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Abstract

We prove the kernel estimates related to subordinated semigroups on homogeneous trees. We
study the long time propagation problem. We exploit this to show exit time estimates for (large)
balls. We use an abstract setting of metric measure spaces. This enables us to give these results for
trees end hyperbolic spaces as well. Finally, we show some estimates for the Poisson kernel of a ball.
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1 Introduction

In 1961 Getoor [E] proposed subordinated semigroups in the context of the real hyperbolic spaces.
It is only recently when the corresponding kernel estimates were found ([lﬂ]7 [@])

The aim of this paper is to give a corresponding result in the context of homogeneous trees. Our
motivations come from the fact that such structures make a discrete setting counterpart for hyperbolic
spaces. Large scale analogy holds not only in geometry but also in analysis, see e.g. @], [él}), [E}

Our starting point is a diffusion semigroup considered in [§. By subordination we obtain a new
semigroup, which is referred to as to the stable one. We show estimates for the corresponding kernel
(Theorem below). In the proof we use time-space relations discovered in . On the other hand,
our theorem leads to a natural interpretation for the analogous result from [[L§ (see remarks after
the proof).

Next, we consider the long time propagation problem (Theorem @) It turns out that for large
time ¢ the mass of our kernel is distributed at distances comparable with t/%. We give two different
proofs. First of them is of general nature and exploits some properties of the underlying diffusion
semigroup. This works for hyperbolic spaces or Riemannian manifolds as well. The other proof, a
very simple one, shows that our Theorem @ is useful as well.

Getoor [E] raised the question of ”stability” properties for semigroups of this type. Obviously,
here we have neither classical scaling, nor its weak form which is typical for e.g. fractals [ﬂ] However,
one may interpret Theorem @ as an asymptotical scaling property. A sample of its consequences is
given in the last section.

We conclude the paper by giving an application of Theorem @ We study exit time from balls
for the stable process corresponding to our semigroup. For related results we refer the reader to [@]
or [R4]. In general, we were inspired by the approach from [ff], for stable case see [[]. The results
in section E have their analogues in these papers. Observe, however, that the argument of [ﬂ] and

| hinges on the Ahlfors-regularity of the measure, i.e. polynomial volume growth. Clearly, this
excludes the homogeneous trees and hyperbolic spaces. Our contribution is to make it available for
stable processes in exponential volume growth setting. Moreover, we give a proof in an abstract
framework of metric measures spaces (cf. [@]) The interplay between EE) and (@) below may be
of independent interest. In this way, we get our results for homogeneous trees and hyperbolic spaces
at the same time.

Finally, using the Ikeda-Watanabe formula we give estimates for the Poisson kernel for balls.

2 Preliminaries

Consider the nearest-neighbor Laplacian A and the related heat semigroup H; with continuous time
on a homogeneous tree X of degree ¢ + 1 with ¢ > 2, i.e.

1

Af(x)Zf(l’)—qu—l

Zf(y)7 reX and Hy=e " t>0.

y~x

See B] for detailed exposition. We adopt the general setting from this paper. For the reader’s
convenience we recall definitions needed in what follows. In particular, let h: denote the corresponding
heat kernel and hZ the heat kernel in the one-dimensional case. Moreover, set v = % so that
bs = 1 — v is the bottom of the spectrum of the Laplacian acting on L?*(X).

We adopt the convention that ¢ (without subscripts) denotes a generic constant whose value may
change from one place to another. To avoid some curiosities occasionally we write &, ¢... with the
same properties. Numbered constants (with subscripts) always keep their particular value throughout
the current theorem or proof. We often write f < g to indicate that there exists ¢ > 0 such that
¢! < f/g < c. Similarly, f(z) < g(z), £ — oo, means f < g for « large enough.

