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Summary:  

The staggerer (sg/sg) mutation is a spontaneous deletion in the Rora gene that prevents 

the translation of the ligand-binding domain (LBD), leading to the loss of RORα activity. 

The homozygous Rorasg/sg mutant mouse, whose most obvious phenotype is ataxia 

associated with cerebellar degeneration, also displays a variety of other phenotypes. The 

heterozygous Rora+/sg is able to develop a cerebellum which is qualitatively normal but 

with advancing age suffers a significant loss of cerebellar neuronal cells. A truncated 

protein synthesized by the mutated allele may play a role, both in Rorasg/sg and 

Rora+/sg. To determine the effects during life span of true haplo-insufficiency of the 

RORα protein, derived from the invalidation of the gene, we compared the evolution of 

Purkinje cell numbers in heterozygous Rora knock-out males (Rora+/-) and in their wild-

type counterparts from 1 to 24 months of age. We also compared the evolution of 

Purkinje cell numbers in Rora+/- and Rora+/sg males from 1 to 9 months. 

The main finding is that in Rora+/- mice, when only a half dose of protein is synthesized, 

the deficit was already established at 1 month and did not change during life span. Thus, 

the effects of aging on PC number were apparent much earlier in Rora+/- than in 

Rora+/sg, although at 24 months of age the deficit was similar. 
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INTRODUCTION  

Many naturally occurring mutations, described in mice, have been shown to affect the 

structure and/or the physiology of the cerebellum. The staggerer mutation, located on 

chromosome 9, consists of a deletion of an exon encoding part of the ligand binding 

domain within the Retinoic acid receptor-related Orphan Receptor (Rora) gene (Hamilton 

et al., 1996; Matysiak-Scholze and Nehls, 1997), leading to the loss of RORα activity 

(Hamilton et al., 1996)  and to symptoms similar to those of RORα-null mice created by 

gene targeting  (Doulazmi et al., 2001; Dussault et al., 1998). RORα has long been 

considered as a constitutive activator of transcription in the absence of an exogenous 

ligand but recent structural experiments have identified cholesterol or cholesterol sulfate 

as the natural ligand of RORα (Kallen et al., 2004; Kallen et al., 2002). However it is not 

clear if cholesterol is a “real” ligand rather than just structural cofactor and if changes in 

intracellular levels of cholesterol are capable of modulating the transcriptional activity of 

RORα in vivo. Low intracellular levels of cholesterol dramatically decrease the 

transcriptional activity of RORα in culture cells, but men and mice with inborn error of 

cholesterol biosynthesis are not ataxic (see review see Boukhtouche et al., 2004; Gold et 

al., 2006).  

The phenotype of Rora−deficient mice is complex since RORα is a widely expressed 

nuclear receptor (Dzhagalov et al., 2004; Giguere et al., 1994; Matysiak-Scholze and 

Nehls, 1997) and because of both the direct and indirect effects of the mutation in the 

RORα gene (for review see Boukhtouche et al., 2004; Gold et al., 2006; Jarvis et al., 

2002). The most obvious phenotype of homozygous Rora knockout mice (Rora-/-) and 

natural RORα deficient staggerer (Rorasg/sg) mice is an ataxic gait, associated with a 

massive cerebellar degeneration due to a defect in Purkinje cell development (Herrup et 

al., 1996). 

The role of RORα expands beyond the cerebellum. For instance, RORα, expressed in the 

suprachiasmatic nucleus of the hypothalamus, is involved in the control of circadian 

rhythms through the transcriptional regulation of BmalI, itself a transcriptional activator 

that is necessary for core oscillator function (Akashi and Takumi, 2005; Emery and 

Reppert, 2004; Guillaumond et al., 2005; Sato et al., 2004; Ueda et al., 2005). Mutant 



 

mice defective in Rora (staggerer) have altered circadian feeding and locomotor activity 

patterns (Akashi and Takumi, 2005; Sato et al., 2004) and altered circadian secretion of 

corticosterone (Frederic et al 2006).  

