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We consider the dephasing rate of an electron level in a quantum dot, placed next to a fluctuating
edge current in the fractional quantum Hall effect. Using perturbation theory, we show that this
rate has an anomalous dependence on the bias voltage applied to the neighboring quantum point
contact, which originates from the Luttinger liquid physics which describes the Hall fluid. General
expressions are obtained using a screened Coulomb interaction. The dephasing rate is strictly
proportional to the zero frequency backscattering current noise, which allows to describe exactly
the weak to strong backscattering crossover using the Bethe-Ansatz solution.

Transport through a quantum dot (QD) is typically af-
fected by the environment which surrounds it: the level of
such a dot acquires a finite linewidth if this environment
has strong charge fluctuations which couple to the dot.
Several seminal experiments, performed with a quantum
dot embedded in an Aharonov Bohm (AB) loop, probed
the phase coherence of transport when this dot is coupled
to a controlled environment, such as a quantum point
contact (QPC) with a fluctuating current1,2,3,4. Charge
fluctuations in the QPC create a fluctuating potential
at the QD, modulate the electron levels in the QD, and
destroy the coherence of the transmission through the
QD5,6. The destruction of coherence is called “dephas-
ing”. A general theoretical framework for describing de-
phasing has been presented in Ref. 7,8, and was ap-
plied to a quantum Hall geometry9, and to a normal
metal-superconductor quantum point contact10. In all
the above, the dephasing rate typically increases when
the voltage bias of the QPC is increased.

The purpose of the present paper is to discuss the case
of dephasing from a QPC in the fractional quantum Hall
effect (FQHE) regime11. QPC transmission can then be
described by tunneling between edge states12, the quan-
tized analog of classical skipping orbits of electrons. In
this strongly correlated electron regime, edge states rep-
resent collective excitations of the quantum Hall fluid:
depending on the pinching of the QPC, it is either FQHE
quasiparticles (QP) or electrons which tunnel. It is par-
ticularly interesting because the current-voltage and the
noise characteristics deviate strongly from the case of
normal conductors13,14,15: for the weak backscattering
(WBS) case, the current at zero temperature may in-
crease when the voltage bias is lowered, while in the
strong backscattering (SBS) case the I(V ) is highly non
linear. It is thus important to address the issue of dephas-
ing from a Luttinger liquid. Here, we consider the case of
simple Laughlin fractions, with filling factor ν = 1/m (m
is an odd integer). As in Ref. 7, the dephasing of an one
electron state in the QD is induced by its capacitive cou-
pling to the biased QPC is considered by assuming that
the level modulation in the QD is a Gaussian process,
neglecting back-action effects on the QPC.
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FIG. 1: Schematic description of the setup: the quantum dot
(top) is coupled capacitively to a quantum point contact in
the FQHE regime: a) Case of weak backscattering, b) Case
of SBS.

The setup is described in Fig. 1. A gate voltage con-
trols the transmission in the fractional quantum Hall fluid
through the QPC. The single level Hamiltonian for the
QD reads HQD = ǫ0c

+c, where c+(c) creates (annihi-
lates) one electron. This QD is coupled capacitively to
the nanostructure – a point contact in the FQHE. The
Hamiltonian which describes the edge modes in the ab-
sence of tunneling is:

H0 =
h̄vF

4π

∫

dx[(∂xφ1)
2 + (∂xφ2)

2] , (1)

with φi(x) (i = 1, 2) is the Luttinger bosonic field,
which relates to the electron density operator ρi(x) by
∂xφi(x) = π√

ν
ρi(x).

By varying the gate potential of QPC, one can switch
from a WBS situation, where the Hall liquid remains in
one piece (Fig. 1a), to a SBS situation where the Hall
liquid is split in two (Fig. 1b). In the former case, the
entities which tunnel are edge QP excitations. In the
latter case, between the two fluids, only electrons can
tunnel. Here, we will consider first the WBS case, using
a duality transformation13,16 to describe the SBS case.
The tunneling Hamiltonian between edges 1 and 2 reads:

Ht = eiω0tΓ0ψ
+
2 (0)ψ1(0) + h.c (2)

where we have used the Peierls substitution to include
the voltage ω0 = e⋆V/h̄, e⋆ = νe is effective charge, ν is
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filling factor in the case of WBS. In the SBS case, ω0 =
eV/h̄. The QP operator in the case of WBS is ψi(x) =

ei
√

νφi(x)/
√

2πα (the spatial cutoff is defined as α = vF τ0,
with τ0 is the temporal cutoff), and in the SBS case the
electron operator is obtained with the substitution ν →
1/ν.

