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Abstract

In this paper, we propose an edge detection technique based on some local smoothing
of the image followed by a statistical hypothesis testing on the gradient. An edge
point being defined as a zero-crossing of the Laplacian, it is said to be a significant
edge point if the gradient at this point is larger than a threshold s(ε) defined by: if
the image I is pure noise, then the probability of ‖∇I(x)‖ ≥ s(ε) conditionally on
∆I(x) = 0 is less than ε. In other words, a significant edge is an edge which has a
very low probability to be there because of noise. We will show that the threshold
s(ε) can be explicitly computed in the case of a stationary Gaussian noise. In the
images we are interested in, which are obtained by tomographic reconstruction from
a radiograph, this method fails since the Gaussian noise is not stationary anymore.
Nevertheless, we are still able to give the law of the gradient conditionally on the
zero-crossing of the Laplacian, and thus compute the threshold s(ε). We will end
this paper with some experiments and compare the results with those obtained with
other edge detection methods.
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1 Introduction

This work stems from analysis of physical experiments where a test object is
submitted to a shock. More precisely, we surround the object with explosives
and we monitor the shape of the hull as it first collapses onto itself and then
expands. The shape of inners hole(s) at the very beginning of the re-expansion
phase is of particular interest. We use radiography to determine those shapes.
Standard tomography cannot be carried out because the inverse Radon trans-
form requires many radiographs (taken from different angles) whereas only one
radiograph can be acquired in the lapse of the expansion phase. That is why
the hulls are supposed to be radially symmetric at the beginning of the exper-
iment and during the explosion. In that case, a single radiograph is enough to
perform the tomographic reconstruction (see [1] and [8], and Section 4.1).

Thus, from now on, we will only consider radially symmetric objects. To de-
scribe such an object, it is sufficient to provide the densities of the materials
on a slice of the object that contains the symmetry axis. An example of stud-
ied object is given in Figure 1. The first step of the physical experiment is to
performe a radiography of this object (see Figure 2(a)), then a tomographic
reconstruction is computed (Figure 2(b)) and finally an edge detection is made
(Figure 2(c)).

Fig. 1. Slice of a studied object.

agnes.desolneux@math-info.univ-paris5.fr (A. Desolneux),
lithiaote@cmla.ens-cachan.fr (S. Li-Thiao-Te).
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(a) (b) (c)

Fig. 2. (a) Radiograph of the object of Figure 1. (b) Tomographic reconstruction.
(c) Edge detection on the tomography.

As we can see on Figure 2(c), many detected edges do not correspond to real
features. This is due to the high level of noise. Our goal is to perform an
automated selection of the “true” edges. For that purpose, the edge detector
will not be changed but we will compute also other significant features that
will allow us to select the “true” edges. Let us stress that our goal is not to
develop a new edge detector but to give a method of selection of edges from
the map given by an edge detector. We focus here on an edge detector which is
certainly not optimal but where the computations are easy. However, we think
that our method can be applied to other edge detectors such as the Canny
detector [3]. In his paper, Canny points out the fact that “it is very difficult to
set a threshold so that there is small probability of marking noise edges while
retaining high sensitivity”. And the solution he proposes to this problem is
the use of hysteresis. Here, we will use the zero-crossings of the Laplacian to
define edge points. We will see that in this case, we can compute a threshold
so that there is a small probability of selecting edges due to noise.

The ideas used here mainly come from previous work of Desolneux, Moisan and
Morel [6]. Informally speaking, they define the notion of significant edges by
computing the probability that some edge-related events appear in an image
of pure noise. When this probability is small enough, the edge is probably a
feature of the image and not due to noise. Unfortunately, that method assumes
that the noise is stationary (i.e. the law of the noise does not depend on the
location in the image) which, as is easily seen on Figure 2(b), is not the case
in our study because of the tomographic inversion (see Section 4.5.1 for some
examples of results obtained with their method). Moreover, their study is quite
general and, apart from the stationarity, no assumption is made on the noise.

In our case, as we deal with specific images, the noise is well-known and some
statistical models can be used. Indeed, we may suppose that the noise on the
radiograph (Figure 2(a)) is a Gaussian white noise with mean zero and with
a variance that can easily be estimated. After tomographic inversion, we still
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obtain Gaussian noise because that operation is linear, but the noise process
is correlated and non-stationary.

The edge detector we will use here consists in estimating the Laplacian at each
point, and edge points are then defined as the zero-crossings of the Laplacian.
As already said, we will compute additional features that discriminate the
significant edges. The easiest feature to compute is a kind of contrast mea-
surement C based on a gradient estimate. To be more precise, we consider
an image I of pure noise (that is a realization of our model of noise after
tomographic reconstruction), estimate the gradient and the Laplacian of I

at a point (u, v) (with an abuse of notation, we will denote by ∇I(u, v) and
∆I(u, v) these estimates and by C(u, v) the contrast value) and we compute,
for a fixed ε > 0, the smallest value s(ε) such that

P(C(u, v) ≥ s(ε)
∣

∣

∣ ∆I(u, v) = 0) ≤ ε (1)

where P(B
∣

∣

∣ A) denotes the conditional probability of B given the event A.

Then, we perform an edge detection on the studied image f (where we also
estimate ∇f and ∆f by the same method) and we keep the points (u, v) of
the studied image f that satisfy

• ∆f(u, v) = 0 (an edge is present at point (u, v)).
• C(u, v) ≥ s(ε) (this edge is significant).