The kernel h; is known to satisfy the following estimates

o—bat ’
ho(@) = o), (Ja] + 1),
where
do(z) = 144 1|ac| - zeX (1)
0 - q+ 1 q )

is the spherical function,



and I, (t) stands for the modified Bessel function of the first kind. Consequently,

he(@) = “bo(@) 141 (1), £>0, 2 € X. (2)

In what follows we fix « € (0,2) and consider the subordinate semigroup
oo
eftA /2 :/ e—uAnt(u)du7
0
where the subordinator n:(-) is a function (defined on R™) determined by its Laplace transform,

Llne()IA) =e

x) = /000 hu (z)n: (u)du. (3)

Sometimes we refer to p:(z) as to the a-stable kernel. For more details concerning this construction
we refer the reader e.g. to [E]

—ta/2

For the corresponding kernels we have

3 «-stable kernel

The main result may be stated as follows.

Theorem 3.1. For any constants K, M > 0

() = { Q@12 exp(=t(1 7)), ol < KE2, 121, ()
b)) = qﬁo(ac)t|x|_2_°‘/2q_‘””VQ7 || > Mt > 0.

Proof. First, we_collect some auxiliary estimates for Bessel function I,,(z). Recall its integral repre-
sentation (e.g. [E]7 (8.431.1))

2/2 l/ 1/2 —zu (27Tz)_1/2€z /2Z v—1/2 —u
I, du = ———F———— 2 — du.
) =12 \/_/ St f, MG WAl e du
Clearly, the last integral is bounded above by 2“~/2T'(v + 1/2) so that
L(z) <cz?%e*, 2>0,v>0. (5)

Let us recall that ([E])

L e\/m( 5
J(2) <
Vz4+v \v+Vv2 4 22

Assume that z > max(1,ar?) with some a € (0,1) and v > 1. Thus,v/v2 +22 — 2 < a/2 so
that exp(v/v? 4 22) =< exp(z) (in the lower bound there is a constant that depends on a). Clearly,
vz +v =< /z and the quotient in the parentheses in (E) is bounded above by 1. Moreover,

) , v>12>0. (6)

z 1 1 1
VTR Al + T Al (14 2y ey e

Consequently, we obtain the desired simplification

L(z)=2z""%, 2z >max(1,a?), v> 1. (7)

We recall the exact estimates of the densities 7¢(-) which will be fundamental in what follows (see

e.g. ]) We have

1 _ 4« i - . -2/«
Ne(u) X t2=au” 1-2a exp (—clt%a U 2*6*) , t u < c, (8)
2 — 25
where ¢1 = c1(a) = 3 @ (%) 7% and
ne(u) = tu™ 172, 2 > c. (9)



According to (E) and (E)7 it is convenient to split the integral (E) as follows

c0t2/a‘ oo
pe() ‘A mmmmm+/ P () (1)

0t2/a

cot?/ 41—« o
qﬁo(ac)tﬁ / e T4y (yu)u” T2 ! exp(—cltﬁ u” 2o )du
0

Jr

doa)t [ G (10)

ot/ e

do(w) (A + BOY)

Now, we assume that co = 1 and |¢| < K+/t with = and ¢ large enough. Note that neither z, nor
t is fixed. Tt follows that (14 |z|)? < (14 K+v/1)* < 4t¥“. Hence, by (E) with a = 1 we get
Iigje)(yu) < cu” Ve > e

In consequence,

B < Ct/“’ o (=uy ~(+a) /2 g
t2/a

oo
< ths/a/ e~ Mgy
t2/a

—_ (1=~ 2/
— ot S/ae (1—v)t

To estimate A®Y let us split it as follows

at/2 t2/e s N
A@Y =7 (/ +/ / > " Iysjo (yu)u” 325 exp(—ert TE w7 )du = ATV + ALY,
0 at/2

Now, apply (ﬂ) to the integral Aéz’t). After simple change of the variable u — tu, we get

—1

(2,t) YA - -3 7%=
AS = ¢t u” 172072 exp(—t((1 = Y)u + cru” 2=))du.

