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Université Paris 7†

9th February 2007

Abstract

The SL synchronous programming model is a relaxation of the Esterel syn-
chronous model where the reaction to the absence of a signal within an instant can
only happen at the next instant. In previous work, we have revisited the SL syn-
chronous programming model. In particular, we have discussed an alternative design
of the model including thread spawning and recursive definitions, introduced a CPS
translation to a tail recursive form, and proposed a notion of bisimulation equiva-
lence. In the present work, we extend the tail recursive model with first-order data
types obtaining a non-deterministic synchronous model whose complexity is com-
parable to the one of the π-calculus. We show that our approach to bisimulation
equivalence can cope with this extension and in particular that labelled bisimulation
can be characterised as a contextual bisimulation.

∗Partially supported by ACI Sécurité Informatique CRISS.
†Laboratoire Preuves, Programmes et Systèmes, UMR-CNRS 7126.
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1 Introduction

In the early 80’s, Milner [18] and Austry and Boudol [5] have proposed unified theories for
the semantics of asynchronous and synchronous models of concurrency and communication.
In particular, the first work showed how to obtain CCS as a desynchronisation of SCCS
and the second how to obtain SCCS as a synchronisation of the Meije calculus. In [19, p.
195], having presented CCS, Milner writes:

In truth, there is nothing canonical about our choice of basic combinators even though

they were chosen with great attention to economy. What characterises our calculus

is not the exact choice of combinators, but rather the choice of interpretation and of

mathematical framework.

And then goes on to show how the notion of labelled transition and bisimulation can be
adapted to a synchronous CCS.

In spite of this promising start, the following years have witnessed the development of
two quite distinct research directions concerned with asynchronous and synchronous pro-
gramming, respectively. Nowadays, the π-calculus [20] and its relatives can be regarded as
typical abstract models of asynchronous concurrent programming while various languages
such as Lustre [11] and Esterel [7] carry the flag of synchronous programming.

The step from CCS to SCCS was a rather natural one and one may wonder whether
a similar step can be taken from a π-calculus to a synchronous π-calculus. In order to
address this question, we will not take the SCCS/Meije model as a starting point, but the
synchronous language SL introduced in [10]. This model can be regarded as a relaxation
of the Esterel model where the reaction to the absence of a signal within an instant
can only happen at the next instant.1 Unlike the SCCS/Meije model, the SL model has
gradually evolved into a general purpose programming language for concurrent applications
and has been embedded in various programming environments such as C, Java, Scheme,
and Caml (see [9, 23, 25, 15]). For instance, the Reactive ML language [15] includes a
large fragment of the Caml language plus primitives to generate signals and synchronise
on them. We should also mention that related ideas have been developed by Saraswat et
al. [24] in the area of constraint programming.

Threads in the SL model interact through signals (as opposed to channels) and a coop-
erative scheduling (as opposed to pre-emptive, see [21]) is sometimes considered, though
this is not quite a compulsory choice. This style of synchronous and possibly coopera-
tive programming has been advocated as a more effective approach to the development of
applications such as event-driven controlers, data flow architectures, graphical user inter-
faces, simulations, web services, multiplayer games (we refer to [2] for a discussion of the
applications and implementation techniques). However, the semantic theory of this family
of synchronous languages remains largely underdeveloped.

1The Meije and Esterel models were developed in Sophia-Antipolis in the same research team, but,
as of today, there seems to be no strong positive or negative result on the possibility of representing one
of the models into the other.
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In recent work [1], we have revisited the SL synchronous programming model. In par-
ticular, we have discussed an alternative design of the model including thread spawning and
recursive definitions, introduced a CPS translation to a tail recursive form, and proposed
a novel notion of bisimulation equivalence with good compositionality properties. The
original SL language as well as the revised one assume that signals are pure in the sense
that they carry no value. Then computations are naturally deterministic and bisimulation
equivalence collapses with trace equivalence. However, practical programming languages
that have been developed on top of the model include data types beyond pure signals
and this extension makes the computation non-deterministic unless significant restrictions
are imposed. For instance, in the Reactive ML language we have already quoted, signals
carry values and the emission of two distinct values on the same signal may produce a
non-deterministic behaviour.