The Hamiltonian describing the interaction between
the QD and the QPC reads Hint = c+c

∫

dxf(x)ρ1(x),
with f(x) is a Coulomb interaction kernel, which is ex-
amply assumed to include screening by the nearby gates
f(x) ≃ e2e−|x|/λs/

√
x2 + d2, where d is the distance from

the QD to the edge, λs is a screening length due to the
nearby gates.

The dephasing of an electron state in a QD coupled
to a fluctuating current is caused by the electron density
fluctuations, which generate a fluctuating potential in the
QD, resulting in a blurring of the energy level ǫ0. The
dephasing rate, expressed in terms of irreducible charge
fluctuations in the adjacent wire, is written as7,8,9:

τ−1
ϕ =

1

4h̄2

∫ ∞

−∞
dt

∫

dxf(x)

∫

dx′f(x′)

×〈〈ρ1(x, t)ρ1(x
′, 0) + ρ1(x

′, 0)ρ1(x, t)〉〉 . (3)

In normal and superconducting systems, the dephasing
rate can be calculated using the scattering approach. For
Luttinger liquids and in particular for the FQHE, it is
conveninent to use the Keldysh approach, in a similar
manner as for the calculations of current noise of Refs.
15,17.

Here a tunneling event (at x = 0) creates an excitation
which need to propagate to the location of the QD. The
equilibrium (zero point) contribution to the dephasing
rate corresponds to the zero order in the tunneling am-
plitude Γ0 (it is labeled (τ−1

ϕ )(0)). Notice that there is no
contribution to first order in the tunneling Hamiltonian,
while the nonequilibrium contribution corresponds to the
second order in Γ0 exists, τ−1

ϕ = (τ−1
ϕ )(0) +(τ−1

ϕ )(2) + ....

The dephasing rate in the WBS case is obtained as18:

(τ−1
ϕ )(0) =

ν

4π2h̄2

∫ ∞

−∞
dt

∫

dxf(x)

∫

dx′f(x′)

×
∑

η=±
∂2

xx′G
η−η
1 (x− x′, t) . (4)

Here we define the bosonic Green’s function Gη1η2

i (x −
x′, t1 − t2) = 〈φi(x, t

η1

1 )φi(x
′, tη2

2 ) − φ2
i 〉. We adopt the

convention that the coefficients η,η1,2 = ± identify the
upper/lower branch of the Keldysh contour. For the 2nd

order, since ψ1, ψ2 are independent in the absence of tun-
neling, we obtain

∑

η=±
〈TKρ1(x, t

η)ρ1(x
′, t′−η)

(−i)2
2h̄2

∫

K

dt1

∫

K

dt2Ht(t1)Ht(t2)〉

=− Γ2
0ν

2π2h̄2(2πα)2

∑

η,η1,η2,ǫ1,ǫ2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2e

i(ǫ1ω0t1+ǫ2ω0t2)η1η2

×〈TK∂xφ1(x, t
η)∂x′φ1(x

′, t′−η)ei
√

νǫ1φ1(0,t
η1

1
)ei

√
νǫ2φ1(0,t

η2

2
)〉

×〈TKe
−i

√
νǫ1φ2(0,t

η1

1
)e−i

√
νǫ2φ2(0,t

η2

2
)〉 . (5)

QP conservation imposes ǫ1 = −ǫ2 ≡ ǫ, so

(τ−1
ϕ )(2) = − ν

4π2h̄4

Γ2
0

2(2πα)2

∫ ∞

−∞
dt

∫

dxf(x)

∫

dx′f(x′)
∑

η,η1,η2,ǫ

η1η2

×
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2e

iǫω0(t1−t2)eνG
η1η2

2
(0,t1−t2)eνG

η1η2

1
(0,t1−t2)

×
{

∂2
xx′G

η−η
1 (x − x′, t) + ν[∂xG

ηη1

1 (x, t− t1) − ∂xG
ηη2

1 (x, t− t2)]

×[∂x′G−ηη1

1 (x′,−t1) − ∂x′G−ηη2

1 (x′,−t2)]
}

. (6)

The precise dephasing rate depends on the geometry
of the set up via the length scales d, λs, and α. The
equivalent result for SBS is obtained from this equation
by replacing ν → 1/ν next to the Green’s function (du-
ality).