ey

2

Observe that the minimum of function p(u) = (1 — y)u + ciu”Ta is attained at

A==
Since o
acy > [ «a 2fa<g)ﬁ T (g)%(g)% _a
2 -« C|2—-a 2 2 \2 2 2’
we get
_ a/2
RO e

Hence, for t large enough wuo is in the integration range and p(uo) = (1 — v)*/?. Obviously, our
integral is bounded by integrals with limits fixed

2_q
ug t o e3¢}
/ S/ S/ .
5 3 0

The Laplace method @] applied to the extreme members of this inequality gives the same result, so
that we obtain the asymptotic of our integral:

et V2emtPwo) oy o

Consequently,
Aéx’t) =t 2 exp(—(1 —7)*"?1), |z| < KVt



and t > 1, say. Similarly, using (H) we get

2 _q
ACD <« gt [T it -~y
T <et u 1=2a " 2 exp(—t((1 — y)u + cru” 2=o))du.

ey

2

Since the minimum of p(u) is not attained in (0,«/2), in this case the Laplace method gives the
following lower bound:
AP <t exp(—p(a/2)t).

It follows that p:(x) =< Aéx’t) and the first of the desired estimates follows.

Now, assume that |z| > Mt>/®. Since we consider large |z| only (or even |z| — o0), we may and
do put |z] — 1 in place of |x| when estimating p.(-). This simplifies the notation. We put co = aM
in the decomposition (E)7 where a € (0,1) is to be specified later. Then, by (E) and the elementary

inequalities eV 121774 < eleltvu o) T2 15202 > 2]z, we get

2 o

1 aMt2/ > 4 2 _
,t 1 — AT 1 _eqt2—« 2—a
A = t2*a/ e “Lip(yu)u” T2 T e “ du
0

@

2 __a
/a\x\ e\/m—u(w)\z\u—ﬁ—;—le—qﬂwu —a
||
° VIel+7u (|| + PP +77¢7)

2 fe

1 le| [olzl 4—a Pl o
< C|$|ﬁ_§ (_a;'y) / e Uy ~amg Tlgmat T u e g
0

du

a
:L'| i—32a

IA
o

Clearly, the last integral is convergent and bounded above by a constant independent of |z|. Therefore,

o |z|
A@D < |72 (@) . 11
< cla] : ()
On the other hand, again by (E) and the change of variable u — ux, we obtain
B@Y = t/ I‘x‘(’yu)u%*ame*“du
aMt2/e

) 6\/\x\2+72u2—u (,Yu)\x\u—Q—a/Q

> ct/ mdu
alel V2] +u <|‘,E|Jr /7|x|2+72u2)

at3 /-oo e\x\(\/1+72u2—u)u—2—a/2+\x\

V
Q
&+
QA
8
B
|

du
||
V1i+u (1 +4/1 +fy2u2)

" ||| . —ot3 i \x\(\/1+"/2u2—u+log(u)—log(l+\/1+~/2u2)) U72ia/2
~ x| 2 e —du.
@ vV1+yu

Observe that the same calculation with the lower limit of integration equal to 0 gives the opposite

X

bound. Let

p(u) = 1+ 72u? — u + log(u) — log(1 + /1 + 72u2)
and ¢ = /1 +72u%. Then p'(u) = —1 + g/u and, consequently, p(u) attains the maximum at
ug = g%ri > 1. Hence, uo belongs to the integration range for integrals in both upper and lower

bound for B®Y. Consequently, by the Laplace method, both of them have the same asymptotic as
|z] — oo. Since

4  gq+1
(¢—1)? q¢-1

qt+1

(=1 (14 /1+ 24

pluo) =4/1+ +log

7) = (%) = —toxtrva

it follows that
Bt — t|x|727a/2e\w\(10gwflog(v\/§)) — t|m|f2*04/2q*\ﬂﬂ\/27 |z| > M2 e

and |z| is large enough (and hence for |z| > 1). Moreover, if we take a = 1/e then aey/2 < ¢~/? so

that A®t = o(B®Y), |z| — oo and p:(z) < B®Y. The assertion follows. d



Remark 1. Our theorem can be compared with the following result of [@] For reader’s convenience
we give it below, specialized to the (real) hyperbolic space H". The corresponding a-stable kernel
and spherical function are denoted with the tilde.