In the present work, we introduce a minimal extension of the tail recursive model where
signals may carry first-order values including signal names. The linguistic complexity of
the resulting language is comparable to the one of the π-calculus and we tentatively call it
the Sπ-calculus (pronounced s − pi).2

Our contribution is to show that the notion of bisimulation equivalence introduced in
[1] is sufficiently robust to be lifted from the deterministic language with pure signals to
the non-deterministic language with data types and signal name generation. The main role
in this story is played by a new notion of labelled bisimulation. We show that this notion
has good congruence properties and that it can be characterised via a suitable notion of
contextual bisimulation in the sense of [14]. The proof of the characterisation theorem
turns out to be considerably more complex than in the pure case having to cope with
phenomena such as non-determinism and name extrusion.

While this approach to the semantics of concurrency has already been explored in
the framework of asynchronous languages including, e.g., the π-calculus [14, 12], Prasad’s
calculus of broadcasting systems [22, 13], and the ambient calculus [17], this seems to be the
first concrete application of the approach to a synchronous language. We expect that the
resulting semantic theory for the SL model will have a positive fall-out on the development
of various static analyses techniques to guarantee properties such as determinacy [15],
reactivity [4], and non-interference [16].

In the following, we assume familiarity with the technical development of the theory of
bisimulation for the π-calculus and some aquaintance with the synchronous languages of
the Esterel family.

2S for synchronous as in SCSS [19]. Not to be confused with the so called ‘synchronous’ π-calculus
which would be more correctly described as the π-calculus with rendez-vous communication nor with the
SPI-calculus where the S suggests a pervasive ‘spy’ controlling and corrupting all communications.
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2 The Sπ-calculus

Programs P, Q, . . . in the Sπ-calculus are defined as follows:

P ::= 0 || A(e) || se || s(x).P, K || [s1 = s2]P1, P2 || [u = p]P1, P2 || νs P || P1 | P2

K ::= A(r)

We use the notation m for a vector m1, . . . , mn, n ≥ 0. The informal behaviour of programs
follows. 0 is the terminated thread. A(e) is a (tail) recursive call with a vector e of
expressions as argument. se evalues the expression e and emits its value on the signal s.
s(x).P, K is the present statement which is the fundamental operator of the SL model.
If the values v1, . . . , vn have been emitted on the signal s then s(x).P, K evolves non-
deterministically into [vi/x]P for some vi ([ / ] is our notation for substitution). On the
other hand, if no value is emitted then the continuation K is executed at the following
instant. [s1 = s2]P1, P2 is the usual matching function of the π-calculus that runs P1 if
s1 = s2 and P2, otherwise. Here both s1 and s2 are free. [u = p]P1, P2, matches u against
the pattern p. We assume u is either a variable x or a value v and p has the shape c(p),
where c is a constructor and p a vector of patterns. At run time, u is always a value and
we run σP1 if σ is the result of matching u against p, and P2 otherwise. Note that as usual
the variables occurring in the pattern p are bound. νs P creates a new signal name s and
runs P . (P1 | P2) runs in parallel P1 and P2. The continuation K is simply a recursive call
whose arguments are either expressions or values associated with signals at the end of the
instant in a sense that we explain below.3

The definition of program relies on the following syntactic categories:

Sig ::= s || t || · · · (signal names)
Var ::= Sig || x || y || z || · · · (variables)
Cnst ::= ∗ || nil || cons || c || d || · · · (constructors)
Val ::= Sig || Cnst(Val , . . . ,Val) (values v, v′, . . .)
Pat ::= Var || Cnst(Pat , . . . ,Pat) (patterns p, p′, . . .)
Exp ::= Pat (expressions e, e′, . . .)
Rexp ::=!Sig || Var || Cnst(Rexp, . . . ,Rexp) (exp. with dereferenciation r, r′, . . .)

