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Abstract

We are concerned with singular elliptic problems of the form −∆u ± p(d(x))g(u) =
λf(x, u) + µ|∇u|a in Ω, where Ω is a smooth bounded domain in R

N , d(x) = dist(x, ∂Ω),
λ > 0, µ ∈ R, 0 < a ≤ 2, and f, k are nonnegative and nondecreasing functions. We assume
that p(d(x)) is a positive weight with possible singular behavior on the boundary of Ω and
that the nonlinearity g is unbounded around the origin. Taking into account the competition
between the anisotropic potential p(d(x)), the convection term |∇u|a, and the singular non-
linearity g, we establish various existence and nonexistence results.
2000 Mathematics Subject Classification: 35B50, 35J65, 58J55.
Key words: singular elliptic equation, convection term, anisotropic media, singular potential,
maximum principle.

1 Introduction

Let Ω ⊂ R
N (N ≥ 2) be a bounded domain with smooth boundary. We are concerned in this

paper with singular elliptic problems of the following type























−∆u± p(d(x))g(u) = λf(x, u) + µ|∇u|a in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(P )±

where d(x) = dist(x, ∂Ω), λ > 0, µ ∈ R, and 0 < a ≤ 2.

We refer the reader to the works of Serrin [26], Choquet-Bruhat and Leray [8], and Kazdan

and Warner [23], which motivate the requirement that the nonlinearity |∇u|a grows at most

quadratically. We also assume that
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• g ∈ C1(0,∞) is a positive decreasing function and

(g1) lim
t→0+

g(t) = +∞.

• f : Ω× [0,∞) → [0,∞) is a Hölder continuous function which is nondecreasing with respect

to the second variable and such that f is positive on Ω × (0,∞). Furthermore, f is either

linear or f is sublinear with respect to the second variable. This last case means that f

fulfills the hypotheses

(f1) the mapping (0,∞) ∋ t 7−→ f(x, t)

t
is nonincreasing for all x ∈ Ω;

(f2) lim
t→0+

f(x, t)

t
= +∞ and lim

t→+∞

f(x, t)

t
= 0, uniformly for x ∈ Ω.

• p : (0,+∞) → (0,+∞) is nonincreasing and Hölder continuous.

Such singular boundary value problems arise in the context of chemical heterogeneous catalysts

and chemical catalyst kinetics, in the theory of heat conduction in electrically conducting ma-

terials, singular minimal surfaces, as well as in the study of non-Newtonian fluids or boundary

layer phenomena for viscous fluids (we refer for more details to [5, 6, 7, 11, 13, 14] and the more

recent papers [9, 15, 20, 21, 22, 24, 27, 28, 31]). We also point out that, due to the meaning of

the unknowns (concentrations, populations, etc.), only the positive solutions are relevant in most

cases.

To the best of our knowledge, there does not exist a qualitative theory for the study of

singular boundary value problems with nonlinearities in the Kato class K loc
N (RN ). This theory

was introduced by Aizenman and Simon in [2] to describe wide classes of functions arising in

Potential Theory. We refer to the recent paper [25] for existence and bifurcation results on

Dirichlet boundary value problems with indefinite nonlinearities.

The results in this paper complete the study developed in [16] and [17] since here we deal with

singular weights. One of our purposes is to give a necessary and sufficient condition on the weight

p in order to obtain a classical solution of problems (P )±. By classical solution we understand a

function u ∈ C2(Ω) ∩ C(Ω) that fulfills (P )±.

Dealing with problem (P )+ we show that a necessary condition in order to have classical

solution is
∫ 1

0
p(t)g(t)dt < +∞. (1.1)

In the case where f is sublinear, that is, f fulfills the hypotheses (f1) and (f2), condition (1.1) is

also sufficient for existence of a classical solutions of (P )+ provided λ and µ belong to a certain

range (see Theorem 2.2). Obviously, (1.1) implies the following Keller-Osserman type condition

around the origin (see the proof of Theorem 2.2)
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(KO)

∫ 1

0

(
∫ t

0
Φ(s)ds

)−1/2

dt < +∞ , where Φ(s) = p(s)g(s), for all s > 0.

As proved by Bénilan, Brezis and Crandall [4], condition (KO) is equivalent to the property

of compact support, that is, for every h ∈ L1(RN ) with compact support, there exists a unique

u ∈W 1,1(RN ) with compact support such that ∆u ∈ L1(RN ) and

−∆u+ Φ(u) = h a.e. in R
N .

The results are completely different for problem (P )−. Our results in this case generalize those

established in [32], in the sense that in the present paper we do not prescribe the behavior of

the singular nonlinearity g around the origin. Also, we proved in [16] that if p ≡ 1, then the

existence of a classical solution to (P )− does not depend on the asymptotic behavior of g near

the origin, whereas the exponent a of the convection term |∇u|a plays a crucial role. In our case,

the potential p(d(x)) also affects the existence of classical solutions to (P )−.

Many papers have been devoted to the case p ≡ 1 and µ = 0 (see [10, 12, 15, 27] and the

references therein). One of the first works in the literature dealing with singular weights in

connection with singular nonlinearities is due tu Taliaferro [29]. In [29] the following problem has

been considered










−y′′ = ϕ(x)y−β in (0, 1),

y(0) = y(1) = 0,
(1.2)

where β > 0 and ϕ(x) is positive and continuous on (0, 1). It was proved that problem (1.2)

has solutions if and only if
∫ 1
0 t(1 − t)ϕ(t)dt < +∞. Later, Agarwal and O’Regan [1, Section 2]

studied the more general problem























H ′′(t) = −p(t)g(H(t)) in (0, 1),

H > 0 in (0, 1),

H(0) = H(1) = 0,

(1.3)

where g satisfies (g1) and p is positive and continuous on (0, 1). It is shown in [1] that if

∫ 1

0
t(1 − t)p(t)dt < +∞, (1.4)

then (1.3) has at least one classical solution. In our framework, p is continuous at t = 1 so

condition (1.4) reduces to
∫ 1

0
tp(t)dt < +∞. (1.5)

We prove that assumption (1.5) is necessary in order that problem (P )− has classical solutions.

Furthermore, we argue in Section 3 that the existence of a classical solution of (P )− when f is

sublinear depends on the asymptotic behavior of the gradient term |∇u|a. In this sense, we prove

3



that if 0 < a < 1, then (P )− has at least one classical solution for all µ ∈ R. In turn, if 1 < a ≤ 2,

then (P )− has no solutions for large values of µ.

Special attention is payed to the case where a = 1. This case was left as an open question in

[16]. We prove in Theorem 3.3 that if Ω is a ball centered at the origin, then (P )− has at least

one solution for all µ ∈ R, provided a = 1.