Theorem. [[B/, Corollary 5.6] Let |p| = (n — 1)/2. For any constants K, M > 0 and t + |z| > 1 we
have

7 —3/2 —|p|™t 1/2
}(x)x{ do(x)t e , || < Kt (12)

bo(z) t]x| 727/ 2Pzl 1) > M2/ e,
In the context of hyperbolic space (or, more generally, symmetric space of non-compact type), the
parameter |p| plays a double role: it is the square root of the bottom of the spectrum of the Laplace-
Beltrami operator; at the same time, the volume growth of the ball of the radius r is equivalent to
e2?Pl" ' — 0. One may ask, whether it is the spectral data or the geometry which appears in the
above estimates. The comparison with Theorem @ gives us a natural interpretation: in the first
part (i.e. in the long time asymptotics) we deal with the spectral data, in the other case the volume
growth intervenes.

Remark 2. Note that for the remaining region Kt'/? < lz| < Mt?/* in the continuous setting there
is no simple explicit estimate of P¢(z) (see , Corollary 5.6).

The Brownian motion and a-stable processes in R? share the same type of long time heat repar-
tition. Namely, with the standard understanding that o = 2 corresponds to the Brownian motion,
for A1 < A2 we have

/ pe(x)dz = (A1, A2) € (0,1).
Ajtt/ag|z|<Aptl/

This follows immediately from the scaling property
pi(x) =t~ it ). (13)

Moreover, ¢(Ai1, A2) — 1 if A1 — 0 and A2 — oo so that
/ pe(x)de — 0, ¢ — oo, (14)
AP <|z|<Agth

provided 8 # 1/« (cf. [E], p. 50).
On the other hand, for the Brownian motion in the (real) hyperbolic space H", a non-classical
phenomenon of concentration was observed in [E] Namely,

/ he(z)de — 1, t— oo,
Art<]z|<Aat

provided A1 < n — 1 < As2. The change of the space-time scaling should be noted. This result was
sharpened and generalized to symmetric space setting ([E], [E]) In the context of homogeneous trees
the analogous result was shown in [@] and [Rq]:

Z he(z) — 1, t— oo,

Rot—r(t)<|z|<Rot+r(t)

where Ro = (¢ — 1)/(q + 1) and 7(t) is a positive function such that (¢t~ — oo, t — oco. This
might suggest a hypothesis of the same kind for our kernel p;(x), e.g.

Z pe(z) — 1, t— oo
Aqt2/ o< o] <Agt2/ e

The following theorem shows that this is not the case.

Theorem 3.2. For 0 < A; < As let R(t) = {(z,t) € X x Rt : A;t?/® < |z| < Axt?/*}. Then there
exist c1 and c2 such that

0<a< Z:pt(ac)<02<17 t — oo. (15)
zER(t)

Conversely, for any given 0 < ¢1 <1 (0 < c2 < 1 resp.) there exist A1 and Az such that (@) holds
true with some cz (c1 resp.).