From a statistical point of view, this consists in performing an hypothesis test.
We consider a point (u, v) where an edge takes place (∆(u, v) = 0) and we test
the null hypothesis “the zero-crossing of the Laplacian is due to the noise”.
The level of the test ε is arbitrarily chosen and related to the number of false
detections allowed. It will be set to ε = 10−5 hereafter (this corresponds to
2.6 errors on average in a 512×512 image). Let us mention that the threshold
value s(ε) varies slowly with respect to ε. For instance, in the case of a white
noise (see Section 3), the threshold value can be computed explicitly and is
proportional to

√
− ln ε. This implies that when we increase the specificity (less

false detections), the threshold increases slowly and the method retains much
of its sensitivity. When the null hypothesis is rejected, the edge is retained as
it comes from a “true” feature of the image, whereas when the null hypothesis
is accepted, the zero-crossing of the Laplacian may come from the noise and
the edge is not meaningful.

Let us mention at this point that such statistical approaches have already been
used for edge detection in [18], [16] or [13]. They usually employ estimates of
the gradient based on finite differences which fail in our case because these are
not robust enough to high levels of noise. Moreover, the noise is in most cases
stationary. Let us also cite [4] where the authors have modified the method of
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[6] to take into account the non-stationarity of some images, by a local noise
estimate. Their work is still general and does not make any assumption on the
noise structure. As we deal with specific experiments, the noise is always the
same and well-known and we can take proper advantage of this knowledge.
The problem of finding an optimal threshold is also a key point for image
thresholding methods [17] and particularly for the binarization of document
images [19]. In some cases, the thresholding is not stationnary: this happens
for instance in images with non-uniform illumination. Our framework here is
different since we deal with a well-known noise, and the question we address
is: given an edge detection method, what is the probability that an edge point
is due to noise ?

The paper is organized as follows: in Section 2, we present the edge detector
based on the estimates of the gradient and of the Laplacian. Then, in Section 3,
our method is presented in the case of a Gaussian white noise. Of course, this
does not correspond to our case but the computations are easier and demon-
strate the performance of this framework. In Section 4, we will first describe
the tomographic inversion and the operators involved, and then describe the
noise model we have to deal with. We will then apply the significant edges
detection method in the framework of this non-stationary noise. We will end
the section with some experiments and comparisons with other methods.

2 Estimating the Gradient and the Laplacian

In this section, we introduce the method for edge detection. We consider that
the image is a real-valued function (u, v) 7→ f(u, v) of two continuous real
parameters u and v. Then, we say that there exists an edge at point (u, v) if the
Laplacian of f is zero at this point. Moreover, the computation of the contrast
function C will be based on the gradient of f (see the end of this section for the
choice of this function). As the images are very noisy, these derivatives cannot
be estimated by usual finite differences. The method used here, sometimes
known as Savitsky-Golay smoothing, consists in locally approximating the
image by a polynomial. The derivatives of the polynomial are then identified
with those of the image.

2.1 An optimization problem

Let (u, v) denote the point where we want to compute the first and second
order derivatives of the image f . We choose 2 parameters : d which is the
maximum degree of the approximating polynomial and r which is the radius
of the ball on which we perform the approximation. We denote by Br(u, v)
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the ball of radius r centered at point (u, v). We will simply write Br when
the center of the ball is the origin (0, 0) of R

2. We are then looking for a
polynomial P of degree less that d such that

E(P ) =
∫

Br

(

f(u + x, v + y) − P (x, y)
)2

dx dy (2)

is minimal among all polynomials of degree less than d. In other words, we are
looking for the best approximation of f by a polynomial of degree less than d

on the ball Br(u, v) in the sense of the L2-norm.
This is an optimization problem where the unknowns are the coefficients of
the polynomial. As the problem is convex, there is a unique solution (given
by the orthogonal projection of f on the space of polynomials of degree less
than d) which is easily computed by solving the set of equations

∂E

∂ai

= 0

where the ai’s denote the coefficients of the polynomial.

Role of the ball radius. Two parameters are arbitrary chosen in this method.
The first one is the ball radius r. The larger r is, the more effective the smooth-
ing is. The influence of the noise is therefore attenuated with a large r but
the location of the edge is then less precise. We must consequently make a
balance between noise smoothing and edge detection accuracy. For instance,
if we have a small level of noise or if the edges are very complicated (with high
curvature), we must choose a small value for r.

Role of the polynomial degree. The second parameter is the polynomial degree.
Here again a large value of d gives a better approximation but does not smooth
the noise enough. In fact, as we are, in a first step, interested in the points
where the Laplacian is zero, it appears that a second-order polynomial is
enough. Of course, the estimate of the first order derivatives with a polynomial
of degree 2 is not very good and highly depends on the size of the window Br.
But we will see that this drawback can be useful for the choice of a contrast
function.

Choice of the L2-norm. Approximating a function in a L2-sense, although
quite usual, is not always accurate as some oscillations may appear or local
bad approximations are allowed (this usually occurs near the boundary of
the domain). However, as we will only look for polynomials of degree 2, the
oscillations do not appear and the L2-norm gives a good enough approximation
together with easy computations.

In what follows, the approximation is made with a polynomial of degree d = 2,
and the first and second order derivatives of the image are identified with those
of the approximating polynomial.
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2.2 Computations with a second order polynomial

Let us first introduce some notations. In the following, we will set

∀i, j ∈ N, bij(r) =
∫

Br

xiyjdx dy.

