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Phase information revealed by interferences in the ionization of rotational wavepackets
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Time-resolved photoelectron spectra are proposed for the measurement of classical information
recorded in the quantum phases of a molecular rotational wavepacket. Taking Li2 as a prototypical
system, we show that an interference arises from the electron-nuclei entanglement induced by the
molecular anisotropy. This phenomenon is used to transfer the information which has been stored
initially in the nuclear rotational degree of freedom into the electronic degree of freedom.

PACS numbers: 03.67.-a, 32.80.Qk, 33.80.Eh, 82.53.-k

I. INTRODUCTION

In parallel with quantum measurement and quan-
tum entanglement, quantum interference is one of the
usual ingredients of quantum communication and com-
puting [1]. The overall speedup expected from quan-
tum computers originates in part from the fact that the
input state of the computation can be chosen as a co-
herent superposition of all possible classical inputs. A
sequence of unitary operations is applied to this initial
state in order to perform the computation. This ap-
proach processes the data in a massively parallel way,
and the result of the computation usually depends on
the interference between the various paths followed by
all possible initial states. The real power of quantum
interference is revealed when bringing together all differ-
ent components of the wavefunction in a single step [2].
Even if not sufficient for reliable and efficient quantum
computation [2, 3], the buildup of a quantum interfer-
ometer is of course necessary for the construction of a
quantum computer. In this respect various physical im-
plementations have been proposed to test the principles
of quantum computing, including nuclear magnetic res-
onance [4], trapped ions [5], cavity quantum electrody-
namic [6], Josephson junctions [7] and neutral atoms [8].

Matter-wave interferometry using molecular systems is
an active field of research [9] with potential applications
for quantum information processing. In this article, we
show that in a molecular system quantum interferences
can be used in combination with electron-nuclear entan-
glement to extract classical information initially stored in
a rotational wavepacket. This approach is inspired by a
set of beautiful experiments performed on Rydberg atom
data registers [10, 11], and on Li2 in the context of fem-
tochemistry [12] and for coherent control [13, 14]. This
last system has also been used for the implementation of
various simple quantum algorithms [15].

∗Electronic address: Eric.Charron@ppm.u-psud.fr
†Electronic address: Maurice.Raoult@lac.u-psud.fr

II. THE MOLECULAR SYSTEM AND THE

LASER FIELDS

The present theoretical study is based on the usual
three-step photoionization scheme used in most recent
experiments [12, 13], as shown in Figure 1.
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FIG. 1: (Color online) Three step “preparation-pump-probe”
scheme proposed to store classical information in the phases
of a rotational wavepacket in the E

(

1Σ+
g

)

electronic state of
the Li2 molecule, and to read it in the photoelectron spec-
trum recorded in the last step which consists of a picosecond
photoionization experiment. The potential energy curves of
the X, A and E electronic states of Li2 are shown as a func-
tion of the internuclear distance R as black, green and blue
solid lines respectively. The potential curve associated with
the ground electronic state of Li+2 is shown as a red solid line.
Their associated molecular rotational quantum numbers are
denoted by NX , NA, NE and N+, while M and M+ denote
their projection on the electric field polarization axis.

A cw linearly polarized laser pulse first excites a sin-
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gle transition from the ground electronic state X
(

1Σ+
g

)

of Li2 to a pure rovibrational (vA, NA) level on the first
excited A

(

1Σ+
u

)

electronic potential curve. From this
unique launch state an ultrafast laser pulse of linear po-
larization excites a superposition of rovibrational levels
(vE , NE = NA ± 1) on the E

(

1Σ+
g

)

electronic potential.
We assume here that this pump pulse has been sent
through a dispersion-free pulse shaper. This kind of tech-
nique has already been used with Li2 [13]. A phase mask
is then used to control accurately the phases of the vari-
ous components of the nuclear wavepacket created on the
E electronic state potential.

Each possible value of the projection M ∈ [−NX : NX ]
of the initial state rotational quantum number on the
electric field polarization axis is equiprobable. We there-
fore perform a separate calculation for each initial value
of M , and the total photoelectron signal is calculated
by averaging our results over this initial state quantum
number (section III D). Note that the three excitation
steps shown in Figure 1 are performed with the same
electric field linear polarization, and the value of M is
thus identical in all electronic states of Li2.

In analogy with the study performed on Rydberg
atom data registers [10, 11], we associate the phases im-
printed in the coherent superposition of rovibrational lev-
els (vE , NE) with information of classical nature. For ex-
ample, if a single vibrational level vE is populated, the
phase shift ∆ϕ between the two rotational components
NE = NA + 1 and NE = NA − 1 is fixed at the value
0 or π. If ∆ϕ = 0 the two components are in phase,
and this corresponds arbitrarily to the storage of the in-
teger n = 1. If ∆ϕ = π the two components are out of
phase, and this is interpreted as the storage of the integer
n = 0 [16].