Proof. Set Ro = (¢ —1)/(¢+ 1) and let Ry, Ry be such that R1 < Rg < Rz. Then, by Theorem 1 of
, we have

> hu(z) 1, u—oo. (16)

Ryu<|z|<Rou

Moreover, let c3 = A1/Ry and ¢4 = Az/R>. We require additionally that R; and Rz be close to R
so that c3 < cg. Then c3t?/* < u < cat?/® yields

|z| € (Riu, Rou) = x € R(t). (17)
From the definition of p:(z), (@) and )7 we get

(]
¥
=
&
[

/0 S @) | mewda

zER(t) TER(L)

C4t2/a
> / Z hu(x) | ne(u)du
eat?* \ Ryu<la|<Ryu
C4t2/a
— / ne(u)du, t— oo.
cst2/a

Formally, the last integral depends on t. By the scaling property (B), however, it evaluates to

cqt?/ @ c.

t_2/a/ ’ m (t™% *u)du = / ’ m (u)du = co. (18)
C3t2/‘3‘ c3

This is an absolute constant which depends on c¢3, c4 and «a only. The lower bound in the first

assertion follows. Since the lower bound is true for any A1 < Az, the mass of the annulus R(¢) (with

A1 and A fixed) is strictly less than 1. In other words, c2 < 1 in (@) and there is no total mass

concentration observed. The proof of the first assertion is complete.

The second assertion follows from the fact that co in (@) can be required to take any value in
(0,1). Indeed, if A1 — 0 and A2 — oo then we may fix R1 < Ry < R» independently of A; and As,
so that ¢3 — 0 and ¢4 — 00. Since fooo n:(u) = 1 we may require ¢; to be arbitrarily close to 1.

Further, fix any 0 < é&. The upper bound for the mass of the annulus R(t) = {(x,t) € X x RT :
At < |z| < Aat?} follows from the lower bound for R(t) provided Az < A;. Since the mass of
R(t) can be required to be arbitrarily close to 1, t — oo, the mass of R(t) is (asymptotically) smaller
than ¢z. The proof is complete. O

The following corollary is an analogue of the classical counterpart (@)
Corollary 3.3. For 0 < A, < Ay and some 3> 0 let R(t) = {(z,t) € X x RT : 417 < |z| < AxtP}.
If B # 2/« then
Z pe(z) — 0, t— oo.
z€R(t)

Proof. For t large enough, R(t) and R(t) are disjoint. d

Evidently, space-time scaling in (E) is characteristic for the Brownian motion in hyperbolic spaces
and homogeneous trees. On the other hand, the concentration phenomenon is not observed. From
the probabilistic point of view this may be explained by the influence of the long jumps of the
corresponding stable process. Indeed, the Lévy measure is of the same exponential order as volume
growth because it arises from the second estimate in (@) Actually, we have

Corollary 3.4. Let v(z) := limy—o p:(x)/t be the Lévy measure for our semigroup. Then
(@)= |o| 2L e > 1
Proof. From Theorem @ and () we get

v(x) = go(a)la| 721V = x| 71 2g I



Clearly, the proof of Theorem @ with minor modifications only can be applied in the context
of the symmetric spaces with Theorem 1 of E] instead of ([l). We prefer, however, to take the
opportunity given by Theorem 2 of that article to state our result in the more general setting of
manifolds. For reader’s convenience, we recall the framework. We assume that M is a complete,
noncompact Riemannian manifold with the volume growth controlled by

vol(B(z, 7)) = O(r*e**"), 1 — oo,

with some constants x and K, and the spectral gap E? = inf spec(—A) > 0. In general we have
E < K, while in symmetric spaces E = K = |p|. Set R1 = 2(K—vK? — E?), R, = 2(K++VK? — E?).
Let A(t) be a function such that

Ay - —=L gt Soo it K <E,

0= yre—pz 8"

A(t) = (2ktlogt)'/? if K=FE and k>0,
ADEY? 7 s0 if K=FE and x=0.

Since the heat kernel depends on two variables (and is denoted by h¢(z,y)), we fix arbitrary y € M
and redefine slighlty R(t) = {(z,t) € X x RT : A;t*/* < d(z,y) < A2t*/*}. By Theorem 2 from [E]

/ he(z,y) — 1, t— oo.
Rit—A(t)<d(z,y)<Rat+A(t)

Note that in any case we may and do require A(t) = o(t), which is essential for our proof to work (cf.
(E)) Thus, we arrive at

Corollary 3.5. For any constants 0 < A1 < Ag there exist ¢c1 and c2 such that
0<a </ pe(x)de <ca <1, t— oo.
R(t)

Changing A1 and A we may require c1 to be close to 1 or ca to be close to 0.