The existence of a solution to (P )± is achieved by the sub and super-solution method. In

particular, the super-solution of (P )− is expressed in terms of H. In the case of pure power

nonlinearities, a careful analysis of (1.3) allows us to give boundary estimates of the solution.

The outline of the paper is as follows. In Section 2 we give existence and nonexistence results

for problem (P )+. Section 3 concerns the problem (P )− in which we discuss separately the case

where f is linear or sublinear. At the end of this Section we present, as an application of the

obtained results, the case where p(t) = t−α and g(t) = t−β, and we give some estimates for the

solution at the boundary. To make the results clearer, we assume that λ = 1 and f is sublinear.

Thus, problem (P )− becomes























−∆u = d(x)−αu−β + f(x, u) + µ|∇u|a in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.6)

2 The problem (P )+

We first establish the following general nonexistence result related to problem (P )+.

Theorem 2.1. Assume that

∫ 1

0
p(t)g(t)dt = +∞. Let Φ : Ω × [0,+∞) → R be a Hölder contin-

uous function. Then the inequality boundary value problem























−∆u+ p(d(x))g(u) ≤ Φ(x, u) + C |∇u|2 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(2.1)

has no classical solutions.

As a direct consequence, we obtain :

Corollary 2.1. Assume that

∫ 1

0
p(t)g(t)dt = +∞. Then problem (P )+ has no classical solutions.

Proof of the theorem. We apply an idea found e.g. in [30]. It is readily seen that it suffices

to prove the Theorem only for the case C > 0. Arguing by contradiction, we assume that the
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boundary value inequality problem (2.1) has a solution u ∈ C2(Ω) ∩ C(Ω). By the Gelfand

transform v = eCu − 1 we find

∆v = CeCu
(

∆u+ C|∇u|2
)

≥ CeCu [p(d(x))g(u) − Φ(x, u)]

= C(v + 1)

[

p(d(x))g

(

ln(v + 1)

C

)

− Φ

(

x,
ln(v + 1)

C

)]

.
(2.2)

Since v is continuous on Ω and v > 0 in Ω, we deduce that

−∆v ≤ Ψ(x, v) ≤ C0 in Ω,

where Ψ(x, v) = C(v + 1)Φ
(

x, ln(v+1)
C

)

. A straightforward argument based on the maximum

principle combined with the observation that v = 0 on ∂Ω shows that v ≤ c0d(x) in Ω.

For ε > 0 small enough, consider an open set Ωε with smooth boundary such that Ωε ⊃ {x ∈
Ω; dist (x, ∂Ω) > ε}. By integration in (2.2) we find

−
∫

∂Ωε

∂v

∂νε
ds+ C

∫

Ωε

(v + 1)p(d(x))g

(

ln(v + 1)

C

)

dx ≤
∫

Ωε

Ψ(x, v)dx ≤ C0|Ω|.

Therefore
∫

∂Ωε

∂v

∂νε
ds ≥ C

∫

Ωε

(v + 1)p(d(x))g

(

ln(v + 1)

C

)

dx− C0|Ω|

≥ C

∫

Ωε

p(d(x))g
( v

C

)

dx− C0|Ω|.
(2.3)

Since v ≤ c0d(x) in Ω, and
∫ 1
0 p(t)g(t)dt = +∞, it follows that the integral in the right-hand side

of (2.3) diverges as ε→ 0+. Hence

lim
ε→0+

∫

∂Ωε

∂v

∂νε
ds = +∞.

But this contradicts the maximum principle (see [18, Lemma 3.4]) because lim supt→0−
v(x0+tν)

t <

0, for all x0 ∈ ∂Ω. �

Before stating our existence results, we recall the following auxiliary tool (see [17, Lemma 2.1]

for a complete proof).

Lemma 2.1. Let Ψ : Ω × (0,+∞) → R be a Hölder continuous function such that the mapping

(0,+∞) ∋ s 7−→ Ψ(x, s)

s
is strictly decreasing for each x ∈ Ω. Assume that there exist v, w ∈

C2(Ω) ∩ C(Ω) such that

(a) ∆w + Ψ(x,w) ≤ 0 ≤ ∆v + Ψ(x, v) in Ω;

(b) v,w > 0 in Ω and v ≤ w on ∂Ω;

(c) ∆v ∈ L1(Ω) or ∆w ∈ L1(Ω).

Then v ≤ w in Ω.

Next, we prove that (1.1) is sufficient for the existence of a classical solution to (P )+ provided

µ ≤ 0 and λ > 0 is sufficiently large. We have
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Theorem 2.2. Assume that

∫ 1

0
p(t)g(t)dt < +∞.

(i) If µ = −1, then there exists λ∗ > 0 such that (P )+ has at least one classical solution if

λ > λ∗ and no solution exists if 0 < λ < λ∗.

(ii) If µ = +1 and 0 < a < 1, then there exists λ∗ > 0 such that (P )+ has at least one classical

solution for all λ > λ∗ and no solution exists if 0 < λ < λ∗.

Proof. (i) We split the proof into several steps.

Step 1: Existence of a solution for λ large. By virtue of [27, Lemma 4] (see also ([28, Theorem

2]), the problem






















−∆U = λf(x,U) in Ω,

U > 0 in Ω,

U = 0 on ∂Ω,

(2.4)

has at least one classical solution Uλ, for all λ > 0. Using the regularity of f it follows that

Uλ ∈ C2(Ω) and there exist c1, c2 > 0 depending on λ such that

c1d(x) ≤ Uλ(x) ≤ c2d(x) in Ω. (2.5)

Fix λ > 0 and observe that Uλ is a super-solution of (P )+. The main point is to find a sub-

solution uλ of (P )+ such that uλ ≤ Uλ in Ω. For this purpose, let Φ(t) = p(t)g(t), t > 0, and

define

Ψ : [0,+∞) → [0,+∞), Ψ(t) =

∫ t

0

1
√

2
∫ s
0 Φ(τ)dτ

ds.

Remark first that Ψ is well defined, since Φ ∈ L1(0, 1). Indeed, there exists m > 0 such that

Φ(s) ≥ m, for all 0 < s < 1. This yields (
∫ s
0 Φ(τ)dτ)−1/2 ≤ (

√
ms)−1, for all 0 < s < 1 which

implies the Keller-Osserman condition (KO) around the origin:

∫ 1

0

(
∫ t

0
Φ(s)ds

)−1/2

dt < +∞.

We claim that Ψ is a bijective map. Indeed, Ψ is increasing and if M := Φ(1), then

∫ s

0
Φ(τ)dτ ≤

∫ 1

0
Φ(τ)dτ +M(s− 1), ∀s ≥ 1.

Thus, there exists c > 0 such that
∫ s

0
Φ(τ)dτ ≤Ms+ c, ∀s ≥ 1.