With two vibrational levels vE , one can store in a sim-
ilar way the combinations 00, 01, 10 and 11, correspond-
ing to the integers n = 0, 1, 2, and 3 where the first binary
digit is determined by the phase shift between the rota-
tional components of the first vibrational level while the
second digit is controlled similarly by the second vibra-
tional level. This can be generalized, and with nv vibra-
tional levels one can store all integers up to n = 2nv − 1.
Encoding this type of classical information in a quantum
system is of course a very challenging task, and efficient
schemes are necessary to reveal this information in the
last experimental step. We propose here to read this in-
formation with the help of a picosecond ionizing pulse,
as shown in Figure 1.

This last laser pulse, the probe pulse, has a bandwidth
∆ω which encompasses the two rotational components
associated with the various vibrational levels without
mixing the different vibrational states during the ioniza-
tion process, i.e.

2Brot (2NA + 1) ≪ ~ ∆ω ≪ ~ωvib , (1)

where Brot and ωvib are the molecular rotational constant
and the vibrational frequency in the E-state. Section IV
will show that the encoded number can be revealed by

an interference effect modifying the time-resolved photo-
electron spectrum P (ε) which exhibits a series of peaks
characteristic of the recorded integer.

III. THEORETICAL APPROACH

A. The molecular basis set

We follow the dynamics of the Li2 molecule by propa-
gating in time its associated electro-nuclear wavefunction

Ψ(~re , ~R, t) decomposed in two parts

Ψ(~re , ~R, t) = ΨE(~re , ~R, t) + Ψ+(~re , ~R, t) (2)

corresponding to the E-electronic state of Li2 and to
(Li+2 + e−) respectively. The coordinates of all electrons

are denoted by the vector ~re , and the vector ~R ≡ (R, R̂ )
represents the internuclear coordinate. We now sepa-
rate the global electronic coordinate ~re of all electrons
into the coordinate ~rc of the core electrons and the co-
ordinate ~r of the ionized electron. We then write the
electro-nuclear wavefunctions ΨE and Ψ+ as the follow-
ing Born-Oppenheimer expressions

ΨE(~re , ~R, t) = ψE(~R, t)ΦE(~re |R) (3a)

Ψ+(~re , ~R, t) = ψ+(~r, ~R, t)Φ+(~rc |R) (3b)

where ΦE(~re |R) and Φ+(~rc |R) denote the electronic
wavefunctions associated with the E-state of Li2 and
with the ground electronic state of Li+2 respectively.

The E-electronic state (1Σ+
g symmetry) is now consid-

ered as a 3sσ Rydberg state, and the electronic wave-
function ΦE(~re |R) is expressed in the molecular frame
(Hund’s case (b) representation) as

ΦE(~re |R) = φE(r,~rc |R)Y00(r̂ ) (4)

On the other hand, the electronic part of ψ+(~r, ~R, t) is
expressed in the laboratory frame (Hund’s case (d) rep-
resentation) as

ψ+(~r, ~R, t)=

∫

dε
∑

ℓ,m

ψ+
ℓm(ε, ~R, t)φℓ(ε, r|R)Yℓm(r̂ ) (5)

where φℓ(ε, r|R) is the electronic continuum wavefunc-
tion at energy ε and (ℓ,m) denote the electron angular
momentum and its projection in the laboratory frame.
Note that even though the one-photon transition consid-
ered here from the E-electronic state will result in the
ejection of a p-electron with ℓ = 1, we keep the double
sum over ℓ and m in the following for the sake of gener-
ality. Various similar approaches have already been used
for the calculation of femtosecond time-resolved photo-
electron angular distributions [17].

In the present study the photoionization step is per-
formed by a picosecond laser pulse of linear polarization.
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The following selection rule therefore applies for the pro-
jections M and M+ of the molecular rotational angular
momenta of Li2 and Li+2 on the polarization axis

M = M+ +m (6)

For any given initial projection M , an unambiguous re-
lation therefore relates M+ and m. Hence the quantum
number M+ is replaced in the following by M −m.

In our time-dependent approach a propagation is per-
formed independently for each initial value of M , and

the angular parts of the nuclear wavepackets ψE(~R, t)

and ψ+
ℓm(ε, ~R, t) are thus expressed as the following ex-

pansions

ψE(~R, t) =
∑

NE

ψNE

M (R, t)DNE
∗

M,0 (R̂ ) (7a)

ψ+
ℓm(ε, ~R, t) =

∑

N+

ψN+, ℓ
M−m(ε,R, t)DN+ ∗

M−m,0(R̂ ) (7b)

in terms of the normalized Wigner rotation matrices
DN ∗

M,Λ(R̂ ) which verify

∫

dR̂ DN ∗

M,Λ(R̂ )DN ′

M ′,Λ′(R̂ ) = δNN ′ δMM ′ δΛΛ′ (8)

where δ stands for the Kronecker delta symbol [18].