Below we include an alternative approach that relies directly on the a-stable kernel estimates (H)
It shows, in a sense, that the a-stable kernel mass covered by Theorem EI is large enough to be
useful in some applications.

Second proof of Theorem @ For z € R(t) we have
pi() < to(x)|a| 2 271712, (19)

By (),
do(x) =< |alg”1/2, 2] — 0.

S opa) <t > a7

z€R(t) zER(t)

Therefore,

Since the function under the consideration depends only on the distance, we use “polar coordinates”.
At each sphere {|z| = n} we have exactly (¢ + 1)¢™ vertices, so that

Z pe(z) <t Z n~lTe/2,

z€R(t) A2/ <n<Apt2/ e

btz 1 2 b 1 2
/ y dyX/ y 2y
a—2 a

when a — oo and a/b < ¢o < 1, it follows that

Since obviously

A2t2/a

> Pt(ﬂc)xt/ y T Py
2ER(t) Aqr2/e
Clearly, the last integral behaves as
(A7 = A7) 0/t oo (20)

The lower bound in (E) follows. To obtain inequality c2 < 1 in the upper bound, it is enough to
take A; sufficiently large. To allow any value of A1 < A2, we can repeat here the argument following
(E) in the previous proof. The assertion follows. a



Remark. Clearly, (@) holds also for R(t) with 3 > 2/a as well. In this case, (@) implies that
Z t — oo.
ER(t

However this direct argument fails for § < 2/a. Actually, if @ holded for |z| > At® with some

B < 2/a, then we would obtain ¢~ «B/2 in (E) Consequently, the mass of the annulus goes to infinity,
which is impossible (cf. also Proposition 5.4 of , where this was done for the line |z| = t* by an
independent argument).

4 Exit time

We conclude our work by giving an application of Theorem @ Since the results below are very similar
for both homogeneous trees and hyperbolic spaces, we are tempted to use the following notation of
metric spaces.

Let (E, ) be a metric space with a measure p that supports a heat kernel p¢(z,y) in the sense
of the axiomatic definition 2.1 of [B] For the reader’s convenience we recall it shortly. We assume
that p:(-,-) is a p X p nonnegative measurable function and for p-almost all z,y € E and all s,t > 0

we have pi(z,y) = pi(y, z),
/Ept(%y)du(y):L pt+s(m7y)=/Ept(w72)ps(z7y)du(2)7

and for each u € L*(E, 1)

/E pe(e, p)u(y)du(y) 2> ulz), t— 0*.

In the case of the hyperbolic spaces or homogeneous trees we have p:(z,y) = p+(d(z,y)), where
d(z,y) is the distance. Under some general additional assumptions on X, this kernel gives rise to the
associated Markov process (X, Pr), i.e.

P.[X, € B] = /B pe(z,y)du(y).

For simplicity, we suppose that the space is homogeneous, i.e. there exists a function V(r), called a

volume growth, such that V(r) = u(B(z,r)), x € E. It can be seen that for the proofs below this

assumption is not essential and we could deal with non-homogeneous version V (z,r) as well.
Moreover, assume that there exist A > 1 and ¢1 < 1 such that

V(r)<aV(r+A) and V(r+1)=<V(r), r>1 (21)

Actually, this covers the case of trees and hyperbolic spaces (with e.g. A =1).
Furthermore, assume that for any M > 0

pe(z,y) < td(z,y) " PV (d(z,y) ", d(z,y) > MY, d(z,y) > 1 (22)

This is clearly satisfied in the context of trees and hyperbolic spaces as well (cf. Theorem @ and

(E) resp.).
Note that the first part of (@) implies that lim, . V(r) = co. In particular, our space is not
contained in any ball. Below we use this fact without further mention.

