y)) -

Let us denote by v/? i the eigenvalues of the operator h2D?% + p, 22 ()
and by wjﬁ’k the assoc1ated normalized eigenfunctions .

Let us consider the following test functions :

U?k(%?/) = %ﬁk@)%(?/) )
where the ¢;’s are the eigenfunctions defined in ([[.§); we have immediately :
Hﬁ( u;, k(fc y)) = ]hku;ik(xa y) -
We will need the following lemma :

Lemma 2.1 . For any integer N , there exists a positive constant C' de-
pending only on N such that for any k < N | the eigenfunction wj’fk satisfies
the following inequalities : for any a € N" | |a| < 2

«al/2 a
| 77V 1D il < C

)\ ¢ al/2 (25)
I (H) vl < mpe
with fi; = hp;'*.
Proof.
Let us recall that it is well known, (see [He-S11]| ), that
Vk < N, M;l’/ﬁk = 1+ O(hy) .
It is clear also that
(12D + B4 (g) — ] (2) = 0. 2.6)



We shall need the following inequality, that we can derive easily from (P.0)
and the Agmon estimate (see [He-Sill]) : Ve €]0,1],

a 1/2 T
Ef [fz/(2+ )( 3 2%1 ]ﬁk]+ e2(1=e)/2d; i ( )/ﬁj|2¢h ( )|2 dr < (2.7)
J 21 @) = g ] ()P da
where d;, is the Agmon distance associated to the metric [ f% 9 (z) — u;lyﬁkh dz?

Let us prove the lemma for |o| =
As /[fﬁwxw’fl o (P90 ] — 0.
N'fl ho—1 = O(hy),and f¥/C)(z)—1 > 0,

j
we get that 7] Dy 7 (x)| > < C'.

Furthermore, we use that C~!|V f(z)]? < fY* ) (z)—1 < C|Vf(z)|?,
for |z| < C~', the exponential decreasing (in ;) of 7, given by (R7)
and the boundness of |V f(x)|/f(z) to get

\%
Iyl < ¢ e -1 e a < ne.
Now we study the case |a] = 2.

If ¢ €]0,1] is large enough and |z| € [ﬁl./Qco, 2¢o] , then we have
[2]?/C < fE @)~y < Claf? (2.8)

Therefore there exists C; > 1 such that C;'z|? < djx(z) < Cyfzf?,
and then
2> < h;Cetir@/hi (2.9)
Then the inequality : C7'|z| < |V f(z)| < Clz|. together with (B-§) ,
(9) and (R.1) entail that

f|m|zcoﬁ12 Wf(x W ( )|2 dx

< BC [ [V (@) — ] el @Ml (2)|? da
< BC [ [fHE)(z) — ;1 Vil [l (@) da
< ﬁ?C.

It remains to estimate A7(| D", (x)| with |a\
We use that —h3AQLE, (z) = [T (2) + p; 'y ] ( ),
and that we have proved that |[|[—f%*)(z) + p " h ] ]ﬁ (x)]] < hC;
so | Dgi(@)l < C/fy it Jaf =2.

We will need the following result.



Proposition 2.2 Let V(y) € C®(R™) such that

35 >0, Co > 0st. —Co+yl*/Co < V(y) < Collyl*+1)
VaeN™, (1+y?)eeD2o0v(y) e L=(R™).
(2.10)
If u(y) € L*(R™) and Dju(y) + V(y)u(y) € S(R™),
then u € S(R™). ( S(R™) is the Schwartz space).

The proof comes from the fact that there exists a parametrix of D?+V (y)
in some class of pseudodifferential operator: see for the more general case in
[Hox]], or for this special case in Shubin book [Shu].

Theorem 2.3 .

Under the assumptions (I.3) and ([I.3), for any fized integer N > 0,
there exists a positive constant ho(N) verifying : for any h €]0, ho(N)[, for
any k < N and any j < N such that

py < pfPT (00)
there exists an eigenvalue \ji € Spq (]/-\Iﬁ) such that
A = A (202 + iy [0 @) | < RC 211)
Consequently, when k =1, we have

1217 ((02(0))'?)