The assumption of strong screening λs ∼ α = vF τ0
is made (f(x) ≃ 2e2αδ(x)/d): it turns out that this as-
sumption is not necessary, and it will be relaxed later
on. Inserting the Green’s function at finite temperature

Gηη′

1 (x, t) = − ln
{

sinh[π[(x/vF − t)((η+η′)sgn(t)− (η−

η′))/2 + iτ0]/h̄β]
/

sinh[iπτ0/h̄β]
}

in the dephasing rate

(Eqs. (4) and (6)), we obtain:

(τ−1
ϕ )(0) = 4e4τ2

0 ν/(πh̄
3βd2) . (7)

We perform the change of variables, τ = t1 − t2, τ1 =
t− t1, and τ2 = t2 to obtain:

(τ−1
ϕ )(2) = − e4ν2Γ2

0

4h̄6β2π2v2
Fd

2

∑

η

∫ ∞

−∞
dτ cos[ω0τ ]

×
[ sinh2ν( π

h̄β iτ0)

sinh2ν [ π
h̄β (ητ + iτ0)]

+
sinh2ν( π

h̄β iτ0)

sinh2ν [ π
h̄β (−ητ + iτ0)]

]

×
∫ ∞

−∞
dτ1

[

sgn(τ1) coth[
π

h̄β
(−ηsgn(τ1)τ1 + iτ0)]

+ coth[
π

h̄β
(ητ1 + iτ0)]

]

×
∫ ∞

−∞
dτ2

[

−sgn(τ2) coth[
π

h̄β
(ηsgn(τ2)τ2 + iτ0)]

+ coth[
π

h̄β
(ητ2 + iτ0)]

]

. (8)

In the integral over τ , we change variables to t = −τ ∓
iτ0 ± ih̄β/2 for the first (second) term, and the integral
now runs in the complex plane form −∞ ∓ iτ0 ± h̄β/2
to +∞∓ iτ0 ± h̄β/2. We bring it back to (−∞,+∞) by
deforming the contour because there are no poles in the
integrand. For τ0 ≪ ω−1

0 , h̄β, one obtains

(τ−1
ϕ )(2) =

e4Γ2
0

π2h̄4v2
F d

2

ν2τ2ν
0

Γ(2ν)

( 2π

h̄β

)2ν−1

cosh
(ω0h̄β

2

)∣

∣

∣
Γ(ν+i

ω0h̄β

2π
)
∣

∣

∣

2

.

(9)
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In the zero temperature limit, we have (τ−1
ϕ )(0) = 0 and

(τ−1
ϕ )(2) =

e4Γ2
0

πh̄4v2
Fd

2

ν2τ2ν
0

Γ(2ν)
|ω0|2ν−1 . (10)

Note that (τ−1
ϕ )(2) = (eτ0/d)

2SI(0), with SI(0) =
∫

dt〈〈I(t)I(0)〉〉 the zero frequency backscattering cur-
rent noise.

0 0.2 0.4 0.6 0.8 1
ν

0

0.5

1

β = 10

β = 5

β = 50

(τ
−

1
ϕ

)(
2
)

FIG. 2: The nonequilibrium contribution in dephasing rate
depends on the filling factor for both case weak and strong
backscattering (coresponding to full line and dashed line) at
β = 5, 10, 50 and QPC bias eV = 0.1. The star, diamond and
circle points corespond ν = 1/m, m is the odd integer.

The nonequilibrium contribution of the dephasing rate
is exactly proportional to the zero frequency noise in
the quantum Hall liquid, which is computed in Refs.
14,15,16,17. The theoretical predictions of noise in the
weak and the SBS limit have been verified in point con-
tact experiments at filling factor ν = 1/3, 1/519,20. This
is understood from the continuity equation, which relates
the current operator to the density operator10. At zero
temperature, the nonequilibrium dephasing rate of Eq.
(10) for WBS depends on the QPC bias with the expo-
nent 2ν − 1 < 0. This is in sharp contrast with Ref.
7, where the QPC bias dependence is linear. We also
calculate numerically this contribution at finite temper-
atures and consider it as a function of the filling factor
or the QPC voltage bias. In our numerical calculations,
we choose the inverse cutoff τ−1

0 as the energy scale, and
the nonequilibrium contribution for the dephasing rate is
plotted in units of e4Γ2

0τ0/(π
2h̄4v2

F d
2).