Moreover, outside the central nervous system, RORα is implicated in osteogenic (Meyer 

et al., 2000) and myogenic (Lau et al., 1999) differentiation and provides protection 

against chronic inflammation and age-related degenerative processes including 

osteoporosis and atherosclerosis (for review see Boukhtouche et al., 2004; Gold et al., 

2006; Jarvis et al., 2002) 

Recent studies have aimed at identifying RORα target genes in different cell types and 

organs. These genes cover a wide range of functions. RORα controls the transcription of 

the genes encoding the Purkinje cell protein-2 and sonic hedgehog, proteins that are 

crucially involved in the development of the central nervous system (Gold et al., 2003; 

Matsui, 1997). The protooncogene N-myc appears also to be a RORα target gene 

(Dussault and Giguere, 1997; Gold et al., 2003). N-myc is essential for normal embryonic 

organogenesis, and its oncogenic activity is associated with tumors of neuroendocrine 

and embryonic origins. In man, RORα has recently been identified as a very large fragile 

site gene that is inactivated in multiple tumors, and the transcriptional level of RORα is 

down regulated in breast, ovary and prostate cancer (Zhu et al., 2006). The 

overexpression of the human RORα isoform in mouse cortical neurons protect them 

from apoptosis induced by apoptotic stimuli such as β-amyloid peptide, c2-ceramide and 

H2O2. This protection is due to an increase of the expression of the antioxidant proteins 

gluthathione peroxidase 1 and peroxiredoxin 6, leading to decrease amounts of stress-

induced reactive oxygen species (Boukhtouche et al., 2006b). 

In the cerebellum, RORα expression is limited to the Purkinje cells (PCs) and 

interneurons of the molecular layer (Becker-Andre et al., 1993; Giguere et al., 1995; Ino, 

2004; Steinmayr et al., 1998). Mice lacking functional RORα protein (Steinmayer et al.; 

1998, Hamilton et al.; 1996) have a very atrophic cerebellum (Doulazmi et al., 2001; 

Sidman et al., 1962). Vogel and co-workers (Vogel et al., 2000) have suggested that 

Purkinje cells are generated normally in the staggerer mutant, but many may fail to 

differentiate and/or start to die following birth. The early cerebellar atrophy is related to a 

massive reduction in the number of PCs (reduced by about 80%, Doulazmi et al., 2001) 



 

and study of chimeras has shown that this defect is due to an intrinsic action of the gene 

in the PCs (Herrup and Mullen, 1979). The lack of Purkinje cells induces a near total loss 

of their afferents, the granule cells and inferior olivary neurons, during the first postnatal 

month (Herrup et al., 1996). Part of the granule cell loss is due to the action of RORα on 

one of its target gene in the cerebellum, sonic hedgehog, since its addition to Rorasg/sg 

organotypic cultures restores granule precursor proliferation (Gold et al., 2003).  

RORα controls the early steps of  Purkinje cells dendritic differentiation. In homozygous 

Rora knockout mice (Rora-/-) and natural RORα deficient staggerer (Rorasg/sg) the 

surviving PCs, not arranged in a monolayer, display immature features. PCs are in an 

embryonic shape: somata appear smaller than control (Landis and Sidman, 1978), while 

dendrites are rudimentary and stunted (Doulazmi et al., 2001). In organotypic cerebellar 

cultures Rora-deficient Purkinje cells do not progress beyond the embryonic bipolar 

shape. Their infection with Lenti-hRORα1 restores both RORα expression and the 

dendritic differentiation (Boukhtouche et al., 2006a).  

The heterozygous Rora+/sg develops a cerebellum which is qualitatively normal, but 

with advancing age suffers a significant loss of cerebellar neuronal cells. A loss of the 

same neuronal categories as in the homozygous mutant has a later onset, progressing 

from a normal cell numbers at 3 months of age to a deficit of 25-30% of the PCs and 

granule cells and 40% of olivary neurons at 12 months of age (Doulazmi et al., 1999; 

Hadj-Sahraoui et al., 1997; Zanjani et al., 1992). The Purkinje cell loss occurs earlier in 

staggerer males than in females. In males, the Purkinje cell loss starts from 1 month and 

continues regularly up to 13 months. In females, Purkinje cell number remains stable up 

to 9 months of age, then decreases to the same number as males (Doulazmi et al., 1999). 