As the ball Br is symmetric, we have that bij(r) = 0 if i or j is odd and that
bij(r) = bji(r) for all i,j. In order to have simple expressions, we will also set:

b(r) = b20(r), α(r) = −2b20(r)

b00(r)
and β(r) =

1

2

(

b40(r) + b22(r) −
2b2

20(r)

b00(r)

)

Lemma 1 The gradient and the Laplacian of the polynomial P of degree 2
which is the best approximation of f on the ball Br(u, v) for the L2-norm,
being respectively denoted by ∇rf(u, v) = (∂rf

∂x
(u, v), ∂rf

∂y
(u, v)) and ∆rf(u, v),

are given by:

∂rf

∂x
(u, v) =

1

b(r)

∫

Br

x f(u + x, v + y) dx dy

∂rf

∂y
(u, v) =

1

b(r)

∫

Br

y f(u + x, v + y) dx dy

∆rf(u, v) =
1

β(r)

∫

Br

f(u + x, v + y)
(

α(r) + x2 + y2
)

dx dy.

Proof :

We consider a polynomial of degree 2 which we write

P (x, y) = axxx
2 + ayyy

2 + axyxy + axx + ayy + a0.

The equations obtained by writing ∇E(P ) = 0, where E(P ) is given by Equa-
tion (2), are:



















































































b40(r)axx + b22(r)ayy + b20(r)a0 =
∫

Br

x2 f(u + x, v + y) dx dy

b22(r)axx + b40(r)ayy + b20(r)a0 =
∫

Br

y2 f(u + x, v + y) dx dy

b22(r)axy =
∫

Br

x y f(u + x, y + v) dx dy

b20(r)ax =
∫

Br

x f(u + x, y + v) dx dy

b20(r)ay =
∫

Br

y f(u + x, v + y) dx dy

b20(r)axx + b20(r)ayy + b00(r)a0 =
∫

Br

f(u + x, v + y) dx dy
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We then obtain the following estimates for the derivatives:

∂P

∂x
(0, 0) = ax =

1

b20(r)

∫

Br

x f(u + x, v + y) dx dy

∂P

∂y
(0, 0) = ay =

1

b20(r)

∫

Br

y f(u + x, v + y) dx dy

∆P (0, 0) = 2(axx + ayy)

=
2

b40 + b22 − 2b220
b00

∫

Br

f(u + x, v + y)

(

−2b20

b00
+ x2 + y2

)

dx dy.

2

2.3 Choice of the contrast function

We would like to use a contrast function based on the estimates of the first
and second derivatives of the image f obtained in the previous section.

The simplest contrast function we can choose is the norm of the gradient:

C1(u, v) = ‖∇rf(u, v)‖ .

Indeed, the value of this norm tells how sharp the edge is. This contrast
function performs reasonably well and will be used when the images we deal
with are piecewise constant.

However, in many cases, the objects we handle are not homogeneous and their
images contain some slopes (see Figure 3). In this case, the gradient norm is
not a good contrast function. Indeed, let us consider an image with a constant
slope with some noise (see Figure 4). We would like to say that no edge is
significant in that case. However, the value of the gradient norm (which will
be close to the value of the slope) will always be greater than the threshold
value s when the noise level is small.

Fig. 3. Object with an inhomogeneous material
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In the latter case, we take advantage of the dependence of the first order
derivatives estimates with respect to the ball radius. Indeed, the estimates of
the gradient in the case of the constant slope in Figure 4 will not depend on
the size of the window (see Figure 4) whereas, when an edge (a discontinuity)
occurs, the estimates do depend on that radius (see Figure 5). So, we can use
as a contrast function the function

C2(u, v) = ‖∇r1f(u, v)−∇r2f(u, v)‖

where r1 < r2 and ∇rf denotes the value of the gradient estimate with a ball
of radius r.

Fig. 4. A noisy constant slope: the gradient of the approximating polynomial does
not depend on the radius r.

Fig. 5. An edge on a noisy slope: the approximating polynomials with two different
values of the radius r.

3 Significant edges in the case of a Gaussian white noise

3.1 White noise and Wiener integral

We recall here the definition and the main properties of a white noise in a
continuous setting and of the Wiener integral. We refer to [20], [10] or [11] for
more on white noise and the Wiener integral.
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Definition 1 A Gaussian white noise on R
2 of variance σ2 is a random func-

tion W defined on the Borel sets A of R
2 of finite Lebesgue measure (denoted

by |A|) such that

• W (A) is a Gaussian random variable (r.v.) with mean 0 and variance σ2|A|,
• If A1 ∩ A2 = ∅, the r.v. W (A1) and W (A2) are independent and

W (A1 ∪ A2) = W (A1) + W (A2).

Such a function W exists but is not a true measure since the two-parameters
process

B(s, t) := W
(

(0, s] × (0, t]
)

(with the convention that (0, x] is [x, 0) when x is negative) is of unbounded
total variation. This process is usually called the Brownian sheet.

Nevertheless we can define the so-called Wiener integral
∫

fdW for every func-
tion f in L2(R2). We can also define the derivatives of the Brownian sheet in
the sense of Schwartz distributions (although the Brownian sheet is nowhere
differentiable). Thus, we define

Ḃ(s, t) =
∂2B(s, t)

∂s∂t

and we have
∫

fdW =
∫

R2
f(u, v)Ḃ(u, v)du dv a.s.

for every function f in the Schwartz space.