B. The laser-molecule interaction

The initial electro-nuclear wavepacket (2) is prepared
at time t = 0 from a “source level” (vX , NX) as a coherent
superposition of several rovibrational levels (vE , NE) in
the two-step process depicted in Figure 1. The initial
components of the expansions (7) are thus given by

ψNE

M (R, 0) = cNE,M

∑

vE

eiϕvE,NE χvE ,NE
(R) (9a)

ψN+, ℓ
M−m(ε,R, 0) = 0 (9b)

where

cNE,M =
√

2NE + 1 (2NA + 1)
√

2NX + 1

×

(

NA 1 NX

M 0 −M

) (

NA 1 NX

0 0 0

)

×

(

NE 1 NA

M 0 −M

) (

NE 1 NA

0 0 0

)

(10)

The rovibrational eigenstates χvE ,NE
(R) of total en-

ergy E(vE , NE) are solution of the time-independent
Schrödinger equation

ĤE
NE

χvE ,NE
(R) = E(vE , NE) χvE ,NE

(R) (11)

where the nuclear Hamiltonian ĤE
NE

is given by

ĤE
NE

= −
~

2

2µ

[

∂2

∂R2
−
NE(NE + 1)

R2

]

+ VE(R) (12)

We assume that the E-state coherent superposition of
rovibrational levels has been created with a femtosecond
laser pulse which has been sent thought a phase mask
such that the phases ϕvE ,NE

associated with each level
can be controlled. The binary information is then stored
in the phase differences ∆ϕvE

= ϕvE ,NA+1 − ϕvE ,NA−1

between the two rotational components NE = NA ± 1 of
each vibrational level vE . In addition we have also as-
sumed that an amplitude mask has been used to com-
pensate the Franck-Condon factors which normally gov-
ern the A← X transition. The initial populations of the
different levels in Eq. (9a) have therefore been taken as
independent of the vibrational quantum number vE .

The molecule is then submitted to an ionizing laser
pulse associated with the linearly polarized electric field

~E(t) = E0 f(t) cos(ωt) ê (13)

where E0 and ω denote the electric field amplitude and
the angular frequency of the radiation. ê is the unit po-
larization vector. The pulse envelope f(t) is defined by
the Gaussian-like expression

f(t) = sin2

(

πt

2τ

)

(14)

where τ is the Full Width at Half Maximum (FWHM),
and 2τ the total pulse duration.

Introducing the expansions (2)-(5) and (7) in the time-
dependent Schrödinger equation, and projecting onto the
electronic and rotational basis functions yields, in the
dipole approximation, the following set of coupled differ-
ential equations for the nuclear wavepackets ψNE

M (R, t)

and ψN+, ℓ
M−m(ε,R, t)

i~
∂

∂t
ψNE

M = ĤE
NE

ψNE

M

− E(t)×
∑

N+,ℓ,m

MN+, ℓ,m
NE,M ψN+, ℓ

M−m (15a)

i~
∂

∂t
ψN+, ℓ

M−m =
(

Ĥ+
N+ + ε

)

ψN+, ℓ
M−m

− E(t)×
∑

NE

MN+, ℓ,m
NE,M ψNE

M (15b)

where the nuclear Hamiltonian Ĥ+
N+ is given by

Ĥ+
N+ = −

~
2

2µ

[

∂2

∂R2
−
N+(N++ 1)

R2

]

+ V+(R) (16)

The matrix elements MN+, ℓ,m
NE,M which couple the nuclear

wavepackets evolving on the electronic potential curves
VE(R) and V+(R) read

MN+, ℓ,m
NE,M =

∣

∣

∑

N

(2N + 1)

(

N+ ℓ N
M −m m −M

)

×

(

NE 1 N
M 0 −M

)

{NE|N |N
+ℓ}

∣

∣ (17)



4

where the total angular momentum (ion + electron)

~N = ~N
+

+~ℓ (18)

has been introduced.
The source term {NE|N |N

+ℓ} is evaluated in the
molecular frame. The electron wavefunction originally
described in the laboratory frame in Eq. (5) is expressed
in the molecular frame (Hund’s case (b) representation)
using the frame transformation technique implemented
by Ugo Fano in his pioneering work on H2 [19]. Follow-
ing these lines, we obtain

{NE|N |N
+ℓ} =

1
∑

Λ=0

〈N+ℓ|NΛ〉 eiπµΛ

× d ℓ
Λ(ε,R) 〈NE1|NΛ〉 (19)

where Λ is the projection of the total angular momentum
~N on the molecular axis.