The heterozygous staggerer does not necessarily represent a situation of true haplo-

insufficiency of the RORα protein. Given the molecular nature of the mutation, we 

cannot preclude a role for a truncated protein synthesized by the mutated alleles, both in 

Rorasg/sg and Rora+/sg mice. To determine the effects during life span of true haplo-

insufficiency of the RORα protein, derived from the invalidation of the gene, we 

compared the evolution of Purkinje cell numbers in heterozygous Rora knock-out mice 

(Rora+/-) and in their wild-type counterparts from 1 to 24 months of age. We also 



 

compared the evolution of Purkinje cell numbers in Rora+/- and Rora+/sg males from 1 

to 9 months. 

 



 

 

MATERIALS AND METHODS 

Animals 

The Rora knock-out mouse, was generated in 1998 by Steinmayr and coworkers, on a 

129 / Ola mouse (Steinmayr et al., 1998) and then derived on a C57BL/6J background. It 

was maintained as a colony in our animal facility. Heterozygous mice had been mated 

with C57BL/6J for 6 generations at the beginning of our study. Purkinje cells were 

counted on heterozygous Rora+/- males aged 1, 3, 9, 18 and 24 months. Controls were 

Rora+/+ littermates of the same age and gender. Rora+/- females were kept for 

reproduction. 

The Rorasg/sgmutant mouse is maintained on a C57BL/6J genetic background as a 

colony in our animal facility. Purkinje cells were counted on heterozygous 

Rora+/sgmales aged 1, 3, and 9 months. Wild-type controls were littermates of the same 

age and gender.  

We used 3-5 animals per group. All animal procedures were performed under the 

guidelines established by "Le Comité National d'Ethique pour le Scienes de la Vie et de 

la Santé." 

 

Genotype Analysis 

Intercrossing of fertile (Rora+/-) or (Rora+/sg) mice produces homozygous mutant mice 

(Rora-/-) or (Rorasg/sg) easily recognizable by their ataxic gait from post natal day 14-

15, and both wild-type and heterozygous (Rora+/-) or (Rora+/sg) with indistinguishable 

behavior.  

Since both in the homozygous (Rora-/-) and heterozygous (Rora+/-) the missing gene 

has been replaced by a reporter gene (β-Gal) (Steinmayr et al., 1998) and since it is 

already known that the Rora gene is highly expressed in the skin, the diagnosis of 

Rora+/- mice was done by β-Gal staining of tail skin. 

Sections of tail biopsies from putative Rora+/+ and heterozygous Rora+/- were cut and 

fixed in glutaraldheyde (0.05%) for 5 min at room temperature, washed three times in 



 

phosphate-buffered saline (PBS; 0.1 M, pH 7.4) and incubated for 4 hours at 37°C with 

β-Gal substrate containing 4 mM MgCl2, 2 mM K4Fe(CN)6, 2 mM K3Fe(CN)6, and 0.4 

mg/ml 5-bromo-4-chloro-3-indolyl β-D-galactoside (X-Gal). Sections were washed in 

PBS and observed under a dissecting microscope. In the Rora+/- β-Gal activity was 

revealed by the presence of blue cells in the hair follicles (Steinmayr et al., 1998). 

Rora+/- were kept for the experimental group and Rora+/+ mice used as wild type 

controls. 

Putative young wild type C57Bl/6J and heterozygous staggerer (Rora+/sg) mice were 

genotyped by PCR. Genomic DNA was extracted from tail biopsies and amplified in two 

sets of reaction, one for each allele.  

The staggerer allele primers were: 5’-CGTTTGGCAAACTCCACC-3’ and 5’-

GATTGAAAGCTGACTCGTTCC-3’.  

The + allele primers were: 5’-TCTCCCTTCTCAGTCCTGACA-3’ and 5’-

TATATTCCACCACACGGCAA-3’. The amplified fragments (318 bp + and 450 bp sg) 

were detected by electrophoresis on agarose gel. 

 

Histology 

Tissue preparation. 

After deep anesthesia, the animals were perfused transcardially with physiological saline 

followed by 4% paraformaldehyde in phosphate-buffered saline (PBS; 0.1 M, pH 7.4). 

After removal from the skull brains were postfixed overnight in fresh fixative. 