With a slight abuse of notations, we call Ḃ a Gaussian white noise and we
always denote by

∫

R2 f(u, v)Ḃ(u, v)du dv the Wiener integral with respect to
this white noise, for every function f ∈ L2. The main properties of this integral
are

• For every f , the r.v.
∫

R2
f(u, v)Ḃ(u, v)du dv is a Gaussian r.v. with mean 0

and variance σ2
∫

R2
f(u, v)2du dv.

• For every f, g, the random vector

(∫

R2
f(u, v)Ḃ(u, v)du dv,

∫

R2
g(u, v)Ḃ(u, v)du dv

)

is Gaussian with covariance

σ2
∫

R2
f(u, v)g(u, v)du dv.

We will use these properties to compute the laws of ∇I and ∆I.
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3.2 Laws of the gradient and of the Laplacian

We suppose here that our noise is a Gaussian white noise, of variance σ2. As
we have already said, this case is not the one we are interested in and our
method is probably out-performed by other standard methods in that case.
The goal of this section is to present our method in a simple case where the
computations are easy and can be carried out in a continuous setting. We will
only focus here on the case of piecewise constant objects and therefore we will
use the contrast function C1.

Lemma 2 If the image I is a Gaussian white noise of variance σ2, then

(

∂rI

∂x
,
∂rI

∂y
, ∆rI

)

is a Gaussian vector with mean zero and covariance matrix















σ2

b(r)
0 0

0 σ2

b(r)
0

0 0 V (r, σ)















, where V (r, σ) =
σ2

β2(r)

∫

Br

(

α(r) + x2 + y2
)2

dx dy.

Proof : We compute the laws of the approximate derivatives of I when I = Ḃ.
We recall that these derivatives are given by

∂rI

∂x
(u, v) =

1

b(r)

∫

Br

x Ḃ(u + x, v + y) dx dy

∂rI

∂y
(u, v) =

1

b(r)

∫

Br

y Ḃ(u + x, v + y) dx dy

∆rI(u, v) =
1

β(r)

∫

Br

Ḃ(u + x, v + y)
(

α(r) + x2 + y2
)

dx dy.

Because of the stationarity of Ḃ, they have the same law as

∂rI

∂x
(0, 0) =

1

b(r)

∫

Br

x Ḃ(x, y) dx dy

∂rI

∂y
(0, 0) =

1

b(r)

∫

Br

y Ḃ(x, y) dx dy

∆rI(0, 0) =
1

β(r)

∫

Br

Ḃ(x, y)
(

α(r) + x2 + y2
)

dx dy.
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As we deal with Wiener integrals, we deduce that the vector

(

∂rI

∂x
,
∂rI

∂y
, ∆rI

)

is a Gaussian vector with mean zero.

To compute its covariance matrix, let us recall that, if X and Y are random
variables defined by

X =
∫

Br

h1(x, y)Ḃ(x, y) dx dy

Y =
∫

Br

h2(x, y)Ḃ(x, y) dx dy

then we have

Cov(X, Y ) = σ2
∫

Br

h1(x, y)h2(x, y) dx dy.

Consequently, we have for instance:

Cov

(

∂rI

∂x
,
∂rI

∂y

)

=
σ2

b2(r)

∫

Br

x y dx dy = 0.

By some analogous calculations, we finally get the following covariance matrix
for our Gaussian vector:















σ2

b(r)
0 0

0 σ2

b(r)
0

0 0 V (r, σ)















where

V (r, σ) =
σ2

β2(r)

∫

Br

(

α(r) + x2 + y2
)2

dx dy.

2

Let us recall that two uncorrelated components of a Gaussian vector are in-
dependent random variables (which is not the case in general). Therefore we
immediately have the following properties:

• The random variable ‖∇rI‖2 is the sum of two squared independent Gaus-
sian random variables which have the same variance. It is therefore dis-
tributed as a χ2-law. More precisely, its law is

σ2

b(r)
χ2(2)

where χ2(2) denotes a χ2-law with two degrees of freedom.
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• The random variable ∆rI is a Gaussian random variable with mean zero
and variance V (r, σ).

• The random variables ‖∇rI‖2 and ∆rI are independent.

3.3 Computation of the threshold

Proposition 1 Let I be a Gaussian white noise and let s(ε) be the threshold
value such that

P

(

‖∇rI‖ ≥ s(ε)
∣

∣

∣ ∆rI = 0
)

≤ ε.

Then

s(ε) =

√

√

√

√− 2σ2

b(r)
ln ε.

Proof : To begin with, as the random variables ‖∇rI‖2 and ∆rI are indepen-
dent, we can forget the conditioning and only compute

P

(

‖∇rI‖ ≥ s(ε)
)

= P

(

‖∇rI‖2 ≥ s(ε)2
)

.

As a consequence of Lemma 2, we have that the law of ‖∇rI‖2 is σ2

b(r)
χ2(2).

Now, since the density of a χ2(2) law is the one of a Γ
(

1
2
, 1
)

law, we have that

the law of ‖∇rI‖2 is given by

P

(

‖∇rI‖2 ≥ s2
)

=
∫ +∞

b(r)

σ2 s2

1

2
e−

t

2 dt = exp

(

−b(r)s2

2σ2

)

.

This finally leads to the announced threshold value s(ε). 2

3.4 Experiments

We consider the piecewise constant object of Figure 1 with some additive
Gaussian white noise. The densities of the different materials of this object
are:

• 1 for the outer material,
• 0.8 for the material inside the circle,
• 0.3 for the other inner material.