From the definition given in Eq. (18), the following
relation holds

Λ = Λ+ + λ (20)

where Λ+ and λ are the projections of the ion and elec-

tron angular momenta ~N
+

and ~ℓ on the molecular axis.
In the present case, the ionic core presents a 2Σ+

g sym-

metry (Λ+ = 0) and hence

Λ = λ (21)

In Eq. (19), the phases (πµΛ) with Λ = 0 or 1 represent
the phase shifts of the σ and π electron continuum wave-
functions relative to the regular radial Coulomb function.
The short range quantum defects µΛ with Λ = 0 or 1 are
indeed associated with the Σ and Π p-Rydberg series of
Li2 [19].

The matrix element 〈N+ℓ|NΛ〉 of the unitary frame
transformation and the Hönl-London rotational factor
〈NE1|NΛ〉 of Eq. (19) are defined by

〈N ′ℓ′|NΛ〉 = (−1)N ′+Λ+1 (2− δΛ0)
1
2 (2N ′ + 1)

1
2

×

(

ℓ′ N N ′

−Λ Λ 0

)

(22)

In the sum of Eq. (19) d ℓ
Λ(ε,R) denotes the energy and

R-dependent ionization dipole moment from the E-state

d ℓ
Λ(ε,R) =

(

ℓ 1 0
−Λ Λ 0

)

dℓ(ε,R) (23)

where

dℓ(ε,R) =

∫

φ∗ℓ (ε, r|R)Φ∗
+(~rc |R)

× r φE(r,~rc |R) dr d~rc (24)

The present study is limited to a restricted range of
photoelectron energies (ε < 200 cm−1) and of internu-
clear distances (in the vicinity of the E-state equilibrium
distance Re). This justifies the Condon approximation
dℓ(ε,R) ≃ cst used hereafter. The quantum defects µΣ

and µΠ are also taken as independent of R, and their nu-
merical values µΣ ≃ 0.001 and µΠ ≃ −0.287 have been
extracted at R = Re from the electronic potential ener-
gies given in [20].

C. The time propagation

To calculate the ionization of Li2 subjected to a pulsed
laser radiation, we propagate the nuclear wavepackets

ψNE

M (R, t) and ψN+, ℓ
M−m(ε,R, t) in time during the en-

tire pulse using the split operator method developed by
Feit et al [21]





















...

ψNE

M
...

ψN+, ℓ
M−m
...





















ht+δt

= e−i Ĥ δt/~





















...

ψNE

M
...

ψN+, ℓ
M−m
...





















ht

(25)

where the total (molecular + interaction) Hamiltonian

Ĥ = T̂ + V̂ + Ŵ (t) is split in three parts corresponding

to the kinetic (T̂ ), potential (V̂ ) and interaction (Ŵ (t))
propagators

e−i Ĥ δt/~ = e−i T̂ δt/2~ e−i V̂ δt/2~ e−i Ŵ (t) δt/~

×e−i V̂ δt/2~ e−i T̂ δt/2~ + o(δt3) (26)

The kinetic and potential propagations are performed in
the momentum and coordinate spaces respectively. Fast
Fourier Transformation (FFT) allows rapid passage back
and forth from one representation to the other at each
time step. The propagator associated with the laser in-
teraction term Ŵ (t) is calculated using a simple diago-
nalization of its associated interaction matrix [22].

Since we are only dealing with bound vibrational states
in this study, typical grids extend from R = 3.5 au to
R = 14.0 au with 27 grid points. The potential energy
curves VE(R) and V+(R) are taken from [20]. Numeri-
cally, the rotating wave approximation (RWA), very ac-
curate for the present case of low laser intensities and
vertical resonant transitions, allows a substantial gain
of computational time. This approximation, which con-
sists in neglecting the so-called counter-rotating terms,
results in a simple one-photon dressing (energy transla-
tion by ~ω) of the ion electronic potential V+(R) in our
time-dependent approach [22]. A time step of the order
of δt ≃ 4 fs≪ τ is then sufficient for convergence.
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D. The photoelectron spectra

The analysis of the photoelectron angular distribu-
tions is made by projecting the wavepacket ψ+ defined
in Eq. (5) at the end of the pulse (t = 2τ) on the energy-
normalized solutions of the field-free ionized molecu-
lar states [23]. We need to define the set of outgo-
ing plane waves elastically scattered in the direction
~k ≡ (k, k̂ ) for a prescribed asymptotic electron kinetic
energy ε = ~

2k2/2m. These are represented by the usual
expansions on angular momentum states [24]

|ε, k̂ 〉 =
∑

ℓ,m

iℓ e−iξℓ Y ∗
ℓm(k̂ )φℓ(ε, r|R)Yℓm(r̂ ) (27)

where ξℓ denotes the Coulomb phase shift of each partial
wave. We therefore evaluate, for a given value of M , the
angular distribution of the ejected photoelectron at some
fixed energy ε as