Proposition 4.1. For any M > 0 and r > 1 we have
P.[Xi ¢ B(z,r)] < tr /% r> Mt¥~
Proof. By (@) we get

Pu[Xe ¢ B(z,7)]

X

/ pe(2,y)dp(y)
d(z,y)>r

0>/ d(,y) ™V (d(w, )~ dpy)

k=0 r+k<d(z,y)<r+k+1

X

cti(r +E) TPV k)TN V(i k1) - V(e K)).

IA



Clearly, by (@) we get
Vir+k) " (Vir+k+1)-V(r+k) <ec

Moreover, by a comparison of the series with the corresponding integral it can be easily seen that
Z(T+k)—1—a/2 zr_l_a/2+2(r+k)_l_a/2 < T—a/2+/ 12, < pol?
k=0 k=1 T

and the upper bound in the assertion follows.
On the other hand we have similarly

PiX ¢ Bar) = 1) [ (e, 9)™ "2V (d(.y)) " du(y)
=0/ rHRA<d(z,y) <r+(k+1) A
- “1—ap2V(r+kA+ A) = V(r + kA)
> A+ A)"1me/?
= Cth:O(Hk +4) V(r+ kA + A)
Again, by (R1))
V(r+kA+A)—V(r+EkA) V(r+kA)
—1- VT 5 4
Vir + kAT A) VrtkArA) — 1 a>0
Moreover,
Y r+kA+ AT > / 2T Py = o(r 4+ A) TP > e,
k=0 r+A
since r > 1. The proof is complete. O

For a measurable set D define the exit time 7p = inf{t > 0; X; ¢ D}. Then
Proposition 4.2. For any M > 0 and r > 1 we have

a/2 2/a

Piltp@ry <t] <ctr” r> Mt

Proof. The proof follows the lines of [ﬂ] (or [ﬂ]) Since it is short, we sketch it for the reader’s
convenience. Denote T' = Tg(y,2r). Then

P,[T <t] = PX¢¢ B(z,r); T <t]+ Ps[X: € B(z,r); T < {]
< Pu|X: ¢ B(z,r)] 4+ Py[X¢ € B(x,r); T <t]=A+B.

By Proposition EI we obtain A < ctr~%/2. By the strong Markov property we have

B = Eac[PX(T) [Xt—u S B(l’,’f‘)]‘u:T; T< t]
< sup sup E[P.[Xy € B(z,r)); T <t
u<t z€B(z,2r)¢
< sup  sup  ER[P.[Xu & B(z,7); T <]
u<t z€ B(z,r)¢
< etr /2,
The proof is complete. O
Theorem 4.3. Forr >1
EyTB(I,’I‘) S cra/27 Y € B(l’, T)

and
/2

EzTB(z,r) = re

Proof. For any y € B(x,r) by Proposition @ we have
PylrB(ery > t] < Py[X: € B(z,r)] =1 — Py[X: ¢ Bz, 7)) <1—ctr*/?

provided that r > Mt?/® with some M > 0. Let to = r%/2 50 that for some co we get

Py [TB(I,’I‘) > tO] S 1-— Co. (23)
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Then, by Markov property, for k = 1,2, ... we have

Py[TB(x”‘) > (k + 1)t0] = Py[TB(SC,T) © ato > kt07 TB(x,r) > tO]
Ey[Px o) [TB(x,r) > Ktol; TB(a,r) > to]

Py[TB(x,T) > to] sup P. [TB(x’,n) > kto]
z€B(z,T)

A

(here 6 stands for the standard shift operator on the space of trajectories). By induction we get
Py[TB(ac,r) > ktO] < (1 - CO)k7 Yy e B(m,r), k= 07 17 27

Thus,

oo

EyTp(a,m) =/ Pylrparn > Hdt <Y toPy[rpr > kto] <% " (1—co)”
0 k=0 k=0

and the upper bound in the asssertion follows.
On the other hand, let t;1 = clr"‘/2 with ¢1 to be specified below. From Proposition @ we get

PI[TB(Z,T) < tl] < cica.