As in the π-calculus, signal names stand both for signal constants as generated by the ν
operator and signal variables as in the formal parameter of the present operator. Variables
Var include signal names as well as variables of other types. Constructors Cnst include ∗,
nil, and cons. Values Val are terms built out of constructors and signal names. Patterns
Pat are terms built out of constructors and variables (including signal names). For the
sake of simplicity, expressions Exp here happen to be the same as patterns but we could
easily add first-order functional symbols defined by recursive equations. Finally, Rexp is
composed of either expressions or the dereferenced value of a signal at the end of the

3The reader may have noticed that we prefer the term program to the term process. By this choice, we
want to stress that the parallel threads that compose a program are tightly coupled and are executed and
observed as a whole.
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instant. Intuitively, the latter corresponds to the set of values emitted on the signal during
the instant. If P, p are a program and a pattern then we denote with fn(P ), fn(p) the set
of free signal names occurring in them, respectively. We also use FV (P ),FV (p) to denote
the set of free variables (including signal names).

2.1 Typing

Types include the basic type 1 inhabited by the constant ∗ and, assuming t is a type, the
type sig(t) of signals carrying values of type t, and the type list(t) of lists of values of type t
with constructors nil and cons. 1 and list(t) are examples of inductive types. More inductive
types (booleans, numbers, trees,. . .) can be added along with more constructors. We
assume that variables (including signals), constructor symbols, and thread identifiers come
with their (first-order) types. For instance, a constructor c may have a type (t1, t2) → t
meaning that it waits two arguments of type t1 and t2 respectively and returns a value of
type t. It is then straightforward to define when a program is well-typed and verify that
this property is preserved by the following reduction semantics. We just notice that if a
signal name s has type sig(t) then its dereferenced value !s should have type list(t). In the
following, we will tacitly assume that we are handling well typed programs, expressions,
substitutions,. . .

2.2 Matching

As already mentioned, the Sπ-calculus includes two distinct matching constructions: one
operating over signal names works as in the π-calculus and the other operating over values
of inductive type actually computes a matching substitution match(v, p) which is defined
as follows:4

match(v, p) =

{

σ if dom(σ) = FV (p), σ(p) = v
↑ otherwise

To appreciate the difference, assume s 6= s′ and consider P = [s = s′]P1, P2 and P ′ =
[cons(s, nil) = cons(s′, nil)]P1, P2. In the first case, P reduces to P2 while in the second
case, P ′ reduces to [s/s′]P1. Indeed, in the first case s′ is a constant while in the second
case it is a bound variable.

2.3 Transitions

The behaviour of a program is specified by (i) a labelled transition system
α
→ describing

the possible interactions of the program during an instant and (ii) a transition system 7→
determining how a program evolves at the end of each instant.

As usual, the behaviour is defined only for programs whose only free variables are
signals.

4Without loss of expressive power, one could assume that in the second matching instruction the pattern
p contains exactly one constructor symbol and that all the variables occurring in it are distinct.
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(out)
sv

sv
→ sv

(in)
s(x).P, K

sv
→ [v/x]P | sv

(par)
P1

α
→ P ′

1 bn(α) ∩ fn(P2) = ∅

P1 | P2
α
→ P ′

1 | P2

(synch)
P1

νt sv
→ P ′

1 P2
sv
→ P ′

2 {t} ∩ fn(P2) = ∅

P1 | P2
τ
→ νs (P ′

1 | P ′
2)

(ν)
P

α
→ P ′ t /∈ n(α)

νt P
α
→ νt P ′

(νex )
P

νt sv
→ P ′ t′ 6= s t′ ∈ n(v)\{t}

νt′ P
(νt′,t)sv
→ P ′

(=sig
1 )

[s = s]P1, P2
τ
→ P1

(=sig
2 )

s1 6= s2

[s1 = s2]P1, P2
τ
→ P2

(=ind
1 )

match(v, p) = σ

[v = p]P1, P2
τ
→ σP1

(=ind
2 )

match(v, p) =↑

[s1 = s2]P1, P2
τ
→ P2

(rec)
A(x) = P

A(v)
τ
→ [v/x]P

Table 1: Labelled transition system during an instant

The labelled transition system is similar to the one of the polyadic π-calculus modulo
a different treatment of emission which we explain below. We define actions α as follows:

α ::= τ || sv || νt sv

where in the emission action the signal names t are distinct, occur in v, and differ from s.
The functions n (names), fn (free names), and bn (bound names) are defined on actions as
usual: fn(τ) = ∅, fn(sv) = {s}∪ fn(v), fn(νt sv) = ({s}∪ fn(v))\{t}; bn(τ) = bn(sv) = ∅,
bn(νt sv) = {t}; n(α) = fn(α) ∪ bn(α). The related labelled transition system is defined
in table 1 where rules apply to programs whose only free variables are signal names and
modulo renaming of bound names. As usual, the symmetric rule for (par) and (synch) are
omitted. The rules are those of the polyadic π-calculus but for the following points. (1)
In the rule (out), the emission is persistent. (2) In the rule (in), the continuation carries
the memory that the environment has emitted sv. For example, this guarantees, that in
the program s(x).(s(y).P, 0), 0, if the environment provides a value sv for the first input
then that value persists and is available for the second input too. (3) The rules (=ind

1 ) and
(=ind

2 ) handle the pattern matching. We will write P
τ
⇒ P ′ for P (

τ
→)∗P ′ and P

α
⇒ P ′ with

α 6= τ for P (
τ
⇒) (

α
→)(

τ
⇒)P ′.

A program is suspended, i.e., it reaches the end of an instant, when the labelled tran-
sition system cannot produce further (internal) τ transitions.

6



(0)
0

∅,∅,V
7−→ 0

(out)
v occurs in V (s)

sv
[{v}/s],∅,V
7−→ 0

(in)
s /∈ dom(V )

s(x).P, K
∅,{s},V
7−→ V (K)

(par)
Pi

Ei,Si,V7−→ P ′
i i = 1, 2 (S1 ∪ S2) ∩ dom(V ) = ∅

(P1 | P2)
E1∪E2,S1∪S2,V

7−→ (P ′
1 | P ′

2)

(ν)
P

E,S,V ′

7−→ P ′ V ′(s)‖−E(s) V [nil/s] = V ′[nil/s]

νs P
E[∅/s],S\{s},V

7−→ νs P ′

P
E,S,V
7−→ P ′ V ‖−E

P 7→ P ′

Table 2: Transition system at the end of the instant

Definition 1 We write P ↓ if ¬(P
τ
→ ·) and say that the program P is suspended.

When the program P is suspended, an additional computation is carried on to move to
the next instant. This computation is described by the transition system 7→. First of all,
we have to compute the set of values emitted on every signal. To this end, we introduce
some notation.

Let E vary over functions from signal names to finite sets of values. Denote with ∅ the
function that associates the empty set with every signal name, with [M/s] the function
that associates the set M with the signal name s and the empty set with all the other
signal names, and with ∪ the union of functions defined pointwise.

We represent a set of values as a list of the values contained in the set. More precisely,
we write v‖−M and say that v represents M if M = {v1, . . . , vn} and v = cons(vπ(1), . . . ,
cons(vπ(n),nil) · · · ) for some permutation π over {1, . . . , n}. Suppose V is a function from
signal names to lists of values. We write V ‖−E if V (s)‖−E(s) for every signal name s. We
also write dom(V ) for {s | V (s) 6= nil}. If K is a continuation then V (K) is obtained from
K by replacing each occurrence !s of a dereferenced signal with the associated value V (s).
We denote with V [ℓ/s] the function that behaves as V except on s where V [ℓ/s](s) = ℓ.
Finally, we denote with S a set of signal names.