In Fig. 2, we plot the dependence of this contribution
on the filling factor ν for both weak and strong backscat-
tering cases for several temperatures (β = 5, 10, 50) at
fixed QPC bias. ν is considered here as a continuous
variable, while it has physical meaning only at Laughlin
fractions11. For the SBS case, the dephasing rate in-
creases when the filling factor increases. At small ν, it
is zero, then, it increases rapidly. The higher the tem-
perature, the faster the increase. For the WBS case, the
shape of the dephasing rate depends on the ratio of QPC

0 0.5 1 1.5 2
eV

0

0.5

1

1.5

0 1 2 3 4 5
0

1

2

3

4

5

β = 10

β = 10

β = 100

β = 100

β = 50
β = 50

d/λs

(α
/
d
)2
F

(τ
−

1
ϕ

)(
2
)

FIG. 3: Nonequilibrium contribution in dephasing rate as a
function of QPC bias with the filling factor ν = 1/3 at some
values of temperature β = 10, 50, 100 (notice β = 1/kBT ) for
weak and strong backscattering case (correspond to the full
line and the dashed line). The insert is the ratio of nonequi-
librium contribution in dephasing rate between the arbitrary
screening and strong screening multiplied by (α/d)2 as a func-
tion of d/λs.

bias and temperature. At low temperature (1/β ≪ eV ),
the dephasing rate function has a local maximum point
at ν < 1/2, the position of which depends on the tem-
perature: when the temperature increases, it closes up
the ν = 1/2 and its high decreases. The rate at ν = 1 is
smaller than that at ν = 1/3. This result demonstrates
that for two different filling factors, we can have compa-
rable dephasing rates. Around the crossover in tempera-
ture (βeV ≃ 1), the local maximum in the dephasing rate
broadens. At high temperature (1/β > eV ), the dephas-
ing rate increases when the filling factor increases. We
also find that the dephasing rates evaluated at different
temperatures coincide at the (unphysical) value ν = 1/2,
because the hyperbolic cosine multiplied by the squared
modulus of the Gamma function does not depend on tem-
perature in this case, while at the same time the exponent
2ν − 1 is zero: this behavior is known for perturbative
calculations of the backscattering current and noise.

In Fig. 3, the dependence of the nonequilibrium contri-
bution of the dephasing rate on the QPC bias voltage is
plotted for several temperatures. In the case of SBS, this
dependence is quite simple. The dephasing rate increases
when the bias eV increases. When the temperature is low
enough (in the case of 1/β ≪ eV ), the dephasing rate
saturates. In the case of high temperatures (1/β > eV ),
the dephasing rate also increases when eV increases, but
the dephasing increases from a finite value (not shown),
which is proportional to the temperature. Things are
quite different at WBS. At high temperatures, the de-
phasing rate decreases very slowly when we increase eV .
In the case low temperature 1/β ≪ eV , for small eV , the
lower the temperature, the bigger the dephasing rate and
the faster it decreases when we increase eV . At T = 0,
the dephasing rate is “infinite” at eV = 0. This behavior
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is understood as the behavior of QPC noise and it is in
sharp contrast with the result of Ref. 7.

We have seen that the charge fluctuations are directly
related to the current fluctuations along the edges. The
fluctuations of the currents along the edges are also iden-
tical to the fluctuations of the tunneling current. The
tunneling current fluctuations were computed non per-
tubatively using Bethe Ansatz techniques21. We can
therefore invoke current conservation at the point con-
tact to derive a general formula for the decoherence
rate, which describes the crossover from weak to strong
backscattering22:

(τ−1
ϕ )(2) =

e3τ2
0

d2

ν

1 − ν
(V Gdiff − I) , (11)

where Gdiff = ∂V I is the differential conductance, I is
the current along the edge, which is defined in Refs. 22,
23. The advantage of Eq. (11) is that it allows to describe
the crossover in the dephasing rate from the weak to the
strong backscattering regime, via the solution of a system
of integral equations.