It follows that

Ψ(t) ≥
∫ t

1

1
√

2(Ms + c)
ds ≥ 1

M
(
√

2(Mt+ c) − c1), ∀ t ≥ 1.
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This gives limt→+∞ Ψ(t) = +∞ and the claim follows.

Let h : [0,+∞) → [0,+∞) be the inverse of Ψ. Then h satisfies







































h > 0 in (0,+∞),

h′(t) =

√

2
∫ h(t)
0 Φ(s)ds in (0,+∞),

h′′(t) = Φ(h(t)) in (0,+∞),

h(0) = h′(0) = 0.

(2.6)

Hence h ∈ C2(0,+∞) ∩ C1[0,+∞). Let ϕ1 > 0 be the first eigenfunction of (−∆) in H1
0 (Ω). It

is well known that there exists C > 0 such that

Cd(x) ≤ ϕ1 ≤ 1

C
d(x) for all x ∈ Ω. (2.7)

The key result for this part of the proof is the following.

Lemma 2.2. There exist two positive constants c > 0 and M > 0 such that uλ := Mh(cϕ1) is a

sub-solution of (P )+ provided λ > 0 is large enough.

Proof. Since h ∈ C1[0,∞) and h(0) = 0, we can take c > 0 small enough such that

h(cϕ1) ≤ d(x) in Ω. (2.8)

By Hopf’s maximum principle, there exist δ > 0 and ω ⊂⊂ Ω such that |∇ϕ1| ≥ δ in Ω \ ω. Let

M = max{1, 2(cδ)−2}. (2.9)

Since

lim
d(x)→0+

{

− p(d(x))g(h(cϕ1)) +Mcλ1ϕ1h
′(cϕ1) + (Mch′(cϕ1)|∇ϕ1|)a

}

= −∞,

we can assume that

−p(d(x))g(h(cϕ1)) +Mcλ1ϕ1h
′(cϕ1) + (Mch′(cϕ1)|∇ϕ1|)a < 0 in Ω \ ω. (2.10)

We are now able to show that uλ := Mh(cϕ1) is a sub-solution of (P )+ provided λ > 0 is

sufficiently large. Indeed, using the monotonicity of g and (2.8) we have

−∆uλ + p(d(x))g(uλ) + |∇uλ|a =

= −Mc2p(h(cϕ1))g(h(cϕ1))|∇ϕ1|2 +Mcλ1ϕ1h
′(cϕ1)

+p(d(x))g(Mh(cϕ1)) + (Mch′(cϕ1)|∇ϕ1|)a

≤ p(d(x))g(h(cϕ1))(1 −Mc2|∇ϕ1|2) +Mcλ1ϕ1h
′(cϕ1) + (Mch′(cϕ1)|∇ϕ1|)a.

(2.11)
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Taking into account the definition of M and (2.10), we find

−∆uλ + p(d(x))g(uλ) + (|∇uλ|)a

≤ −p(d(x))g(h(cϕ1)) +Mcλ1ϕ1h
′(cϕ1) + (Mch′(cϕ1)|∇ϕ1|)a < 0 in Ω \ ω.

(2.12)

On the other hand, from (2.11) and for all x ∈ ω we have

−∆uλ + p(d(x))g(uλ) + |∇uλ|a ≤ p(d(x))g(h(cϕ1)) +Mcλ1ϕ1h
′(cϕ1)

+ (Mch′(cϕ1)|∇ϕ1|)a.
(2.13)

Since ϕ1 > 0 in ω and f is positive on ω × (0,+∞), we may choose λ > 0 such that

λmin
x∈ω

f(x,Mh(cϕ1)) ≥ max
x∈ω

{

p(d(x))g(h(cϕ1))+Mcλ1ϕ1h
′(cϕ1)+ (Mch′(cϕ1)|∇ϕ1|)a

}

. (2.14)

From (2.13) and (2.14) we deduce

−∆uλ + p(d(x))g(uλ) + |∇uλ|a ≤ λf(x, uλ) in ω. (2.15)

Now, relations (2.12) and (2.15) show that uλ = Mh(cϕ1) is a sub-solution of (P )+ provided

λ > 0 satisfies (2.14). This finishes the proof of our Lemma. �

Using Lemma 2.1, it follows that uλ ≤ Uλ in Ω and by standard elliptic arguments (see [18])

we obtain a classical solution uλ of (P )+ such that uλ ≤ uλ ≤ Uλ in Ω.

Step 2: Nonexistence for λ > 0 small. We first remark that

lim
t→0+

(f(x, t) − p(d(x))g(t)) = −∞ uniformly for x ∈ Ω.

Hence, there exists t0 > 0 such that

f(x, t) − p(d(x))g(t) < 0, for all (x, t) ∈ Ω × (0, t0). (2.16)

On the other hand, the assumption (f1) yields

f(x, t) − p(d(x))g(t)

t
≤ f(x, t)

t
≤ f(x, t0)

t0
, (2.17)

for all (x, t) ∈ Ω × [t0,+∞). Let m = maxx∈Ω
f(x,t0)

t0
. Combining (2.16) with (2.17) we find

f(x, t) − p(d(x))g(t) < mt, for all (x, t) ∈ Ω × (0,+∞). (2.18)

Set λ0 = min {1, λ1/2m} . We claim that problem (P )+ has no classical solution for 0 < λ ≤ λ0.

Indeed, assume by contradiction that u0 is a classical solution of (P )+ with λ ∈ (0, λ0]. Then,

according to (2.18), u0 is a sub-solution of






















−∆u =
λ1

2
u in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(2.19)
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By Lemma 2.1 we have u0 ≤ Uλ in Ω. Furthermore, from (2.7) and (2.5) we get cu0 ≤ ϕ1 in

Ω for some positive constant c > 0. Note that cu0 is still a sub-solution of (2.19) while ϕ1 is a

super-solution of (2.19). By standard elliptic arguments, problem (2.19) has a solution u ∈ C2(Ω).

Multiplying by ϕ1 in (2.19) and integrating on Ω we have

−
∫

Ω
ϕ1∆udx =

λ1

2

∫

Ω
uϕ1dx,

that is,

λ1

∫

Ω
uϕ1dx = −

∫

Ω
u∆ϕ1dx =

λ1

2

∫

Ω
uϕ1dx.

The above equality yields
∫

Ω uϕ1dx = 0, but this is clearly a contradiction, since u and ϕ1 are

both positive on Ω. It follows that (P )+ has no classical solutions for 0 < λ ≤ λ0.

Step 3: Dependence on λ > 0. Set

A =
{

λ > 0; problem (P )+ has at least one classical solution
}

.