To define the transition 7→ at the end of the instant, we rely on an auxiliary judgment

P
E,S,V
7−→ P ′. Intuitively, this judgment states that: (1) P is suspended, (2) P emits exactly

the values specified by E, (3) no value should be emitted on the signals in S, and (4) the
behaviour of P in the following instant is P ′ and depends on V . The transition system
presented in table 2 formalizes this intuition and it maintains the properties that: (1) if
V (s)‖−M then E(s) ⊆ M and (2) dom(V ) ∩ S = ∅. For instance, one can show that

νs1 (s1(x).0, A(!s2) | s2v3) | (s2v2 | s1v1)
E,∅,V
7−→ νs1 (A(V (s2)) | 0) | (0 | 0)
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where E = [{v1}/x1, {v2, v3}/s2] and, e.g., V = [cons(v1, nil)/s1, cons(v3, cons(v2, nil))/s2].

2.4 Derived operators

We introduce some derived operators and some abbreviations. The calculi with pure signals
considered in [10, 2, 1] can be recovered by assuming that all signals have type Sig(1). In
this case, we will simply write s for s∗ and s.P, K for s(x).P, K where x /∈ FV (P ). We
denote with Ω a looping process defined, e.g., by Ω = A() where A() = A(). We abbreviate
s(x).P, 0 with s(x).P . We can derive an internal choice operator by defining,

P1 ⊕ P2 = νs (s(x)[x = 0]P1, P2 | s0 | s1)

where, e.g., we set 0 = nil and 1 = cons(∗, nil). The pause operation suspends the execution
till the end of the instant. It is defined by:

pause.K = νs s.0, K

We can simulate an operator await s(x).P that waits for a value on a signal s for arbitrarily
many instants by defining:

await s(x).P = s(x).P, A(x)

where {x} = {s} ∪ (FV (P )\{x}) and A(x) = s(x).P, A(x).
It is also interesting to program a generalised matching operator [x = νs v]XP that

given a value x, checks whether x has the shape νs v where the freshness of the signal
names s is relative to a finite set X of signal names. If this is the case, we run P and
otherwise we do nothing. Assuming, {s} ⊆ fn(v), fn(v)\{s} ⊆ X, and {s} ∩ X = ∅ there
are three cases to consider:

1. v = s is a signal name and s is empty. Then [x = s]XP is coded as [x = s]P, 0.

2. v = s is a signal name and s = s. Then [x = νs s]XP is coded as [x /∈ X]P where if
X = {s1, . . . , sn} then [x /∈ X]P is coded as [x = s1]0, (· · · , [x = sn]0, P · · · ).

3. v = c(p1, . . . , pn). Let {s′} = fn(v)\{s} be the set of signal names which are free in
νs v. We associate with the vector of signal names s′ a vector of fresh signal names
s′′. Let v′′ = [s′′/s′]v. Then [x = νs v]XP is coded as:

[x = v′′][s′′ = s′][{s} ∩ X = ∅][s distinct]P

where: (1) [s′′1, . . . , s
′′
m = s′1, . . . , s

′
m]Q is an abbreviation for [s′′1 = s′1] . . . ([s

′′
m =

s′m]Q, 0) . . . , 0, (2) [{s} ∩ X = ∅] is expressed by requiring that every signal name
in {s} does not belong to X, and (3) [s distinct] is expressed by requiring that the
signal names in s are pairwise different. For example, to express

[x = νs1, s2 c(s1, c(s
′
3, s2, s1), s

′
3)]{s′3,s′

4
}P

we write [x = c(s1, c(s
′′
3, s2, s1), s

′′
3)][s

′′
3 = s′3][s1 /∈ {s′3, s

′
4}][s2 /∈ {s′3, s

′
4}][s1 6= s2]P .

Note that the introduction of the auxiliary signal names s′′ is required because in the
pattern considered the signal names are interpreted as variables and not as constants.
Also, note that the names s1, s2 are bound in P .
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2.5 Comparison with the π-calculus

In order to make a comparison easier, the syntax of the Sπ-calculus is similar to the one
of the π-calculus. However there are some important semantic differences to keep in mind.