Remarkably, for the weak and the strong backscatter-
ing regime, it is in fact possible to go beyond the strong
screening limit, and one can compute Eq. (6) for an ar-
bitrary Coulomb kernel f(x): the 3 time integrals in the
second order contribution to the dephasing rate are com-
puted analytically. Further simplifications occur if f(x)
is even. The result can be displayed in terms of the ratio
between the arbitrary screening dephasing rate and the
strong screening dephasing rate (both non-equilibrium
contributions):

F ≡
(τ−1

ϕ )(2)

(τ−1
ϕ )

(2)
λs→α

=
d2

(eα)2

[
∫ ∞

0

dxf(x)

]2

, (12)

where the integral is a function of d/λs, and we recall
that α is the spatial cutoff. If the Coulomb interaction
kernel f(x) is chosen as suggested before, the dephas-
ing rate at arbitrary λs has an analytical expression:
F = (πd/2α)2[E0(d/λs) + N0(d/λs)], where E0(d/λs)
and N0(d/λs) are the Weber and the Neumann func-
tion, both of zero order. F is plotted in the insert of
Fig. 3, and (α/d)2 is taken to be a small constant. F
is infinite in the absence of screening, but in practical
situations, the presence of metallic gates always imposes
a finite screening length. F decreases with d/λs and ap-
proaches 1 when λs is close to the spatial cutoff α (strong
screening). We thus observe quite naturally that the de-
phasing rate increases when the screening decreases.

To summarize, we have established a general formula
for the dephasing rate of a quantum dot located in the
proximity of a fluctuating fractional edge current. In the
case where screening is strong, we can directly identify
this case with the tunneling current noise, regardless of
the regime (weak or strong backscattering) which is con-
sidered. For weaker screening, the spatial dependence of
the density-density correlation function has to be taken
into account, but we have shown explicitly that the long
rage nature of the Coulomb interaction can be included
as a trivial multiplicative factor. We therefore conjecture
that in order to describe the crossover in the dephasing
rate between weak and strong backscattering cases for ar-
bitrary screening, it is sufficient to use the strong screen-
ing crossover result of Eq. (11) and to insert it in Eq.
(12).

1 A. Yacoby, M. Heiblum, D. Mahalu, and Hadas Shtrikman,
Phys. Rev. Lett. 74 4047 (1995).

2 A. Yacoby, R. Schuster, and M. Heiblum, Phys. Rev. B 53,
9583 (1996).

3 E. Buks, R. Schuster, M. Heiblum, D. Mahalu, V. Uman-
sky, and H. Shtrikman, Phys. Rev. Lett. 77, 4664 (1996).

4 R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Uman-
sky, and H. Shtrikman, Nature 385, 417 (1997).

5 E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and V.
Umansky, Nature 391, 871 (1998).

6 D. Sprinzak, E. Buks, M. Heiblum, and H. Shtrikman,
Phys. Rev. Lett. 84, 5820 (2000).

7 Y. Levinson, Europhys. Lett. 39, 299 (1997).
8 I. L. Aleiner, Ned S. Wingreen, and Y. Meir, Phy. Rev.

Lett. 79, 3740 (1997).
9 Y. Levinson, Phys. Rev. B 61, 4748 (2000).

10 R. Guyon, T. Martin, and G. B. Lesovik, Phys. Rev. B 64,
035315 (2001).

11 D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev.
Lett. 48, 1559 (1982); R. B. Laughlin, Phys. Rev. Lett.
50, 1395 (1983).

12 X. G. Wen, Int. J. Mod. Phys. B 6, 1711 (1992).

13 C. L. Kane and Matthew P. A. Fisher, Phys. Rev. Lett.
68, 1220 (1992).

14 C. L. Kane, Matthew P. A. Fisher, Phys. Rev. Lett. 72,
724 (1994).

15 C. Chamon, D. E. Freed, and X. G. Wen, Phys. Rev. B
51, 2363 (1995).

16 C. Chamon, D. E. Freed, and X. G. Wen, Phys. Rev. B
53, 4033 (1996).

17 T. Martin in Les Houches Summer School session LXXXI,
edited by E. Akkermans, H. Bouchiat, S. Gueron, and G.
Montambaux (Elsevier, 2005).

18 R. Guyon and T. Martin, unpublished.
19 L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne,

Phys. Rev. Lett. 79, 2526 (1997).
20 R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky,

G. Bunin, and D. Mahalu, Nature 389, 162 (1997); M.
Reznikov, R. de-Picciotto, T. G. Griffiths, M. Heiblum, V.
Umansky, Nature 399, 238 (1999).

21 P. Fendley and H. Saleur, Phys. Rev. B 54, 10845 (1996).
22 P. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Rev.

Lett. 75, 2196 (1995).
23 P. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Rev.



5

B 52, 8934 (1995).