In addition one animal from each genotype of each age group was perfused with 

physiological saline followed by 95% ethanol. The brain was dissected out of the skull 

and postfixed overnight in Clarke's fixative (3 volume of ethanol for 1 volume of acetic 

acid) to process for anti-28kd calcium binding protein (CaBP) immunocytochemistry for 

qualitative analysis, as previously described (Doulazmi et al., 2001). 

All brains were dehydrated throughout a series of graded alcohols, embedded in paraffin 

and serially cut in 8 µm sagittal sections. Sections were stained with cresyl violet, 

counted, and photographed using a stereoscopic microscope (Nikon). 

 



 

Cell Counts 

PC counts were performed at 1, 3, 9, 18, 24 months with 3-4 animals per group. PCs were 

counted in every 40th section of the whole cerebellum as described previously (Doulazmi 

et al., 1999). In each section, each cell that was located in the PC layer, had a large soma 

and at least a portion of its nucleus in the section was counted. All counts were done on 

sections from coded animals by the same investigator. Duplicate counts of the same 

section did not differ by more than 3%. The number of Purkinje cells in each section was 

plotted as a function of the distance from the left paraflocculus. In each animal, counts 

were multiplied by forty to estimate the total number of cells in the cerebellum. These 

raw values were overestimates because cell nuclei can be split during sectioning, and thus 

may appear in more than one section; therefore, the corrected number of PCs was 

obtained by multiplying the raw values by the Hendry correction factor for each animal 

(Hendry, 1976). We chose to use this traditional correction factor for our cell counts 

instead of more recently developed stereological techniques (Andersen et al., 1992; 

Williams and Rakic, 1988), so that our results would be directly comparable with 

previously published PC counts including our own (Doulazmi et al., 1999; Hadj-Sahraoui 

et al., 1996; Hadj-Sahraoui et al., 1997; Herrup and Mullen, 1979). Moreover comparable 

results about the size of the PC population have been obtained using both techniques 

(Vogel et al., 1989). 

The laterolateral extent of the cerebellar cortex was obtained by multiplying the thickness 

of the section by the total number of parasagittal sections containing PCs. The distances 

were expressed as a percentage of the total cerebellar width, and, at each age point, PC 

counts for homologous sagittal planes were averaged to compare the laterolateral 

distribution of the PC number in the heterozygous and wild type mice (See review in 

Herrup et al., 1996). 

Morphometry 

The areas of Purkinje cell somata were measured in sections from the vermis and the 

hemispheres. At each age, 50 cells per region were measured with the NIH image 

computer program. 

 

Statistics 

The differences between the mean number of PCs per cerebellum, mean laterolateral 



 

extents of cerebella, and Purkinje cell soma areas were assessed by a two way (genotype 

and age) analysis of variance (ANOVA) with post-hoc multiple comparison analysis 

using the Newman-Keuls test. At each age, the comparison of the laterolateral 

distribution of the averaged number of PCs per homologous sagittal plane was assessed 

by a two-way ANOVA (genotype and repeated measures on the sagittal plane). 



 

 

RESULTS 

Comparative analysis of  heterozygous Rora +/- versus Rora +/+ males 

Qualitative Analysis 

In heterozygous Rora+/- mice aged 1, 3, 9, 18 and 24 months, the cerebellar cortex 

retained its normal foliation and trilaminar organisation when compared to Rora+/+ 

animals. There were no obvious changes in the folial pattern or cellular architecture. PCs 

remained easily identifiable by the location of their soma in a monolayer and normal 

morphology. However a slight decrease in the cross-sectional area of Rora+/- cerebella 

compared to Rora+/+ was noticeable when sagittal sections were carefully examined 

(Figure. 1). 

Anti-calbindin immunochemistry stains all parts of the Purkinje cell (soma, dendrites and 

axons). In both wild-type and heterozygous Rora+/-, the PCs appeared evenly stained 

and no ectopic PCs were detected in the granular or the molecular layer (Figure 2A, 2B). 

In the heterozygous Rora+/-, there was no obvious topographical repartition of the 

Purkinje cell loss. A higher magnification shows that, in both genotypes, the PCs were 

profusely branched and extended dendrites to the pial surface (Figure 2C and 2D). 