From the above arguments we deduce that A is nonempty and λ∗ := inf A is positive. We show

that if λ ∈ A, then (λ,+∞) ⊆ A. To this aim, let λ1 ∈ A and λ2 > λ1. If uλ1
is a solution of

(P )+ with λ = λ1, then uλ1
is a sub-solution of (P )+ with λ = λ2 while Uλ2

defined in (2.4) for

λ = λ2 is a super-solution. Moreover, we have

∆Uλ2
+ λ2f(x,Uλ2

) ≤ 0 ≤ ∆uλ1
+ λ2f(x, uλ1

) in Ω,

Uλ2
, uλ1

> 0 in Ω,

Uλ2
= uλ1

= 0 on ∂Ω,

∆Uλ2
∈ L1(Ω).

Again by Lemma 2.1 we get uλ1
≤ Uλ2

in Ω. Therefore, problem (P )+ with λ = λ2 has at least

one classical solution. Since λ ∈ A was arbitrary, we conclude that (λ∗,+∞) ⊂ A. This completes

the proof of (i).

(ii) Step 1: Existence of a solution for λ large.

According to Lemma 2.2, there exists λ∗ > 0 such that (P )+ has a sub-solution uλ for λ > λ∗

and µ = −1. Then uλ is also a sub-solution in case µ = +1, provided λ > λ∗. Let us construct

now a super-solution. By [27, Lemma 4], for all λ > λ∗ there exists vλ ∈ C2(Ω) a solution of























−∆v = λf(x, v) + 1 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.
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Since 0 < a < 1, we can choose M = M(λ) > 1 large enough such that M > Ma|∇vλ|a in Ω.

Then, using (f1) we obtain

−∆(Mvλ) = λMf(x, vλ) +M ≥ λf(x,Mvλ) + |∇(Mvλ)|a in Ω.

Hence uλ := Mvλ ∈ C2(Ω) is a super-solution of (P )+ for all λ > λ∗. On the other hand, since

∆uλ +λf(x, uλ) ≤ 0 ≤ ∆uλ +λf(x, uλ) in Ω, by Lemma 2.1 we get uλ ≤ uλ and finally, problem

(P )+ has at least one solution for all λ > λ∗.

Step 2: Nonexistence for λ > 0 small. We first extend Lemma 2.1 in the following way :

Lemma 2.3. Let 0 < a < 1 and Ψ : Ω× (0,+∞) → R be a Hölder continuous function such that

the mapping (0,+∞) ∋ s 7−→ Ψ(x, s)

s
is strictly decreasing for each x ∈ Ω. Assume that there

exist v, w ∈ C2(Ω) ∩ C(Ω) such that

(a) ∆w + Ψ(x,w) + |∇w|a ≤ 0 ≤ ∆v + Ψ(x, v) + |∇v|a in Ω;

(b) v,w > 0 in Ω and v < w on ∂Ω.

Then v ≤ w in Ω.

Proof. Assume by contradiction that the inequality v ≤ w does not hold throughout Ω and

let ϕ = v
w . Clearly, ϕ < 1 on ∂Ω and

−∇ ·
[

w2∇ϕ
]

= −w∆v + v∆w.

Let x0 ∈ Ω denote a point of maximum of ϕ. In particular ∇ϕ(x0) = 0, −∆ϕ(x0) ≥ 0 and it

follows that

0 ≤ [−w∆v + v∆w](x0).

Since w(x0) < v(x0), it follows from assumption (a), the properties of Ψ and the above inequality

that

0 < [|∇v|aw − |∇w|av] (x0).

Since ∇ϕ(x0) = 0, we finally obtain

0 <
[( v

w

)a
w − v

]

|∇w|a(x0) = va
(

w1−a − v1−a
)

|∇w|a(x0),

contradicting w(x0) < v(x0).

Next, we assume by contradiction that there exists a sequence of solutions un of (P+) associated

to a parameter λn → 0+. A simple calculation shows that w(x) = A(R2 − |x|2) is positive and

satisfies the inequality ∆w + f(x,w) + |∇w|a ≤ 0 in Ω, where A,R > 0 are large constants. In

particular, it follows from Lemma 2.3 that 0 < un ≤ w whenever λn ≤ 1. Let xn ∈ Ω denote a

maximum point of un. Then ∇un(xn) = 0 and −∆un(xn) ≥ 0. Letting dn = d(xn), Mn = un(xn),

it follows from (P+) that

p(dn)g(Mn) ≤ λnf(xn,Mn) ≤ Cλn,

which yields a contradiction as n→ ∞.

The rest of the proof of (ii) follows as in the case µ = −1 and Theorem 2.2 is now complete. �
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3 The problem (P )−

3.1 A nonexistence result

We first prove :

Theorem 3.1. Assume that

∫ 1

0
tp(t)dt = +∞. Then the inequality boundary value problem























−∆u+C|∇u|2 ≥ p(d(x))g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(3.1)

has no classical solutions.

As a direct consequence, we obtain :

Corollary 3.1. Assume that

∫ 1

0
tp(t)dt = +∞. Then the problem (P )− has no classical solu-

tions.

Proof of the theorem. It suffices to prove the Theorem only for C > 0. We argue by contra-

diction and assume that there exists u ∈ C2(Ω) ∩ C(Ω) a solution of (3.1). Using (g1), we can

find c1 > 0 such u := c1ϕ1 verifies

−∆u+ C|∇u|2 ≥ p(d(x))g(u) in Ω.

Since g is decreasing, we easily obtain

u ≥ u in Ω. (3.2)

We make in (3.1) the change of variable v = 1 − e−Cu. Therefore



























−∆v = C(1 − v)
(

C|∇u|2 − ∆u
)

≥ C(1 − v)p(d(x))g

(

− ln(1 − v)

C

)

in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

(3.3)

In order to avoid the singularities in (3.3) let us consider the approximated problem



























−∆v = C(1 − v)p(d(x))g

(

ε− ln(1 − v)

C

)

in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

(3.4)
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with 0 < ε < 1. Clearly v is a super-solution of (3.4). Furthermore, by (3.2) and the fact that

limt→0+
1−e−Ct

t = C > 0, there exists c2 > 0 such that v ≥ c2ϕ1 in Ω. On the other hand, there

exists 0 < c < c2 such that cϕ1 is a sub-solution of (3.4) and obviously cϕ1 ≤ v in Ω. Then, the

problem (3.4) has a solution vε ∈ C2(Ω) such that

cϕ1 ≤ vε ≤ v in Ω. (3.5)

Multiplying by ϕ1 in (3.4) and integrating we find

λ1

∫

Ω
ϕ1vεdx = C

∫

Ω
(1 − vε)ϕ1p(d(x))g

(

ε− ln(1 − vε)

C

)

dx.