PM (ε, k̂ ) =

∫

dR dR̂
∣

∣

∣ 〈 ε, k̂ |ψ+(~r, ~R, 2τ) 〉~r

∣

∣

∣

2

(28)

This multiple integral can be written in a more conve-
nient form with the help of the expansions (5) and (7b).
After the integration over the electronic coordinate
~r ≡ (r, r̂ ) and over the angle R̂ ≡ (θR, φR) we get

PM (ε, k̂ ) =
∑

N+

∑

m

∑

ℓ,ℓ′

i(ℓ
′−ℓ) ei(ξℓ−ξℓ′ )Y ∗

ℓ′m(k̂ )Yℓm(k̂ )

×

∫

dR ψN+, ℓ′ ∗

M−m (ε,R, 2τ) ψN+, ℓ
M−m(ε,R, 2τ) (29)

One can notice here the appearance of an incoherent sum
over the quantum numbers N+ and m, while the sum
over the electron angular momentum ℓ is coherent and
gives rise to various (ℓ × ℓ′) cross-terms. The total pho-
toelectron angular distribution at some fixed energy ε is
then obtained by averaging over the initial distribution
of M

P (ε, k̂ ) ∝
∑

M

PM (ε, k̂ ) (30)

In the present study, a p-electron is ejected and the
value of the electron angular momentum is therefore fixed
to ℓ = 1. In this case, Eqs. (29) and (30) simplify to

P (ε, k̂ ) ∝
∑

M

∑

N+

∑

m

∣

∣

∣Y1m(k̂ )
∣

∣

∣

2

×

∫

∣

∣

∣ψ
N+,1
M−m(ε,R, 2τ)

∣

∣

∣

2

dR (31)

The total photoelectron spectrum is then obtained by a

summation over the ejection angle k̂ ≡ (θk, φk)

P (ε) =

∫

dk̂ P (ε, k̂ ) (32)

thus giving

P (ε) ∝
∑

M

∑

N+

∑

m

∫

∣

∣

∣ψ
N+,1
M−m(ε,R, 2τ)

∣

∣

∣

2

dR (33)

Numerically, the continuous variable ε is discretized in
150 energy values, with 10 6 ε 6 190 cm−1. The proba-

bility that the electron exits in the k̂ direction with an
energy ε is calculated from Equation (31) on a grid of

325 points in k̂ ≡ (θk, φk).
Even if Eq. (33) only reveals a series of incoherent

sums, one should not forget that each exit channel N+

may be reached from different initial levels NE. As a con-
sequence, an initial quantum superposition of rotational
levels can induce an interference effect in the photoelec-
tron spectra which arises from the phases of the different
components in this initial wavepacket.

IV. RESULTS AND DISCUSSION

A. Analysis of the photoelectron spectra and of

the interference effect

Typical photoelectron spectra are shown Figure 2 when
a single initial rovibrational level (vE , NE) is populated.
The upper and lower graphs of Figure 2 correspond to
the same initial vibrational state vE = 0, but to dif-
ferent initial rotational excitations: NE = 1 in the up-
per panels (a) and (b), NE = 3 in the lower panels (c)
and (d). It is assumed here that these levels are pre-
pared using the two-step process depicted Figure 1, with
(vX = 0, NX = 1) and (vA = 0, NA = 2). The incoher-
ent sum over M in Eqs. (31) and (33) therefore extends
from M = −1 to M = 1 only. The photoelectron spec-
tra shown in the left panels (a) and (c) have been cal-
culated using the accurate short range quantum defects
µΣ = 0.001 and µΠ = −0.287 of Li2 while the right pan-
els (b) and (d) correspond to an hypothetically isotropic
Li2 molecule with µΣ = µΠ.

The solid blue lines in Figure 2 represent the pho-
toelectron spectra obtained with the laser frequency
ω = 14184 cm−1 (wavelength 705 nm) and with the pulse
duration τ = 15 ps. One can notice that for the initial
condition NE = 1 (panel (a)) two peaks are seen in the
photoelectron signal. Their energies correspond to the
ion exit channels v+ = 0 with N+ = 1 or 3.

The v+ = vE vibrational selection rule is observed in
this case because of the pronounced Rydberg character
of the E-electronic state at short internuclear distances.
The two potential curves VE(R) and V+(R) are indeed
parallel for R 6 7 au (see Figure 1). Around R ≃ 9 au,
an avoided crossing gives rise to the double-well struc-
ture of the E-state, deeply modifying the Rydberg na-
ture of this excited state. However, this avoided crossing
has a negligible influence on the lowest vibrational levels
(vE 6 4).
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FIG. 2: (Color online) Photoelectron spectra calculated us-
ing a single initial state (vE , NE) as a function of energy ε.
Upper panels (a) and (b): the initial state is vE = 0, NE = 1.
Lower panels (c) and (d): the initial state is vE = 0, NE = 3.
The photoelectron spectra calculated using the quantum de-
fects of Li2 are shown in the left panels (a) and (c), while the
spectra in the right panels (b) and (d) correspond to µΣ = µΠ

(see text for details). The solid blue lines correspond to the
pulse duration (FWHM) τ = 15 ps while τ = 2.5 ps for the
red dashed lines. The laser wavelength is 705 nm. The photo-
electron energies expected from a simple energy conservation
rule ε = E(vE , NE) + ~ω − E(v+, N+) with the usual selec-
tion rule v+ = vE are shown as thin vertical dotted blue lines
for various ion rotational quantum numbers N+.