Purkinje cell loss  

The evolution of the PC population with age was different in Rora+/+ and Rora+/- mice 

(Figure 3). There was a significant interaction between genotype and age (P < 0.05). In 

the Rora+/+ the PC number remained stable through 1-18 months although there was a 

significant loss in 24-month-old mice (P < 0.001). Interestingly, no cell loss was 

observed in Rora+/-mice, the number of PCs remaining in fact stable during the entire 

time period considered (1 - 24 months). Nevertheless, in the Rora+/- the number of PCs 

was already significantly lower than in age-matched Rora+/+ at 1 month of age (P < 

0.001) and this difference persisted in 18-month-old heterozygous mice, with a mean 

deficit of 21%. By contrast, the difference in the number of PCs observed in Rora+/+ 

and Rora+/- disappeared at 24 months when a loss of PCs was found in wild type 



 

animals. 

Regional distribution of the Purkinje cell loss 

The mean laterolateral extent of the cerebella within the different experimental groups 

ranged from 6790 to 7730 µm. There was no significant variation of the lateral extent 

between genotypes or ages. Figure 5 illustrates the averaged laterolateral repartition of 

the cell counts at selected ages in Rora+/+ and Rora+/-mice. In Rora+/-, the absence of 

interaction indicated that the cell loss occurred evenly throughout the laterolateral extent 

of the cerebellum. This deficit was also evenly distributed in 24-month-old Rora+/+ 

mice. 

 

Comparative analysis of heterozygous Rora+/- versus Rora+/sg males 

Purkinje cell loss 

The evolution of the PC population with age was different in Rora+/sg and Rora+/- mice 

(Figure 5). The mean corrected number of PCs at different ages (1, 3 and 9 months) was 

significantly lower in Rora+/- than in Rora+/sg mice (p<0.001). 

 

Quantitative analysis of PC cell somatic size 

The somatic area of Purkinje cells was measured in the vermis and the hemispheric 

regions.  There was no difference in size according to age. In both genotypes the cell 

bodies were slightly but significantly smaller in the hemispheres than in the vermis. The 

mean area of Rora+/- Purkinje cell bodies was 7.3 % smaller than Rora+/sg in the 

vermis and 3.8% smaller in the hemispheres (p<0.0001). This difference in area reflects a 

volumetric difference which would be more striking. 



 

 

DISCUSSION 

 

In the present study, the main finding is that, although at 24 months PC number became 
similar, the effects of aging on PC number were much more precocious in Rora+/- than 
in Rora+/sg. The maximum of the PC loss as compared to wild types was obtained as 
early as 1 month of age in Rora+/- mice whereas this maximum loss was reached only 
after 13 months in  Rora+/sg mice (Doulazmi et al., 1999). From these results, the 
phenotype of the Rora+/-appeared slightly more severe than that of the Rora+/sg, as a 
Rora+/sg phenotype appears only with aging. This increase of severity is supported by 
the smaller size of the heterozygous Rora+/- Purkinje cell somata.  
 

In heterozygous Rora+/sg males aged 3 and 9 months, the PC loss occurred 

predominantly in the intermediate region of the cerebellum and becomes evenly 

distributed only when the Purkinje cell loss has reached is maximum (Doulazmi et al 

1999). By contrast, in Rora+/- males, the maximum of Purkinje cell loss is already 

reached at one 1 month of age and this loss is evenly distributed along the laterolateral 

axis. The difference of survival between Rora+/-and Rora+/sg Purkinje cells is probably 

not due to the expression of β-Gal in   Rora+/- Purkinje cells. Indeed, in a previous study 

on homozygous Rora-/- mice (Doulazmi et al., 2001), we examined the surviving PCs for 

anti-CaBP staining and β-Gal activity on adjacent sections. We found a similar number 

of PCs positive for CaBP and for β-Gal activity. Since the expression of β-Gal does not 

affect the survival of Rora-/- PCs it seems unlikely that it may affect the survival of 

Rora+/- PCs. 