Using (3.5) we obtain

M =: λ1

∫

Ω
ϕ1vdx ≥ C

∫

Ω
(1 − v)ϕ1p(d(x))g

(

− ln(1 − v)

C

)

dx

≥ C1

∫

Ωδ

ϕ1p(d(x))dx,

(3.6)

where Ωδ ⊃ {x ∈ Ω; d(x) < δ}, for some δ > 0 sufficiently small. Since ϕ1(x) behaves like d(x) in

Ωδ and
∫ 1
0 tp(t)dt = +∞, by (3.6) we find a contradiction. Hence, problem (3.1) has no classical

solutions and the proof is now complete. �

3.2 Existence results for (P )− in the sublinear case on f

Our aim here is to give existence results concerning (P )− in case where f is sublinear. Neverthe-

less, we prove that condition (1.5) suffices to guarantee the existence of a classical solution for µ

belonging to a certain range.

In this case the existence of a solution is strongly dependent on the exponent a. To better

understand this dependence, we assume λ = 1 but the same results hold for any λ > 0 (note only

that the bifurcation point µ∗ in the following theorem is dependent on λ).

Theorem 3.2. Assume λ = 1,
∫ 1
0 tp(t)dt < +∞ and conditions (f1), (f2), (g1) and 0 < a ≤ 2

are fulfilled.

(i) If 0 < a < 1, then problem (P )− has at least one solution, for all µ ∈ R;

(ii) If 1 < a ≤ 2, then there exists µ∗ > 0 such that (P )− has at least one classical solution for

all µ < µ∗ and no solution exists if µ > µ∗.

As a direct consequence, we obtain the following corollary, which can be compared to Theorem

2.2 :

Corollary 3.2. Assume µ = ±1,
∫ 1
0 tp(t)dt < +∞ and conditions (f1), (f2), (g1) and 0 < a ≤ 2

are fulfilled.

12



(i) If 0 < a < 1, then problem (P )− has at least one solution, for all λ > 0;

(ii) If < 1 < a ≤ 2 and µ = −1, then problem (P )− has at least one solution, for all λ > 0;

(iii) If 1 < a ≤ 2 and µ = +1, then there exists λ∗ > 0 such that (P )− has at least one classical

solution for all λ > λ∗ and no solution exists if λ < λ∗.

Proof of the theorem. (i) Case µ > 0. By [27, Lemma 4] there exists a classical solution ζ of

the problem






















−∆ζ = f(x, ζ) in Ω,

ζ > 0 in Ω,

ζ = 0 on ∂Ω.

(3.7)

Using the regularity of f we have ζ ∈ C2(Ω). Then, ζ is a sub-solution of (P )− provided µ > 0.

We focus now on finding a super-solution uµ of (P )− such that ζ ≤ uµ in Ω.

Let H be the solution of (1.3). Since H is concave, there exists H ′(0+) ∈ (0,+∞]. Taking

0 < b < 1 small enough, we can assume that H ′ > 0 in (0, b], so H is increasing on [0, b].

Multiplying by H ′ in (1.3) and integrating on [t, b], we find

(H ′)2(t) − (H ′)2(b) = 2

∫ b

t
p(s)g(H(s))H ′(s)ds ≤ 2p(t)

∫ H(b)

H(t)
g(τ)dτ. (3.8)

Using the monotonicity of g it follows that

(H ′)2(t) ≤ 2H(b)p(t)g(H(t)) + (H ′)2(b), for all 0 < t ≤ b. (3.9)

Hence, there exist C1, C2 > 0 such that

(H ′)(t) ≤ C1p(t)g(H(t)), for all 0 < t ≤ b (3.10)

and

(H ′)2(t) ≤ C2p(t)g(H(t)), for all 0 < t ≤ b. (3.11)

Now we can proceed to construct a super-solution for (P )−. First, we fix c > 0 such that

cϕ1 ≤ min{b, d(x)} in Ω. (3.12)

By Hopf’s maximum principle, there exist ω ⊂⊂ Ω and δ > 0 such that

|∇ϕ1| > δ in Ω \ ω. (3.13)

Moreover, since

lim
d(x)→0+

{

c2p(cϕ1)g(H(cϕ1))|∇ϕ1|2 − 3f(x,H(cϕ1))
}

= +∞,
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we can assume that

c2p(cϕ1)g(H(cϕ1))|∇ϕ1|2 ≥ 3f(x,H(cϕ1)) in Ω \ ω. (3.14)

Let M > 1 be such that

Mc2δ2 > 3. (3.15)

Since H ′(0+) > 0 and 0 < a < 1, we can choose M > 1 such that

M
(cδ)2

C1
H ′(cϕ1) ≥ 3µ(McH ′(cϕ1)|∇ϕ1|)a in Ω \ ω,

where C1 is the constant appearing in (3.10). By (3.10), (3.13) and (3.15) we derive

Mc2p(cϕ1)g(H(cϕ1))|∇ϕ1|2 ≥ 3µ(McH ′(cϕ1)|∇ϕ1|)a in Ω \ ω. (3.16)

Since g is decreasing and H ′(cϕ1) > 0 in ω, there exists M > 0 such that

Mcλ1ϕ1H
′(cϕ1) ≥ 3p(d(x))g(H(cϕ1)) in ω. (3.17)

In the same manner, using (f2) and the fact that ϕ1 > 0 in ω, we can choose M > 1 large enough

such that

Mcλ1ϕ1H
′(cϕ1) ≥ 3µ(MH ′(cϕ1)|∇ϕ1|)a in ω, (3.18)

and

Mcλ1ϕ1H
′(cϕ1) ≥ 3f(x,MH(cϕ1)) in ω. (3.19)

For M satisfying (3.15)-(3.19), we prove that

uµ(x) := MH(cϕ1(x)), for all x ∈ Ω, (3.20)

is a super-solution of (P )−. We have

−∆uµ = Mc2p(cϕ1)g(H(cϕ1))|∇ϕ1|2 +Mcλ1ϕ1H
′(cϕ1) in Ω. (3.21)

We first show that

Mc2p(cϕ1)g(H(cϕ1))|∇ϕ1|2 ≥ p(d(x))g(uµ) + f(x, uµ) + µ|∇uµ|a in Ω \ ω. (3.22)

Indeed, by (3.12), (3.13) and (3.15) we get

M

3
c2p(cϕ1)g(H(cϕ1))|∇ϕ1|2 ≥ p(d(x))g(H(cϕ1))

≥ p(d(x))g(MH(cϕ1))

= p(d(x))g(uµ) in Ω \ ω.

(3.23)
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The assumption (f1) and (3.14) produce

M

3
c2p(cϕ1)g(H(cϕ1))|∇ϕ1|2 ≥Mf(x,H(cϕ1))

≥ f(x,MH(cϕ1))

= f(x, uµ) in Ω \ ω.