The branching ratio between the N+ = 1 and N+ = 3
exit channels clearly favors N+ = NE = 1. This result
is not unexpected since in the case of an isotropic sym-
metry (corresponding here to µΣ = µΠ) the other ioniza-
tion channel (N+ = 3) has no intensity, as one can see
in the panel (b) of Figure 2. The molecular anisotropy,
expressed by the phase difference (µΣ − µΠ)π ≃ 0.3π, al-
lows for the exchange of angular momentum between the
ionized electron and the nuclear rotation. This effect,
which can be seen as a mutual electron-nuclei entangle-
ment, explains the appearance of the additional branch
N+ = 3 in panel (a).

For the initial level NE = 3 (lower part of Figure 2),
this effect is also seen with the appearance of the two
satellite peaks N+ = NE ± 2 around ε = 45 cm−1 and
around ε = 60 cm−1. These two peaks are not seen in
panel (d) when µΣ = µΠ. Note also from panels (a)
and (c) that the central peak, which corresponds to
an ionization without exchange of angular momentum
(N+ = NE), is located at the same photoelectron energy
ε = 55 cm−1 for both initial rotational levels NE = 1
and 3. This happens because the rotational constants
of the E-state of Li2 and of the ground electronic state
of Li+2 are almost identical.

The dashed red lines shown Figure 2 finally represent
the photospectra calculated with the same parameters

except for a much shorter pulse duration τ = 2.5 ps.
In this case the peaks associated with different values
of the ion rotational quantum number N+ overlap due
to the large spectral bandwidth of the pulse. A single
broad photoelectron peak is, therefore, obtained around
ε = 55 cm−1 whatever the initial rotational level NE .

In the isotropic case shown on the right hand side of
Figure 2 the photoelectron peaks calculated with this
shorter pulse duration have a symmetric shape since a
single ionization channel (N+ = NE) is observed. On the
other hand, a slightly asymmetric shape is obtained with
the real Li2 molecule (see the red dashed line in panel
(c) for instance), due to the asymmetric distribution of
the two satellite peaks N+ = NE ± 2 on both sides of the
central peak corresponding to N+ = NE .

In the experiment, it is expected that two NE rota-
tional levels can be populated in a coherent distribu-
tion whose initial phase difference is controlled using the
phase mask of a pulse shaper. This type of experiment
has been implemented recently for higher rotational lev-
els in the Group of Stephen Leone [13] for instance. The
photoelectron spectra calculated using in-phase and out-
of-phase initial distributions of NE = 1 and 3 are shown
in Figure 3 as red solid and blue dashed lines for the pulse
duration τ = 2.5 ps. One can recognize in these two spec-
tra the slightly asymmetric distributions discussed pre-
viously.
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FIG. 3: (Color online) Photoelectron spectra calculated us-
ing a single initial vibrational state (vE = 0) with a coherent
superposition of two rotational levels (NE = 1 and NE = 3)
as a function of energy ε. The pulse duration is τ = 2.5 ps
in the main graph (a) and τ = 15 ps in the small upper-right
inset (b). The laser wavelength is 705 nm. The red solid line
and blue dashed line correspond to an in phase (∆ϕ = 0) and
an out of phase (∆ϕ = π) coherent superposition respectively.
The isotropic case µΣ = µΠ is represented by the green dotted
line for ∆ϕ = 0 and the green solid circles for ∆ϕ = π. The
labels N+←NE in the inset assign the various energy peaks
with respect to the initial (NE) and final (N+) rotational
levels. See text for details.

A clear and significant interference effect is also seen
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here. The total ionization probability is amplified by a
factor of 2.05 when comparing the in-phase and out-of-
phase initial conditions.

Because of the orthogonality of the Wigner rotation
matrices DN ∗

M,Λ(R̂ ) the photoelectron probability can be
written as an incoherent sum over the rotational quantum
number N+, as one can see in Eq. (33). The interference
effect seen here is therefore not due to an interference
between the different exit channels labeled by N+, but is
due to an interference taking place in the same ionization
channel between the two pathways coming from the two
possible initial levels NE .