The standard deviation of the Gaussian noise is σ = 0.2 in the experiments
of Figure 6 and is σ = 0.4 in the experiments of Figure 7. Both images have
the same size 512× 512 pixels. The experiments have been carried out with a
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ball of radius r = 12 pixels.
The different images of Figures 6 and 7 are respectively:

• (a) The noisy image.
• (b) The zero-crossings of the Laplacian with the contrast function C1 visual-

ized in grey-level (the white color corresponds to high value for the contrast
function C1).

• (c) The extracted significant edges (ε = 10−5).

(a) (b) (c)

Fig. 6. (a) The noisy image (σ = 0.2). (b) The zero-crossings of the Laplacian with
the contrast function C1 visualized in grey-level. (c) The extracted significant edges
(ε = 10−5).

(a) (b) (c)

Fig. 7. (a) The noisy image (σ = 0.4). (b) The zero-crossings of the Laplacian with
the contrast function C1 visualized in grey-level. (c) The extracted significant edges
(ε = 10−5).

In the case of a signal-to-noise ratio large enough (Figure 6), all the edges are
well detected and the “false” edges are removed. However, the edges which
have a high curvature are smoothed by our algorithm. This drawback is all
the more important when the ball radius r is large (the influence of the value
of this radius will be studied in the experiments of the next section).
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When the noise level is rather large (Figure 7), some edges of the image cannot
be extracted from the noise (this happens when the contrast associated to this
edge is close to the noise level).

4 Significant edges in the case of Gaussian white noise on a radio-

graph

4.1 Tomography

Let us now turn to the more realistic case we are interested in. As we mentioned
in the introduction, we first make a radiography of an object. Tomography is
the inverse problem associated with reconstructing the initial object from its
radiograph. This is now a well-known problem as it is the key tool in medical
scanner imagery (or other medical imaging systems).

To begin with, let us describe what radiography is from a mathematical point
of view. The studied object is exposed to X-rays that traverse it and some
of the X-photons are absorbed. In the output, we observe the quantity of X-
photons that have not been absorbed by the material, and we thus measure
in some sense the “mass” of material the ray went through. More precisely,
if the object is described by its density µ (which is a function of the space
coordinates), what can be measured at any point of the receptor is

∫

ray
µ dℓ

where “ray” means the straight line that goes from the source to the studied
point of the receptor (we suppose that the X-ray source is just a point, which
implies that the previous line is unique).

We also assume that the X-ray source is far away from the object so that the
rays are assumed to be all parallel. Then, to reconstruct an object from its
radiographs, we must rotate the object and take a radiograph for every angle
θ ∈ [0, π). This leads to the so-called Radon transform of the object, which is
known to be invertible. This is the principle of the medical scanner.

In our case, as the object is radially symmetric, if we rotate around its sym-
metry axis, all the radiographs are exactly the same. Consequently, a single
radiograph of such an object is enough to perform the tomographic recon-
struction. Indeed, if f(x, y) denotes the density along a slice that contains the
symmetry axis (see Figures 1 and 8), then a radiograph of this object is given
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by

g(u, v) = 2
∫ +∞

|u|
f(x, v)

x√
x2 − u2

dx.

This is a linear transform and we will denote it hereafter by

g = Hf.

As we already said, this linear operator H is invertible and we in fact know
explicitly its inverse on the space of continuously differentiable functions g:

f(x, y) = (H−1g)(x, y) = −1

π

∫ +∞

x

1√
u2 − x2

∂g

∂u
(u, y)du.

(The proof of this formula and more details about the operators H and H−1

can be found in the book of R.N. Bracewell [2] pp. 244-250).

y

x

u

v
axis of symmetry

Fig. 8. Radiography of a radially symmetric object.

Our assumption on the noise is that it is an additive Gaussian white noise on
the radiograph (i.e. on g). But what we want is to study the object given by
f . So we must transform the white noise by the operator H−1. Unfortunately,
because of the singularity of the integral at x = 0, we cannot apply the
operator H−1 to a white noise Ḃ, even in a L2-sense. Therefore, we will work
in a discrete framework: the images f and g are naturally discretized (as they
are numerical images). This leads to a discretization of the operator H , which
we will still denote by H and which now may be viewed as a matrix. The
discretization is made in such a way that the symmetry axis (x = 0) is settled
between two pixels so that the previous singularity does not appear. This
matrix is then invertible and we denote by H−1 its inverse which we can make
now operate on a discrete Gaussian white noise.

To give an idea of the ill-conditionedness of the matrix H , we can compute its
condition number. For an image of size 512× 512, we find that this condition
number is 377, which shows how H−1 amplifies noise.
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4.2 Law of the noise on the tomographic reconstruction

Let us consider a field η = (ηi,j)1≤i≤p,1≤j≤n of independent identically dis-
tributed (i.i.d.) random Gaussian variables with mean 0 and variance σ2. Let
us define I = (Ii,j) the random field obtained after tomographic reconstruc-
tion, i.e. after making H−1 operate on η = (ηi,j). In fact, as the X-rays are
supposed to be parallel, the reconstruction can be made line by line indepen-
dently and therefore, if we consider the row vectors

~ηi = (ηi,1, . . . , ηi,n) and ~Ii = (Ii,1, . . . , Ii,n)

then, if we denote M = (H t)−1 (where H t is the transpose of H), we have

~Ii = ~ηiM.