(3.24)

From (3.16) we obtain

M

3
c2p(cϕ1)g(H(cϕ1))|∇ϕ1|2 ≥ µ(McH ′(cϕ1)|∇ϕ1|)a

= µ|∇uµ|a in Ω \ ω.
(3.25)

Now, relation (3.22) follows by (3.23), (3.24) and (3.25).

Next we prove that

Mcλ1ϕ1H
′(cϕ1) ≥ p(d(x))g(uµ) + f(x, uµ) + µ|∇uµ|a in ω. (3.26)

From (3.17) and (3.18) we get

M

3
cλ1ϕ1H

′(cϕ1) ≥ p(d(x))g(H(cϕ1))

≥ p(d(x))g(MH(cϕ1))

= p(d(x))g(uµ) in ω

(3.27)

and
M

3
cλ1ϕ1H

′(cϕ1) ≥µ(McH ′(cϕ1)|∇ϕ1|)a

=µ|∇uµ|a in ω.
(3.28)

Finally, from (3.19) we derive

M

3
cλ1ϕ1H

′(cϕ1) ≥ f(x,MH(cϕ1)) = f(x, uµ) in ω. (3.29)

Clearly, relation (3.26) follows from (3.27), (3.28) and (3.29).

Combining (3.21) with (3.22) and (3.26) we conclude that uµ is a super-solution of (P )−.

Thus, by Lemma 2.1 we obtain ζ ≤ uµ in Ω and by sub and super-solution method it follows that

(P )− has at least one classical solution for all µ > 0.

Case µ ≤ 0. We fix ν > 0 and let uν ∈ C2(Ω) ∩ C(Ω) be a solution of (P )− for µ = ν. Then

uν is a super-solution of (P )− for all µ ≤ 0. Set

m := inf
(x,t)∈Ω×(0,+∞)

(

p(d(x))g(t) + f(x, t)
)

.

Since limt→0+ g(t) = +∞ and the mapping (0,+∞) ∋ t 7−→ min
x∈Ω

f(x, t) is positive and nonde-

creasing, we deduce that m is a positive real number. Consider the problem










−∆v = m+ µ|∇v|a in Ω,

v = 0 on ∂Ω.
(3.30)
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Clearly zero is a sub-solution of (3.30). Since µ ≤ 0, the solution w of the problem











−∆w = m in Ω,

w = 0 on ∂Ω,

is a super-solution of (3.30). Hence, (3.30) has at least one solution v ∈ C2(Ω)∩C(Ω). We claim

that v > 0 in Ω. Indeed, if not, we deduce that minx∈Ω v is achieved at some point x0 ∈ Ω. Then

∇v(x0) = 0 and

−∆v(x0) = m+ µ|∇v(x0)|a = m > 0, contradiction.

Therefore, v > 0 in Ω. It is easy to see that v is sub-solution of (P )− and −∆v ≤ m ≤ −∆uν in

Ω, which gives v ≤ uν in Ω. Again by the sub and super-solution method we conclude that (P )−

has at least one classical solution uµ ∈ C2(Ω) ∩C(Ω).

(ii) The proof follows the same steps as above. The only difference is that (3.16) and (3.18)

are no more valid for any µ > 0. The main difficulty when dealing with estimates like (3.16) is

that H ′(cϕ1) may blow-up at the boundary. However, combining the assumption 1 < a ≤ 2 with

(3.11), we can choose µ > 0 small enough such that (3.16) and (3.18) hold. This implies that the

problem (P )− has a classical solution provided µ > 0 is sufficiently small.

Set

A =
{

µ > 0; problem (P )− has at least one classical solution
}

.

From the above arguments, A is nonempty. Let µ∗ = supA. We first claim that if µ ∈ A, then

(0, µ) ⊆ A. To this aim, let µ1 ∈ A and 0 < µ2 < µ1. If uµ1
is a solution of (P )− with µ = µ1,

then uµ1
is a super-solution of (P )− with µ = µ2, while ζ defined in (3.7) is a sub-solution. Using

Lemma 2.1 once more, we get ζ ≤ uµ1
in Ω so (P )− has at least one classical solution for µ = µ2.

This proves the claim. Since µ1 ∈ A was arbitrary, we conclude that (0, µ∗) ⊂ A.

Next, we prove that µ∗ < +∞. To this aim, we use the following result which is a consequence

of Theorem 2.1 in [3].

Lemma 3.1. Assume that a > 1. Then there exists a positive number σ̄ such that the problem










−∆v ≥ |∇v|a + σ in Ω,

v = 0 on ∂Ω,
(3.31)

has no solutions for σ > σ̄.

Consider µ ∈ A and let uµ be a classical solution of (P )−. Set v = µ1/(a−1)uµ. Using our

assumption 1 < a ≤ 2, we deduce that v fulfills










−∆v ≥ |∇v|a +mµ1/(a−1) in Ω,

v = 0 on ∂Ω.
(3.32)

16



According to Lemma 3.1, we obtain mµ1/(a−1) ≤ σ̄, that is, µ ≤
( σ̄

m

)a−1

. This means that

µ∗ ≤
( σ̄

m

)a−1

, hence µ∗ is finite. The existence of a solution in the case µ ≤ 0 can be achieved

in the same manner as above.

This finishes the proof of Theorem 3.2. �

In what follows we discuss the case a = 1. Note that the method used in Theorem 3.2 does

not apply here for large values of µ.

Assume that Ω = BR(0) for some R > 0, where BR(0) = {x ∈ R
N ; |x| < R}. In this case and

with λ = 1, problem (P )− becomes























−∆u = p(R− |x|)g(u) + f(x, u) + µ|∇u| |x| < R,

u > 0 |x| < R,

u = 0 |x| = R.

(3.33)

Theorem 3.3. Assume that
∫ 1
0 tp(t)dt < +∞. Then the problem (3.33) has at least one solution

for all µ ∈ R.

Proof. The case µ ≤ 0 is the same as in the proof of Theorem 3.2 (i). In what follows, we

assume that µ > 0. Using Theorem 3.2 (i) it is easy to see that there exists u ∈ C2(Ω) ∩ C(Ω)

such that






















−∆u = p(R− |x|)g(u) |x| < R,

u > 0 |x| < R,

u = 0 |x| = R.

It is obvious that u is a sub-solution of (3.33) for all µ > 0. In order to provide a super-solution

of (3.33) we consider the problem























−∆u = p(R− |x|)g(u) + 1 + µ|∇u| |x| < R,

u > 0 |x| < R,

u = 0 |x| = R.

(3.34)

We need the following auxiliary result.

Lemma 3.2. Problem (3.34) has at least one solution.

Proof. We are looking for radially symmetric solution u of (3.34), that is, u = u(r), 0 ≤ r =
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|x| ≤ R. In this case, problem (3.34) becomes























−u′′ − N − 1

r
u′(r) = p(R− r)g(u(r)) + 1 + µ|u′(r)| 0 ≤ r < R,

u > 0 0 ≤ r < R,

u(R) = 0.