Let us consider for instance the ionization channel as-
sociated with N+ = 3. This final state can be reached
through the main branch coming fromNE = 3 or through
the small satellite arising from NE = 1. One could think
at first sight that the cross term associated with this in-
terference mechanism is probably negligible considering
the small branching ratio (≃ 0.1) between the N+ = NE

and N+ = NE ± 2 pathways (see Figure 2c). However,
even in this apparently unfavorable case, it can be easily
estimated that this cross term can induce a significant
interference effect which could in principle modify the
ionization probability by a factor of three when compar-
ing destructive and constructive interferences.

In our case all exit channels are not subjected to this
interference. For example N+ = 5 can be reached from
NE = 3 only. In addition the photoelectron signal is a
complex incoherent average over the different possible
values of M and m (see Eq (33)). The two different path-
ways NE → N+ and N ′

E → N+ are also affected by the

different values of the coupling matrix elementsMN+, ℓ,m
NE,M

given in Eq. (17). The contrast separating a constructive
from a destructive interference is therefore not maximum,
and after this complex averaging Figure 3 shows that the
interference effect changes the ionization probability of
Li2 by a factor of about two.

Our analysis is also confirmed by the photoelectron
spectrum obtained with µΣ = µΠ (green dotted line and
green solid circles in Figure 3). Whatever the phase shift
∆ϕ between the NE = 1 and NE = 3 initial rotational
levels the same photoelectron spectrum is obtained, and
no interference effect is seen. This is due to the disap-
pearance of the NE → N+ = NE ± 2 pathways, as dis-
cussed previously.

The interference effect can also be suppressed by in-
creasing the pulse duration τ . In this last case the photo-
electron peaks associated with different rotational quan-
tum number N+ do not overlap anymore, and two identi-
cal N+ originating from different NE never appear at the
same energy (see the small inset in Figure 3 for instance).
As can be seen in Eq. (33), the wavepackets associated
with different photoelectron energies never interfere and
as a consequence the interference effect seen with shorter
pulses is not observed with long pulses. We have indeed
verified that the spectrum shown in the small inset of
Figure 3 (τ = 15 ps) does not depend on ∆ϕ.

We will now show that the interference effect shown
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FIG. 4: (Color online) Photoelectron spectra calculated us-
ing two initial vibrational states (vE = 0 and 1) with a co-
herent superposition of two rotational levels (NE = 1 and
NE = 3) as a function of energy ε. The pulse duration
is τ = 2.5 ps and the laser wavelength is 699.8 nm. The
dashed blue lines show the photoelectron spectra P (n, ε) cal-
culated when the integer values n = 0 (panel a), 1 (panel b),
2 (panel c) and 3 (panel d) are stored in the phase differ-
ence between the NE = NA ± 1 rotational components of
the initial wavepacket. The solid red lines in the small in-
sets show the signal difference S(n, ε) = P (n, ε)− P (0, ε) for
n = 0 . . . 3.

in Figure 3 with relatively short pulses can be used to
reveal efficiently a more complex phase information ini-
tially stored in the rotational wavepacket of Li2 in a way
similar to the implementation performed in the group of
Philip Bucksbaum with Rydberg wavepackets [10, 11].

B. Applications to quantum information

In Li2 , we use the quantum superposition of two ro-
tational levels in different vibrational states to store a
binary information. The case of two vibrational levels
is shown in Figure 4. The combinations 00, 01, 10 and
11, associated with the decimal values n = 0, 1, 2 and
3, can then be stored. The measurement of this infor-
mation is performed by photoionization, thanks to the
anharmonicity of the electronic potential curves of the
molecule.

Since the vibrational frequency of the E-state and of
the ion are almost identical, in an harmonic approxima-
tion and with v+ = vE the energy of the ionized electron

ε = E(vE , NE) + ~ω − E(v+, N
+) (34a)

harm
≃ cst +Brot [NE(NE +1)−N+(N++1)] (34b)
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does not depend on the value of the initial vibrational
level. However, the anharmonicity of Li2 is large enough
(≃ 20− 50 cm−1) to exceed by far the rotational spacing
(Brot ≃ 0.5 cm−1). Different initial vibrational levels can
therefore be clearly distinguished even with the relatively
short pulses (1 ps 6 τ 6 5 ps) which allow for the obser-
vation of the interference effect discussed previously.

The dashed blue lines in Figure 4 represent the pho-
toelectron spectra calculated with the phase differences
(0,0), (0,π), (π,0) and (π,π) in the vibrational states
(vE = 1,vE = 0) between the rotational levels NE = 1
and NE = 3. These phase differences correspond to the
integers n = 0, 1, 2 and 3. We denote by P (n, ε) the
associated photoelectron spectra. The interference effect
(amplification of the ionization probability by a factor of
two) is clearly seen for both vibrational levels.