(Notice that M is independent of i and that its size is n × n).

Consequently, the law of I is characterized by the following properties:

• I = (Ii,j) is a Gaussian random field.

• For i 6= k, ~Ii and ~Ik are independent.
• For each i, the vector ~Ii is a Gaussian vector of mean 0 and covariance

matrix

Γ = σ2M tM,

where M t denotes the transpose of M .

4.3 Laws of the gradient and of the Laplacian

The expressions obtained in Section 2 for the gradient and for the Laplacian of
an image in a continuous setting are easily translated in the discrete framework
we now deal with. Indeed, we have

∂rI

∂x
(u, v) =

1

b(r)

∑

(i,j)∈Br

jIu+i,v+j

∂rI

∂y
(u, v) =

1

b(r)

∑

(i,j)∈Br

iIu+i,v+j

∆rI(u, v) =
1

β(r)

∑

(i,j)∈Br

(

α(r) + i2 + j2
)

Iu+i,v+j

where Br now denotes the discrete ball of radius r i.e.

Br = {(i, j), i2 + j2 ≤ r2}
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and where the constants α(r), β(r), b(r), . . . are the discrete analogues of the
constants in Section 2.

With these estimates, the contrast functions C1 and C2 are easily comptuted.
They are both of the form

C(u, v) =
√

C2
x(u, v) + C2

y (u, v)

with

Cx(u, v) =
∑

i,j

jcijIu+i,v+j and Cy(u, v) =
∑

i,j

icijIu+i,v+j,

where the coefficients cij are given by:

(1) In the case of the contrast function C1,

cij =
1

b(r)
1(i,j)∈Br

.

(2) In the case of the contrast function C2 with two balls of radius r1 < r2,

cij =
1

b(r1)
1(i,j)∈Br1

− 1

b(r2)
1(i,j)∈Br2

,

where 1A denotes the characteristic function of the event A (its value is
1 is A is true and it is 0 otherwise).

Therefore, the computations of the laws will be similar and they will be treated
simultanously using the coefficients cij.

When the contrast function C2 is used with two radii r1 < r2, we compute the
Laplacian ∆rI with the larger ball radius, that is with r = r2.

Lemma 3 For both contrast functions C1 and C2, the vector

(Cx(u, v), Cy(u, v), ∆rI(u, v))

is a Gaussian vector with mean 0 and covariance matrix of the form:















σ2
x 0 σx,∆

0 σ2
y 0

σx,∆ 0 σ2
∆















In particular, we have that Cy is independent of (Cx, ∆rI) .

Proof : The lemma is a consequence of the two following remarks. The first
one is that, in both cases for the contrast function, the coefficients cij are
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symmetric: ci,j = c−i,j and ci,j = ci,−j. Thus they satisfy that whenever k or l

is odd then
∑

(i,j)∈Br

ikjlcij = 0 (3)

The second remark is that the vectors ~Ii and ~Ik are independent if i 6= k. And
we thus have

E [Ii,jIk,l] =







0 if i 6= k,

Γ(j, l) if i = k

where E[X] denotes the expectation (i.e. the mean value) of the random vari-
able X.

We can now compute the covariance matrix. For instance, let us start with:

E [CxCy] =
∑

(i,j,k,l)

jkcijcklE [Iu+i,v+jIu+k,v+l]

=
∑

(i,j,l)

jicijcilΓ(v + j, v + l)

=
∑

(j,l)

jΓ(v + j, v + l)
∑

i

icijcil = 0.

Similar computations give E [Cy∆rI] = 0 and

σ2
x :=E

[

C2
x

]

=
∑

(i,j,l)

jlcijcilΓ(v + j, v + l);

σ2
y :=E

[

C2
y

]

=
∑

(i,j,l)

i2cijcilΓ(v + j, v + l);

σ2
∆ :=E

[

(∆rI)2
]

=
1

β2(r)

∑

(i,j,l)∈Ωr

(α(r) + i2 + j2)(α(r) + i2 + l2)Γ(v + j, v + l);

σx,∆ :=E [Cx∆rI] =
1

β(r2)

∑

(i,j,l)∈Ωr2

jcij(α(r) + i2 + l2)Γ(v + j, v + l),

where we have set Ωr = {(i, j, l) such that (i, j) ∈ Br and (i, l) ∈ Br}.

2

4.4 Computation of the threshold

As the first and the second order derivatives are no longer independent, we
must compute the conditional law of the contrast function knowing that ∆rI =
0.
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Proposition 2 Let C be one of the two contrast functions. Then, the random
variable ‖C‖2 is distributed, conditionally on {∆rI = 0}, as the sum of the
square of two independent Gaussian random variables, with mean zero and
respective variance

σ2
y and σ2

x|∆=0 =
σ2

xσ
2
∆ − σ2

x,∆

σ2
∆

,

that is a Gamma law with parameters 1
2

and 1
2
(σ2

y + σ2
x|∆=0).

Remark: The threshold value s(ε) defined by

P

(

‖C‖ ≥ s(ε)
∣

∣

∣ ∆rI = 0
)

≤ ε

can no longer be computed explicitly but a numerical approximation is easy
to get as the Gamma density is well-known.

Proof : Cy is independent of the pair (Cx, ∆rI). Thus, conditionally on {∆rI =
0}, the random variables Cy and Cx are still independent and the conditional
law of Cy is the Gaussian distribution with mean 0 and variance σ2

y .