(3.35)

This implies

−(rN−1u′(r))′ ≥ 0 for all 0 ≤ r < R,

which yields u′(r) ≤ 0 for all 0 ≤ r < R. Then (3.35) gives

−
(

u′′ +
N − 1

r
u′(r) + µu′(r)

)

= p(R− r)g(u(r)) + 1, 0 ≤ r < R.

We obtain

−(eµrrN−1u′(r))′ = eµrrN−1ψ(r, u(r)), 0 ≤ r < R, (3.36)

where

ψ(r, t) = p(R− r)g(t) + 1, (r, t) ∈ [0, R) × (0,+∞).

From (3.36) we get

u(r) = u(0) −
∫ r

0
e−µtt−N+1

∫ t

0
eµssN−1ψ(s, u(s))dsdt, 0 ≤ r < R. (3.37)

On the other hand, in view of Theorem 3.2 and using the fact that g is decreasing, there exists

a unique solution w ∈ C2(BR(0)) ∩ C(BR(0)) of the problem























−∆w = p(R− |x|)g(w) + 1 |x| < R,

w > 0 |x| < R,

w = 0 |x| = R.

(3.38)

Clearly, w is a sub-solution of (3.34). Due to the uniqueness and to the symmetry of the domain,

w is radially symmetric, so, w = w(r), 0 ≤ r = |x| ≤ R. As above we get

w(r) = w(0) −
∫ r

0
t−N+1

∫ t

0
sN−1ψ(s,w(s))dsdt, 0 ≤ r < R. (3.39)

We claim that there exists a solution v ∈ C2[0, R)∩C[0, R] of (3.37) such that v > 0 in [0, R).

Let A = w(0) and define the sequence (vk)k≥1 by











vk(r) = A−
∫ r

0
e−µtt−N+1

∫ t

0
eµssN−1ψ(s, vk−1(s))dsdt, 0 ≤ r < R, k ≥ 1,

v0 = w.

(3.40)
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Note that vk is decreasing in [0, R) for all k ≥ 0. From (3.39) and (3.40) we easily check that

v1 ≥ v0 and by induction we deduce vk ≥ vk−1 for all k ≥ 1. Hence

w = v0 ≤ v1 ≤ ... ≤ vk ≤ ... ≤ A in BR(0).

Thus, there exists v(r) := limk→∞ vk(r), for all 0 ≤ r < R and v > 0 in [0, R). We can now pass

to the limit in (3.40) in order to get that v is a solution of (3.37). By classical regularity results

we also obtain v ∈ C2[0, R) ∩ C[0, R]. This proves the claim.

We have obtained a super-solution v of (3.34) such that v ≥ w in BR(0). So, the problem

(3.34) has at least one solution and the proof of our Lemma is now complete.

Let u be a solution of the problem (3.34). For M > 1 we have

−∆(Mu) = Mp(R− |x|)g(u) +M + µ|∇(Mu)|
≥ p(R− |x|)g(Mu) +M + µ|∇(Mu)|.

(3.41)

Since f is sublinear, we can choose M > 1 such that

M ≥ f(x,M |u|∞) in BR(0).

Then uµ := Mu satisfies

−∆uµ ≥ p(R− |x|)g(uµ) + f(x, uµ) + µ|∇uµ| in BR(0).

It follows that uµ is a super-solution of (3.33). Since g is decreasing we easily deduce u ≤ uµ in

BR(0) so, problem (P )− has at least one solution.

The proof of Theorem 3.3 is now complete.

3.3 Existence results for (P )− in the linear case on f

In this section we turn to the study of problem (P )− when f is linear. More precisely, we consider

the problem






















−∆u = p(d(x))g(u) + λu+ µ|∇u|a in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(3.42)

where λ > 0 and p, g are as in the previous sections. We assume in what follows that 0 < a < 1.

Note that the existence results established in [27, Lemma 4] or [28] do not apply here since

the mapping

Ψ(x, t) = p(d(x))g(t) + λt, (x, t) ∈ Ω × (0,+∞),

is not defined on ∂Ω × (0,+∞).

Theorem 3.4. Assume that
∫ 1
0 tp(t)dt < +∞ and conditions (g1), 0 < a < 1 are fulfilled. Then

for µ ≥ 0 the problem (3.42) has solutions if and only if λ < λ1.
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Proof. Fix λ ∈ (0, λ1) and µ ≥ 0. By Theorem 3.2 (i) there exists u ∈ C2(Ω)∩C(Ω) a solution

of the problem






















−∆u = p(d(x))g(u) + µ|∇u|a in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Obviously, uλµ := u is a sub-solution of (3.42). Since λ < λ1, there exists v ∈ C2(Ω) such that























−∆v = λv + 2 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

Since 0 < a < 1, we can choose M > 0 large enough such that

M > λ|u|∞ and M > µ(M |∇v|)a in Ω.

Then w := Mv satisfies

−∆w ≥ λ(u+ w) + µ|∇w|a in Ω.

We claim that uλµ := u+ w is a super-solution of (3.42). Indeed, we have

−∆uλµ ≥ p(d(x))g(u) + λuλµ + µ|∇u|a + µ|∇w|a in Ω. (3.43)

Using the assumption 0 < a < 1 one can easily deduce

ta1 + ta2 ≥ (t1 + t2)
a, for all t1, t2 ≥ 0.

Hence

|∇u|a + |∇w|a ≥ (|∇u| + |∇w|)a ≥ |∇(u+ w)|a in Ω. (3.44)

Combining (3.43) with (3.44) we obtain

−∆uλµ ≥ p(d(x))g(uλµ) + λuλµ + µ|∇uλµ|a in Ω.

Hence, (uλµ, uλµ) is an ordered pair of sub and super-solution of (3.42), so there exists a classical

solution uλµ of (3.42), provided µ ≥ 0 and 0 < λ < λ1. Assume by contradiction that there

exist λ ≥ λ1 and µ ≥ 0 such that the problem (3.42) has a classical solution uλµ. If m =

minx∈Ω p(d(x))g(uλµ) > 0 it follows that uλµ is a super-solution of











−∆u = λu+m in Ω,

u = 0 on ∂Ω.
(3.45)
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Clearly, zero is a sub-solution of (3.45), so there exists a classical solution u of (3.45) such that

u ≤ uλµ in Ω. By maximum principle and elliptic regularity we get u > 0 in Ω and u ∈ C2(Ω).

To raise a contradiction, we proceed as in the proof of Theorem 2.2 (ii).

Multiplying by ϕ1 in (3.45) and then integrating over Ω we find

−
∫

Ω
ϕ1∆u = λ

∫

Ω
uϕ1 +m

∫

Ω
ϕ1.