 

We can only speculate on the factors involved in this difference. In Rora-/- and 

Rorasg/sg mice the phenotypes are identical: the loss of  RORα protein at a critical stage 

of development is so deleterious that even if a slight difference in RORα protein existed 

between Rora-/- and Rorasg/sg, its effect on the phenotype would be too small to be 

visible. By contrast, the phenotype is slightly more severe in Rora+/- than in Rora+/sg 



 

mice. The most likely explanation is that the Rora+/sg mouse is a hypomorphic mutant: 

the DNA binding domain may be synthesized as a truncated peptide which can not bind 

its ligand but could bind its target DNA. In Rora+/sg mice, a normal cerebellum is built 

and then a delayed and slow process of neuronal atrophy and retraction can occur: during 

this process many factors can be involved such as inflammation and hormonal 

modulations as we have already suggested (Doulazmi et al., 1999). In Rora+/- mice, 

when only a half dose of protein is synthesized, the deficit is more severe since it was 

already established at 1 month and did not change thereafter. 

Consequently, the mutant Rorasg protein could compete for DNA binding sites or could 

sequester co-regulators present in limiting amounts, and therefore interfere with the 

normal function of other nuclear receptors or transcription factors active during Purkinje 

cell maturation. 

Interestingly, in both homozygote and heterozygote mutant mice the phenotypes are 

comparable between the KO and the staggerer strains, with only a difference in the 

timing of the neuronal loss in the heterozygotes. This finding strongly suggests that the 

phenotype is due in both cases to a loss of function of the RORα protein. This hypothesis 

has also been supported by the fact that overexpression of RORα by transfection in 

culture has a neuroprotective effect on neurons (Boukhtouche et al, 2006b).  

Further comparative molecular and cellular analysis of Rora+/- and Rora+/sg mice may 

reveal more subtle differences between the two mutant alleles and may provide additional 

insight into the molecular mechanisms of RORα action in the development of the 

nervous system. 

An increasing number of scientific articles report that the phenotype of a given single 

gene mutation in mice is modulated by the genetic background of the inbred strain in 

which the mutation is maintained (see review in Crusio, 2004). The knockout Rora 

mutation was generated in a C57BL/6 129/Ola hybrid strain. We studied the 

heterozygous Rora+/- after 6 generations of backcrossing with C557Bl/6J mice. We can 

not exclude the hypothesis that difference observed in PC number in the heterozygous 

Rora+/sg and the heterozygous Rora+/- mice might be due in part to the slight 



 

differences in their genetic background.  However, we may suppose that with a higher 

degree of imbreeding the phenotype of Rora+/- mice would still be more severe. 
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Figure legends: 

Figure 1 

Cerebella from wild type Rora+/+   (A, B) and heterozygous Rora+/- (C, D) male mice 

at 1 (A, C) and 24 months (B, D) of age. Midsagittal sections stained with cresyl violet. 

The lobulation and the trilaminar organization that characterize the cerebellar cortex of 

wild type mice were also found in the heterozygous Rora+/- Scale bars = 1 mm. 

 

Figure 2 

Immunostaining with anti-calbindin antibody of cerebellar Purkinje cells on sagittal 

sections of cerebellum from 3-month-old Rora+/- (A) and Rora+/+ (B) mice. The PCs 

appear evenly stained in both genotypes and no obvious topographical repartition of the 

cell loss is apparent in Rora+/-. C and D: High magnification for anti-calbindin 

immunochemistry showing PC somata and dendritic arborisation. Rora+/- mouse (C), 

Rora+/+ mouse (D). Scale bar = 500 µm (A and B) and 20 µm for (C and D).  

 

Figure 3 

Evolution of the Purkinje cell population in Rora+/+ and Rora+/-  from 1 to 24 months. 

Values are mean ± S.E.M.  

 

Figure 4 

Averaged laterolateral distribution of the Purkinje cell (PC) population at 1 and 24 

months in Rora+/- (A) and Rora+/+ (B) mice.  

A: In  Rora+/- mice no significant PC loss is observed between 1 and 24 months of age. 

B: In Rora+/+ mice there a significant PC loss between 1 and 24 months. This loss is 

evenly distributed along the laterolateral extent of the cerebellum. Values are mean ± 

S.E.M. 



 

Figure 5 

Histogram of the Purkinje cell population in both Rora+/- and Rora+/sg from 1 to 9 

months. Values are mean ± S.E.M. Asterisks indicate that the differences between both 

genotypes are statistically significant. **P<0.001 
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