CERE | < BC. (2.12)

| A1 — |my + hlpy)

Proof .
The first part of the theorem will follow if we prove that :

ICH" = BNl y) | = I(H" = Juf(z,y)] = O@F) .

Let us consider a function x € C*°(R) such that
x(t)=1if |t/ <1/2 and
x(t)=0 if |t| >1.
Then (D7 + g(y))(1—x(ly))e;(y) € SR™),
and Proposition R.2 shows that (1 — x(|y|))¢;(y) € S(R™).
As Dyei(y) = (1 — 9(v))#;(y) , we get that

Vkoe N, (1) lle; )P +Dye; )P+ Dye;(w)IP] € LYR™) . (2.13)

7



The quantity (H" — ﬁf)(u?k(x,y)) is, by (B4) , composed of 3 parts.
According to Lemma P.1] and the estimate (R.13), the two last parts are
bounded in L*norm by #*C, (u; <C').

To obtain a bound for the first part, we integrate by parts to get that

V() vV

K h f@)P g Vi@ 5
I @) Dojill* < C|IDZ5ll % | () gl 1D < | @) gl |
and then we use again Lemma P.J]. Thus : || vf(x)waka < C.
/(=) ’
Accordi . V/(z) h
ccording to estimate (B.13) we have finally || @) D (yDy)u,| < C.
x )

3 Middle energies

We are going to refine the preceding results when a > 2 and f(oc0) = co. It
is possible then to get sharp localization near the p;’s for much higher values
of j’s. More precisely we prove :

Theorem 3.1 . We assume ([[J) with f(oo) = oo, ([3) with a > 2
and with g € C>(R™).

Let us consider j such that pu; < h™?%;
then for any integer N , there exists a constant C' depending only on N
such that, for any k < N, there exists an eigenvalue Nz € spg (H")

verifying

M = M (B2D2 4 P20 () | < Cph? (3.1)
Consequently, when k =1, we have
1 tr((82£(0))'7?)

[ A1 — |+ Ay) | < Cul®. (32)

(24 a)l/?

Proof :
Let us define the class of symbols S(p*(y,n)), s € R, with p(y,n) =
nl* +9(y) + 1.

q(y,m) € Sp°(y,n) iff q(y,n) € C*R™ xR™)

and for any « and g € N,
p=*(ym) (Il + D)7yl + 1)\ Dy DJq(y, ) € L*(R*™).

8



For such a symbol ¢(y,n) € S(p°(y,n) , we define the operator ¢ on
S(R™) :

Qf) = o™ [ g E e sy,

We will say that @ € OPS(p°(y,n)) .
It is well known, (see [Hot|) that (D} + g(y))* € OPS(p*(y,n)) .
As a > 2, we get that yD, € OPS(p(y,n)) , and then that
yD,(D; +g(y))~" € OPS(1).
Therefore yD,(D? + g(y))~" and (yD,)*(D; + g(y))~> are bounded
operator on L*(R™) , and we get as a consequence the following bound :
i lyDyesll + 1521y Dy) w5l < C (3-3)

As in the proof of Theorem P.3, using (B.3) instead of (2.13), we get easily
that
I(H" = H"Yal || < ClRp; + K] < Ch2py

j
and then Theorem B.1] follows.

4 An application
We consider a Schrodinger operator on L2(RY) with d > 2,

P" = —h2A + V(z) (4.1)
with a real and regular potential V(z) satisfying

Ve C®(R?; [0,+00])
liminf|z|ﬁoo V(Z) > 0 (42)
' = V-1({0}) is a regular hypersurface.