Observe that the constant c2 above does not depend on ¢; provided ¢1 < 1. Hence, we may and do
choose ¢1 small enough to get cica < 1. It follows that

EiTBa,r) = t1Pe[TB(e,m > 1] = (1 — c1e2)ts < /2

The proof is complete. O

5 Poisson kernel

In this section we give estimates for the Poisson kernel for balls. Since in general it follows ideas
of [ﬂ], we give only a short sketch of the construction. For more detailed exposition we refer the
reader to sections 5 and 6 of that article. Since the results in what follows are similar for both the
homogeneous trees and hyperbolic spaces, we continue to use the notation introduced in the previous
section. It should be noted, however, that this concernes the results only. The details of proofs in
this section should be verified separately for each geometrical setting.

In what follows, we assume that for ,y € X the following limit exists

This is verified whenever our a-stable kernel arises by a subordination of a reasonable diffusion with
1 described above. Clearly, the case of homogeneous trees and hyperbolic spaces is included. From
(B it follows that

N(z,y) < d(z,y)" "V (d(z,y) ", dla,y) > 1. (24)
Let
n(z, B) = /E Nz, y)dpu(y). (25)

For an open set D let (PtD) be the semigroup generated by the process killed on exiting D, i.e.
PP f(z) = Eu[f(X:); t < 7).

This semigroup possesses transition densities denoted by pf (z, ) (see [E], the argument applies here
as well). Let Gp(z,y) be the Green function for D, i.e. the potential for (P):

G (,y) = / pP (2, y)dt.
0

With these definitions one verifies the assumptions of the Ikeda-Watanabe formula (see [@] or
[ﬂ]) For homogeneous trees and hyperbolic spaces this is straightforward and we omit the details.
We note, however, that at this point each geometrical structure is examined separately. We get
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Proposition 5.1 (Ikeda-Watanabe formula). Assume that D C X is an open nonempty bounded
set, E C X is a Borel set and dist(D, E) > 0.Then

Py[X-p € E] = /DGD(%y)n(%E)du(y)A

In particular, by (@) we get that P,[X., € -] is absolutely continuous w.r. to p on (D) (this is
meaningful for the hyperbolic spaces only). Let Pp(z,-) denote its density (i.e. Poisson kernel).

Proposition 5.2. For any zo € X and r > 1 let D = B(zo,r). Then

ro‘/QV(Qr)

Pp(z,2) < Cd(:m 2)1+/2V (d(z, 2))’

z € B(w0,3r)°, x € D.

If r > 2 then

T,a/2

V(2r)d(z, 2)1+2/2V (d(z, 2))’

Pp(z,2) > c z € D°, xz € B(zo,7/2).

Proof. By (@) we have

- Gp(z,y)
Pole,2) = /D a0y, 2) /2 (d(y2)) MY

(26)

Clearly, d(y,z) < d(z,z). Moreover, for the hyperbolic spaces and homogeneous trees we have
V(r) < CT where C1 depends on the dimension or the degree, respectively. It follows that

V(dly,2)) 2 V(d(z,2) - d(z,y)) 2 V(d(z,2) — 2r) < V(2r) " V(d(z,y)).

Since / Gp(z,y)du(y) = E7p the upper bound in the assertion follows by Theorem @

D

On the other hand, fix x € B(xo,7/2). Then d(y,2) < cd(z,2), y € D, z € D°. Similarly as
before V (d(y, 2)) < V(d(y, ) + d(z,2)) < V(2r)V(d(z,2)). Moreover, ExTp > EoTp(pr/2) < 12
By (E) the lower bound follows. We are done.
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