Now, if D2 := σ2
xσ

2
∆ − σ2

x,∆ 6= 0, then the law of the pair (Cx, ∆rI) has a
density which is given by

fx,∆(t1, t2) =
1

2πD
e−

1
2
(t1,t2)Λ(t1,t2)t

where Λ is the inverse of the covariance matrix, i.e.

Λ =
1

D2







σ2
∆ −σx,∆

−σx,∆ σ2
x





 .

Let us recall that, if f∆ denotes the Gaussian density of ∆rI, then the law of
Cx conditionally on ∆rI = 0 has a density given by

fx,∆(t1, 0)

f∆(0)

and so is Gaussian with mean zero and variance

σ2
x|∆=0 =

D2

σ2
∆

·

This result is still valid when D = 0 since it implies that Cx and ∆rI are
proportional and thus the law of Cx conditionally on ∆rI = 0 is Gaussian
with mean 0 and variance 0 (it is not random anymore). 2
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4.5 Experiments

4.5.1 Case of a piecewise constant object

To begin with, we still study the piecewise constant object of Figure 1 de-
scribed in Section 3.4. Let us recall that this image represents a slice of the
object that contains the symmetry axis. The 3-dimensional object is obtained
by rotation around the vertical axis that goes through the middle of the image.

In that case, we will use the contrast function C1, which is simply the norm of
the gradient. The experiments of Figure 9 correspond to a ball radius r = 12
pixels. The size of the images is 512 × 512 pixels.
We start with the image of the radiograph obtained after the application of
matrix H to our initial image. Then a Gaussian white noise (with σ = 4)
is added to this radiograph. Then tomographic inversion (application of the
matrix H−1) is performed. This gives the image of Figure 9(a). As we already
mentioned it, the noise is not stationary, it is now correlated and its variance
depends on the distance from the symmetry axis. For instance, if the standard
deviation of the Gaussian white noise on the radiograph is σ = 4, the variance
of the noise on the tomography is about 2σ2 = 32 near the axis, 0.02σ2 = 0.32
at a distance of 65 pixels from the axis and 8.10−3σ2 = 0.128 at the edge of
the image located on the right at 200 pixels from the axis.

(a) (b) (c)

Fig. 9. (a) Reconstructed object from a single noisy radiograph, (b) Contrast value
at the zero-crossings of the Laplacian for the contrast function C1, (c) Significant
edges.

The threshold value can be numerically computed. As an illustration, we dis-
play on Figure 10 the threshold value for the contrast C1 as a function of the
distance from the symmetry axis (range from −256 to +256), in the case of a
noise level σ = 4 and of a ball radius r = 12.

Some edges are not declared significant by our algorithm near the symmetry
axis; the noise is too pronounced there to distinguish the true edges from the
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Fig. 10. Numerical computation of the threshold as a function of the distance from
the symmetry axis for the noise level σ = 4 in the case r = 12.

noise. In other words, the threshold value near the symmetry axis (see Figure
10) can be higher than the contrast associated with small differences in the
density of the object. In those images, an edge with a low contrast is significant
if it is far enough from the symmetry axis (see also Figure 11). Even when the
edges are significant, a high level of noise leads to a decrease in the location
accuracy and increased raggedness of the edges. Moreover, some details are
lost because of the smoothing due to the size of the ball.

Since the edges separate two materials, one included in another, they must be
closed curves. Currently, a human operator has to close them manually. Our
method yields open edges. This does not imply that there is no frontier between
the materials but only that the noise level is too high to give an accurate
position of the edge. Therefore, we can either close the curves manually, or
with standard curve completion methods, but this will not tell which closure is
better (i.e. the closest to the real shape). Several methods are usual for curve
completion. Let us mention

• Methods based on graph exploration [7],
• Methods inspired by Neurobiology [9],
• Snakes with fixed tips [5].

Choice of the ball radius. Let us compare the results obtained with different
ball radii (see Figure 11). When the ball radius is small, the edges are more
accurate but some are not significant: the smoothing of the noise is not enough
to get rid of it. On the contrary, when the radius is large, most of the edges
are detected but small details are lost because of this smoothing.
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r = 6 r = 12 r = 20

Fig. 11. Significant edges obtained with different ball radius: from left to right:
r = 6, r = 12 and r = 20

The choice of the ball radius depends essentially on the complexity of the edges
(or the degree of accuracy we want). If we know (from prior knowledge) that
the edges are very smooth, a large radius give very good results (see the outer
edge of our studied object). On the contrary, if we look for very complicated
objects, we must choose smaller radii but some edges (with low contrast) may
become non-significant.
The choice of radius 12 corresponds to an appropriate balance between the
size of typical details and an effective smoothing of the noise in our case.