If we define the signal difference S(n, ε) by the follow-
ing relation

S(n, ε) = P (n, ε)− P (0, ε) , (35)

a direct visualization of the binary representation of n
is obtained in the graphs showing S(n, ε) as a function
of the energy ε. These signal differences are represented
as red solid lines in the four small insets of Figure 4.
This photoelectron signal difference S(n, ε) character-
izes the cross terms associated with the N+ = NE and
N+ = N ′

E ± 2 paths. It can also be seen as a direct mea-
sure of the electron-nuclei entanglement induced by the
molecular anisotropy.

In order to check the scalability of this method, we
have calculated the signal difference S(n, ε) for n = 0, 1,
10 and 31 when the binary information is stored in the
first five vibrational levels of the E-state. These results
are shown as red solid lines in the four panels of Figure 5.
One can notice the effectiveness of the method for such
a small number of vibrational levels.

A few tendencies are worth being noted in this figure.
Since the total (electron+ion) energy is fixed, the lowest
energy peaks can be assigned to the highest ion vibra-
tional levels v+. The fact that the energy separation
between two peaks increases with v+ is simply explained
by the increasing anharmonicity of the potential curve
with larger internuclear distances.

Finally, one can also notice that the energy peak on
the left is not as intense as the other ones. This peak
corresponds to an ion left in v+ = 4 and therefore to the
molecule being initially in vE = 4. This initial level is al-
ready located at an energy close to the avoided crossing of
the E-state (see Figure 1), and the v+ = vE selection rule
is no longer fully verified. This initial level is effectively
also ionized in v+ = vE − 1 = 3, yielding the ejection of
an electron carrying much more energy. This effect ex-
plains the smallest probability observed in Figure 5 for
the vE = 4→ v+ = 4 pathway.

Higher vibrational levels also show this tendency of
being ionized into vibrational levels with v+ < vE . This
type of behavior could be seen as a limitation of the pro-
posed mechanism for storing and reading information in
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FIG. 5: (Color online) Photoelectron spectra calculated us-
ing five initial vibrational states (vE = 0 . . . 4) with a coherent
superposition of two rotational levels (NE = 1 and NE = 3)
as a function of energy ε. The pulse duration is τ = 2.5 ps
and the laser wavelength is 699.6 nm. The solid red lines
show the signal difference S(n, ε) = P (n, ε)− P (0, ε) when
the integer values n = 0 (panel a) , 1 (panel b), 10 (panel
c) and 31 (panel d) are stored in the phase difference be-
tween the NE = NA ± 1 rotational components of the initial
wavepacket. The step function shown as a green solid line
in panel (d) represents the vibrational Franck-Condon factors
F (ε) = 〈v+|vE〉 associated with the different photoelectron
peaks. The ratio S(n, ε)/F (ε) is shown in panel (d) as a blue
dashed-line.

and from the rotational degree of freedom of a diatomic
molecule. However, this effect can easily be corrected
for by renormalizing the photoelectron signal with the
vibrational Franck-Condon factors

F (ε) =

∫

χ∗
v+

(R) χvE
(R) dR (36)

between the eigenfunctions associated with the vE and
v+ = vE vibrational quantum numbers. The step-like
function F (ε) is shown as a green solid line in panel (d) of
Figure 5. The decreasing probability seen in the left peak
associated with v+ = vE = 4 is compensated by calculat-
ing the simple ratio S(n, ε)/F (ε). This ratio is shown in
the same graph as a blue dashed line, and all construc-
tive interference peaks now reach the same height. Since
the vibrational wave functions χvE

(R) and χv+
(R) can be

easily calculated from the potential curves given in [20],
this correcting procedure is quite straitforward.
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V. CONCLUSION

We have proposed here a theoretical model for the
study of the short-pulse photoionization of Li2 , follow-
ing a scheme relatively close to recent experimental im-
plementations. This model takes into account the molec-
ular rotational degree of freedom and allows for the cal-
culation of the photoelectron spectrum resolved in time,
energy and in angle.

We have used this time-dependent model to predict a
new and efficient mechanism for measuring binary clas-
sical information initially stored in the phases of a rota-
tional wavepacket. A picosecond laser excitation induces
an interference between these different rotational compo-
nents. This typically molecular interference effect mea-
sures the electron-nuclei entanglement which takes place
thanks to the anisotropy of the diatomic molecule, and
transfers the rotational phase information in the photo-

electron spectrum.
These results indicate that a high degree of control can

be achieved in this type of molecular systems using sim-
ple pulse shaping techniques. A systematic exploration
of the control achievable in the photoelectron angular
distributions will be presented in another paper.
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We thank Hervé Le Rouzo and Georges Raseev (Or-
say) for stimulating and helpful discussions. The IDRIS-
CNRS supercomputer center provided computational
time under project number 08/051848. This work was
partially supported by the LRC of the CEA, under con-
tract number DSM-0533. Laboratoire de Photophysique
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