By hypersurface, we mean a submanifold of codimension 1 . Moreover we
assume that I' is connected and that there exist m € N* and Cy > 0
such that for any z verifying d(z, I') < Cj*

Citd*™(z, T) < V(z) < Cyd®(z, T) (4.3)

(d(E,F) denotes the euclidian distance between E and F').

9



We choose an orientation on I' and a unit normal vector N(s)
on each s € I', and then, we can define the function on I',

1 o\
f(s) = 2m)] (N(s)a) V(s), Vs eTl. (4.4)
Then by (£.2) and (E.G), f(s) > 0, Vs € T.

Finally we assume that the function f achieves its minimum on I' on
a finite number of discrete points:

Zo = ST {m}) = {s1se} s if om0 = min f(s), (4.5)

and the hessian of f at each point s; € Xy is non degenerated:
dm > 0 st

1
§<d(<df; w)) 5 wy(s;) > mlw(s;))?, Vw € TT, Vs; € Xy. (4.6)
If g = (gi;) is the riemannian metric on T', then |w(s)| = (g(w(s),w(s)))/2.

The hessian of [ at each s; € 3y , is the symmetric operator on
T,,I' , Hess(f)s, , associated to the two-bilinear form defined on T,T'
by :

1 ~ ~
(v,w) € (T,0)" — S{d((df ;D)) ; @)(s;), (4.7)
V(@E@) € (TT? st (3(s).ils) = (v,w).
Hess(f)s; has d—1 non negative eigenvalues
Pi(s) < oo < pia(sy) s (pilsy) > 0).
In local coordinates, those eigenvalues are the ones of the symmetric matrix

1 1/2 0 1/2
éG : <Sj) <8xkang<8j)) | <k p<d—1 G / <Sj) ) (G(x) = (gk,é(x))1§k,£gd_1 ) :

The eigenvalues p2(s;) do not depend on the choice of coordinates. We
denote

Trt(Hess(f(s;)) = 3 puls) (43)

We denote by (4;)j>1 the increasing sequence of the eigenvalues of the
2

d 2m 2
operator — o + t*™ on L*(R),

and by (p;(t) );>1 the associated orthonormal Hilbert base of eigenfunctions.

10



Theorem 4.1 Under the above assumptions, for any N € N* | there exist
ho €]0,1] and Cy > 0 such that, if p; << h=4m/(m+DHEm+3)

and if a € N and |a| < N,

then Vs, € Xg, EI)\?Z € spy(P")  s.t.

«

)‘?m — p2md(mt1) [ﬁé/(mﬂ)ﬂj + hl/(mﬂ)ﬂ;m .Aé(oé)] ’
S h2M§+3/2mCO;
1
with A(a) = 2ap(s¢) + Trt(Hess(f(s0)))] -
ngL/(2m+2)<m+ 1>1/2 |: ]

(ap(se) = aipi(se) + ... a_1pa-1(se) ) -

Proof :
Let Oy C R? be an open neighbourhood of s; € ¥, such that there
exists ¢ € C®(Oy; R) satisfying

T =T NOy ={2€0y; ¢(2) =0} ;

Vo) = 1, Yz e O (4.9)

After changing O, into a smaller neighbourhood if necessary, we can find
7 € C®(Oy; R such that 7(s;)) = 0 and Vz € Oy,

V71i(2).Vo(z) =0, Vji=1,...,d—1

rank{Vr(2), ..., Vra1(z)} = d—1. (4.10)

Then (z,y) = (x1,...,24-1,y) = (71,...,74-1,¢) are local coordinates
in Oy such that

A = 7 Src ey 00 (07 590,) + 200, (3170)

Vo= f(z,y) with f e C*W);
Vo is an open neighbourhood of zero in R? B
77 (z.y) =9"(x,y) € C*Vo; B), [T = det (§7(z,y)) > 0.
x = (z1,...,24-1) are local coordinates on T
and the metric g = (g;;) on I'¢ is given by

(gij(x))lgi,jgdfl = G(z), with (G(z))™ = (gij(x,O))lsl.’de_l .