This implies λ1

∫

Ω uϕ1 = λ
∫

Ω uϕ1 +m
∫

Ω ϕ1, which is a contradiction, since λ ≥ λ1 and m > 0.

The proof of Theorem 3.4 is now complete. �

3.4 An application

We show here how the results in this section applies to the problem (1.6). Recall that if
∫ 1
0 tp(t)dt < +∞ and µ belongs to a certain range, then Theorem 3.2 asserts that (1.6) has

at least one classical solution uµ satisfying uµ ≤ MH(cϕ1) in Ω, for some M, c > 0. Here H is

the solution of






















H ′′(t) = −t−αH−β(t), for all 0 < t ≤ b < 1,

H,H ′ > 0 in (0, b],

H(0) = 0.

(3.46)

With the same idea as in the proof of Theorem 3.2, we can show that there exists m > 0 small

enough such that v := mH(cϕ1) satisfies

−∆v ≤ d(x)−αv−β in Ω. (3.47)

Indeed, we have

−∆v = m[c2−α|∇ϕ1|2ϕ−α
1 H−β(cϕ1) + λ1cϕ1H

′(cϕ1)] in Ω.

Using (2.7) and (3.10), there exist two positive constants c1, c2 > 0 such that

−∆v ≤ m[c1|∇ϕ1|2 + c2ϕ1]d(x)
−αH−β(cϕ1) in Ω.

Clearly (3.47) holds if we choose m > 0 small enough such that m[c1|∇ϕ1|2 + c2ϕ1] < 1 in Ω.

Moreover, v is a sub-solution of (1.6) for all µ > 0 and one can easily see that v ≤ uµ in Ω. Hence

mH(cϕ1) ≤ uµ ≤MH(cϕ1) in Ω. (3.48)

Now, a careful analysis of (3.46) together with (3.48) is used in order to obtain boundary estimates

for the solution of (1.6). Our estimates complete the results in [19, Theorem 2.1] since here the

potential p(d(x)) blows-up at the boundary.

Theorem 3.5. The following properties hold true.
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(i) If α ≥ 2, then the problem (1.6) has no classical solutions.

(ii) If α < 2, then there exists µ∗ ∈ (0,+∞] (with µ∗ = +∞ if 0 < a < 1) such that problem (1.6)

has at least one classical solution uµ, for all −∞ < µ < µ∗. Moreover, for all 0 < µ < µ∗,

there exist 0 < δ < 1 and C1, C2 > 0 such that uµ satisfies

(ii1) If α+ β > 1, then

C1d(x)
2−α
1+β ≤ uµ(x) ≤ C2d(x)

2−α
1+β , for all x ∈ Ω; (3.49)

(ii2) If α+ β = 1, then

C1d(x)(− ln d(x))
1

2−α ≤ uµ(x) ≤ C2d(x)(− ln d(x))
1

2−α , (3.50)

for all x ∈ Ω with d(x) < δ;

(ii3) If α+ β < 1, then

C1d(x) ≤ uµ(x) ≤ C2d(x), for all x ∈ Ω. (3.51)

Proof. The existence and nonexistence of a solution to (1.6) follows directly from Theorems

3.1 and 3.2. We next prove the boundary estimates (3.49)-(3.51).

(ii1) Remark that

H(t) =

(

(1 + β)2

(2 − α)(α + β − 1)

)1/(1+β)

t
2−α
1+β , t > 0,

is a solution of (3.46) provided α+ β > 1. The conclusion in this case follows now from (3.48).

(ii2) Note that in this case problem (3.46) becomes























H ′′(t) = −t−αHα−1(t), for all 0 < t ≤ b < 1,

H(0) = 0,

H > 0 in (0, b].

(3.52)

Since H is concave, it follows that

H(t) > tH ′(t), for all 0 < t ≤ b. (3.53)

Relations (3.52) and (3.53) yield

−H ′′(t) < t−1(H ′(t))α−1, for all 0 < t ≤ b.

Hence

−H ′′(t)(H ′(t))1−α ≤ 1

t
, for all 0 < t ≤ b. (3.54)
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Integrating in (3.54) over [t, b] we get

(H ′)2−α(t) − (H ′)2−α(b) ≤ (2 − α)(ln b− ln t), for all 0 < t ≤ b.

Hence, there exist c1 > 0 and δ1 ∈ (0, b) such that

H ′(t) ≤ c1(− ln t)
1

2−α , for all 0 < t ≤ δ1. (3.55)

Fix t ∈ (0, δ1]. Integrating over [ε, t], 0 < ε < t, in (3.55) we have

H(t) −H(ε) ≤ c1t(− ln t)
1

2−α +
c1

2 − α

∫ t

ε
(− ln s)

α−1

2−α ds. (3.56)

Note that
∫ t

0
(− ln s)

α−1

2−α ds < +∞ and lim
t→0+

∫ t
0 (− ln s)

α−1

2−αds

t(− ln t)
1

2−α

= 0. (3.57)

Thus, taking ε→ 0+ in (3.56) we deduce that there exist c2 > 0 and δ2 ∈ (0, δ1) such that

H(t) ≤ c2t(− ln t)
1

2−α , for all 0 < t ≤ δ2. (3.58)

From (3.52) and (3.58) we obtain

−H ′′(t) ≥ cα−1
2 t−1(− ln t)

α−1

2−α , for all 0 < t ≤ δ2.

Integrating over [t, δ2] in the above inequality we get

H ′(t) ≥ (2 − α)cα−1
2

[

(− ln t)
1

2−α − (− ln δ2)
1

2−α

]

, for all 0 < t ≤ δ2.

Therefore, there exist c3 > 0 and δ3 ∈ (0, δ2) such that

H ′(t) ≥ c3(− ln t)
1

2−α , for all 0 < t ≤ δ3.

With the same arguments as in (3.55)-(3.58) we obtain c4 > 0 and δ4 ∈ (0, δ3) such that

H(t) ≥ c4t(− ln t)
1

2−α , for all 0 < t ≤ δ4. (3.59)

The conclusion of (ii) in Theorem 3.5 follows now from (3.58) and (3.59).

(ii3) Using the fact that H ′(0+) ∈ (0,+∞] and the inequality (3.53), we get the existence of

c > 0 such that

H(t) > ct, for all 0 < t ≤ b.

This yields

−H ′′(t) ≤ c−βt−(α+β), for all 0 < t ≤ b.

Since α+ β < 1, it follows that H ′(0+) < +∞, that is, H ∈ C1[0, b]. Thus, there exists c1, c2 > 0

such that

c1t ≤ H(t) ≤ c2t, for all 0 < t ≤ b. (3.60)
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The conclusion in Theorem 3.5 (iii) follows directly from (3.60) and (3.48).

This completes the proof of Theorem 3.5. �
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