Comparison with other methods. We will give here the results obtain with two
other methods which have both the advantage of directly providing closed
curves.
• The first method is the one introduced in [6]. One keeps only the meaningful
level lines of the image, which are defined by: the minimum of the norm of the
gradient along the level line is larger than a threshold T (ε). This threshold
is computed from the gradient histogram of the image. The meaning of this
definition is that such curves have a probability less than ε to appear in a
pure noise image (with same gradient histogram as the original image). The
results obtained with this method are shown on Figure 12. On the first row: we
smooth the image of Figure 9(a) by convolution with a Gaussian kernel with
respective standard deviation 2 and 4 pixels. And then, on the second row, we
display the respective meaningful level lines. This experiment clearly shows
that, since the noise model is not adapted to the image (in particular, the
non-stationarity is not taken into account), many false contours are detected.
• The second method is the famous Mumford-Shah segmentation for piecewise
constant images [15]. Given an observed image g0 defined on a domain D, one
looks for the piecewise constant approximation g of g0 that minimizes the
functional

Eλ(g) =
∫

D
|g − g0|2 + λ Length

(

K(g)
)

,

where Length
(

K(g)
)

is the one-dimensional measure of the discontinuity set
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Fig. 12. First row: the image of Figure 9(a) is smoothed by convolution with a
Gaussian kernel with respective standard deviation 2 and 4 pixels. Second row: the
meaningul level lines of each image.

Fig. 13. Results obtained with the Mumford-Shah segmentation for piecewise con-
stant images, for three different values of λ (see text). From left to right, the number
of regions in the segmented image is respectively 3, 6 and 7.

of g (which is a set of curves denoted by K(g)) and λ is a parameter which
weights the second term of the functional. The results obtained with this
method are shown on Figure 13 for three different values of λ: respectively
λ = 42882, λ = 12220 and λ = 11621 (the size of the image is 512 × 512).
The implementation used here is the region-merging algorithm described in
[12]. The main drawback of this method is that there is no verification that
the obtained contours are not due to the noise, and moreover the user has to
give the value of λ (or of the final number of regions).
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Fig. 14. From left to right: results of the Canny edge detector for respectively, the
original image (Figure 9(a)), the image smoothed by convolution with a gaussian
kernel of width σ = 2 (middle) and σ = 4 (see first row of Figure 12).

We end this subsection with the results of Canny detector on the original image
and on the images obtained after Gaussian filtering with respective standard
deviation σ = 2 and σ = 4. The results are shown on Figure 14. On these
edge maps, no thresholding has been performed. The next step would be to
compute the significant edge points. According to the definition of a significant
edge point, the question would be: I being a pure noise image (with known
parameters), what is the law of |∇I|(x) conditionally on x being a Canny edge
point ? Such a computation is difficult to perform and should be part of some
future work. The obtained result would probably be close to the ones obtained
with our method (see for instance Figure 11).

4.5.2 Case of an inhomogeneous material

Let us turn now to a more realistic case: the materials are not homogeneous
and consequently the object is no longer piecewise constant (see Figure 15(a)).
The object is now composed of an inhomogeneous material (with constant
gradient) with homogeneous objects inside. In the first experiment, the noise
level is σ = 4. The results (Figures 15 and 16) are similar to the ones obtained
for an homogeneous object in the previous section.

In the second experiment (Figure 17), the noise level is σ = 0.4. It is lower
than the one used in the previous experiments, and this is why the artifacts of
tomographic reconstruction are less pronounced here. The noise level here is
such that the threshold computed with the contrast function C1 is lower than
the gradient of the material. In that case the use of the contrast function C1

fails as many detected edges remain significant. This is illustrated by Figure
18(a). Figure 18(b) gives the significant edges obtained with the contrast func-
tion C2 with two ball radii r1 = 6 and r2 = 12. With this contrast function,
we eventually get only the “true” edges.

Choice of the ball radii. Here again, we must discuss how the radii are chosen.
The discussion concerning the choice of the radius of the outer ball is exactly
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(a) (b) (c)

Fig. 15. (a) Inhomogeneous object, (b) Its noisy radiograph (σ = 4), (c) Tomo-
graphic reconstruction.

(a) (b)

Fig. 16. (a) Contrast value at the zero-crossings of the Laplacian for the contrast
function C1 (r = 12), (b) Significant edges of the inhomogeneous object.

(a) (b) (c)

Fig. 17. (a) Inhomogeneous object, (b) Its noisy radiograph (σ = 0.4), (c) Tomo-
graphic reconstruction

the same as for the contrast function C1. That is why we kept the value of 12.
The inner ball radius must not be too close to the outer one as the difference
between the two gradients would be too small. But this radius must also be
not too small in order to still perform a good smoothing of the noise. The
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(a) (b)

Fig. 18. (a) Significant edges with the C1 contrast function (r = 12): there are
many false detections. (b) Significant edges with the C2 contrast function (r1 = 6
and r2 = 12): only the “true” edges are obtained.

choice of the half of the outer radius is usually a good compromise.

5 Discussion and conclusion

In this paper, we have introduced a method for the detection of significant
edges in noisy images when the parameters of the noise are known. The general
idea of the method is to make a statistical test to decide whether an edge point
is due to the noise or not.
The edge detector we have used here is the zero-crossings of an estimated
Laplacian of the image. We did not use a Gaussian filter to smooth the image
and estimate its Laplacian (as it is done in Marr-Hildreth detector [14]), but
rather local polynomial approximations of the image. The reason for this is
that such an estimator is more robust to noise.

We think that future extensions of our work should mainly focus on:
- performing the same kind of computations for Marr-Hildreth detector, for
Canny detector, and more generally for “derivative-based” edge detector (in-
cluding non-isotropic ones);
- being able to merge the informations obtained at different scales (which are
the different ball radii in our case). Indeed, as we have shown it in the experi-
mental section, it is sometimes necessary to use the gradient estimated at two
different scales to obtain good results;
- extending the framework to tomography without rotational symmetry, and
more generally to other situations of non-stationary noise (including possibly
non-Gaussian ones).
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