11



If we C3(Op) then

Phw = Phy  with
u = |g|"*w and (4.12)
Pt = -1’ Egi,jéd—lawi (gijawj) o h28§ +V + 0,

for some V5 € C*(Vy; R).
Let us write

V(z,y) = v f(z) + *"i(a) + v 2 folz,y) (4.13)

fl@) = f(z,0) and f, € C=(V,).
We perform the change of variable (B.1) and the related unitary transfor-
mation,

(£y) = (0.) = (& fIOOD(@)y), u o = fHE,
to get that

Phy = @hv with
Q" = Qb + " f)x) + W*Ry + +hR*Ry + Y (4.14)
Qb = —P* 31 a1 0w (970:,) + fYOV(2) (<207 + £27)

and Ry = ta(z,t) (0, f(x)0,)0 + b(x, t)t0+

Z bij (2, )05, f ()0, f (2)(10,)* + c(w,1)

R, = Z O, (Ozij (z, t)&,;j) , all coefficients are regular in a neighbour-
1<i,j<d—1
hood of the zero in R? .
Let p; be asin the theorem [I.]. We define h; = hl/(mﬂ)/u;/2 :
Let O be a bounded open neighbourhood of zero in R ! such that
Oy C OgN{(x,0): z € R}
We consider the Dirichlet operator on L*(Oj) , Hg 7

Hy = =05 Y 0 (6"@)0s) + fY (). (4.15)

1<k,0<d—1

12



It is well known, (see for example [Hel]] or [e-Sj1l, that for any o € N1
satisfying the assumptions of the theorem [L.1], one has:

I € sp (M) st A — O 4 Aa)] < RC

Aj(«) is defined in theorem [.1] in relation with our s; € X .

C' is a constant depending only on N . We will denote by 1/1;“&(:5) any
associated eigenfunction with a L?norm equal to 1. Let yo, € C*®(R)
such that

Xo(t)=1 if [t <1/2 and x(t)=0 if [ >1.
We define the following function :

_ m h; —1/(m m
ul (@, t) = WYy (e (x) [y (V) — pVOED R (28)]

.]7a

with
FP(x,t) = fx) f~0 ) (@)¢; (1),

where ¢; € S(R) is solution of :

2 m m
—am0i(t) + (" = py)ei(t) = £ (1)
and ¢ €]0,1] is a small enough constant, but independent of h and j.
¢; exists because p; is a non-degenerated eigenvalue and the related eigen-
function ¢; (see [F) verifies [ t*" 13 (t) dt = 0, since it is a real even
or odd function.

Using the similar estimates as in chapter 3 , one can get easily that

pi lt0esllca@y + 15 (800 @il < C

and Vk € N, 3C, > 0 st ;""" |tro;|l e < Cr.

It is well known that there exists ¢; > 0 s.t.
2

d
l; — pel > e, VL # j, then the inverse of — + " —
is L*(R)-bounded by 1/¢; , (on the orthogonal of ¢; ). So in the same way

as in chapter 3 , we get also that

—9—1/9m —3—1/2m
1T 0 ey + w800 G5l ey < C

and Yk € N, 3C, > 0 st p; Otk | gy < Gy
As in the proof of Theorem B.1], we get easily that

0 h; 4m m
Q" — mxollel/c)uyn(e. )l o < Hrug™ "0

13



and

h; m m m
[ Ixo(lel/eo)ua (e, D)l 20q) — 1] = ORYEHDpEm02my — o1) .
So the theorem [I.] follows easily.

Remark 4.2 If in Theorem [[.1 we assume that j is also bounded by N,
then, as in [He-Sil], we can get a full asymptotic expansion

+oo
)\;‘Lga ~ h2m/(m+1) chﬁkahk/(m+l) ’
k=0

and for the related eigenfunction, a quasimode of the form

—+00

—U(z /(m m m
W (2,1) ~ c(h)e @Myt e) > B a0 () (/R )
k=0
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