Deadlock vs. End of instant. What happens when all threads are either terminated or
waiting for an event that cannot occur? In the π-calculus, the computation stops. In the
Sπ-calculus (and more generally, in the SL model), this situation is detected and marks
the end of the current instant. Then suspended threads are reinitialised, signals are reset,
and the computation moves to the following instant.

Channels vs. Signals. In the π-calculus, a message is consumed by its recepient. In the
Sπ-calculus, a value emitted along the signal persists within an instant and it is reset at
the end of it. We note that in the semantics the only relevant information is whether a
given value was emitted or not, e.g., we do not distinguish the situation where the same
value is emitted once or twice within an instant.

Data types. The (polyadic) π-calculus has tuples as basic data type, while the Sπ-calculus
has lists. The reason for including lists rather than tuples in the basic calculus is that at
the end of the instant we transform a set of values into a suitable data structure (in our
case a list) that represents the set and that can be processed as a whole in the following
instant. Note in particular, that the list associated with a signal is nil if and only if no
value was emitted on the signal during the instant. This allows to detect the absence of a
signal at the end of the instant.

Determinism vs. Non-determinism. In the Sπ-calculus there are two sources of non-
determinism. (1) Several values emitted on the same signal compete to be received during
the instant, e.g., s0 | s1 | s(x).P may evolve into either s0 | s1 | [0/x]P or s0 | s1 |
[1/x]P . (2) At the end of the instant, values emitted on a signal are collected in an
order that cannot be predicted, e.g., νs′, s′′ (ss′ | ss′′ | pause.A(!s, s′, s′′)) may evolve
into either A(cons(s′, cons(s′′, nil)), s′, s′′) or A(cons(s′′, cons(s′, nil)), s′, s′′). Accordingly,
one may consider two restrictions to make the computation deterministic. (i) If a signal
can be read during an instant then at most one value can be emitted on that signal during
an instant.5 (ii) If a signal can only be read at the end of the instant then the processing
of the associated list of values is independent of its order.6

3 Labelled bisimulation and its characterisation

We introduce a new notion of labelled bisimulation, a related notion of contextual bisim-
ulation and state our main result: the two bisimulations coincide.

5For instance, the calculus with pure signals satisfies this condition.
6In the languages of the Esterel family, sometimes one makes the hypothesis that the values collected

at the end of the instant are combined by means of an associative and commutative function. While
this works in certain cases, it seems hard to conceive such a function when manipulating objects such as
pointers. It seems that a general notion of deterministic program should be built upon a suitable notion
of program equivalence such as the one we develop here.
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Definition 2 We write:

P ⇓ if ∃P ′ P
τ
⇒ P ′ and P ′ ↓ (weak suspension)

P ⇓L if P
α1→ P1 · · ·

αn→ Pn, n ≥ 0, and Pn ↓ (L-suspension)

Obviously, P ↓ implies P ⇓ which in turn implies P ⇓L and we will see that these
implications cannot be reversed. The L-suspension predicate (L for labelled) plays an
important role in the definition of labelled bisimulation which is the central concept of this
paper.

Definition 3 (labelled bisimulation) A symmetric relation R on programs is a labelled
bisimulation if whenever P R Q the following holds:

(L1) If P
τ
→ P ′ then ∃Q′ (Q

τ
⇒ Q′ and P ′ R Q′).

(L2) If P
νt sv
→ P ′, P ⇓L, {t} ∩ fn(Q) = ∅ then ∃Q′ (Q

νt sv
⇒ Q′ and P ′ R Q′).

(L3) If P
sv
→ P ′ then ∃Q′ ( ( Q

sv
⇒ Q′ and P ′ R Q′) or ( Q

τ
⇒ Q′ and P ′ R (Q′ | sv) ) ).

(L4) If S = s1v1 | · · · | snvn, n ≥ 0, P ′ = (P | S) ↓, and P ′ 7→ P ′′ then
∃Q′, Q′′ ( (Q | S)

τ
⇒ Q′, Q′ ↓, P ′ R Q′, Q′ 7→ Q′′, and P ′′ R Q′′ ).

We denote with ≈L the largest labelled bisimulation.

The conditions (L2 − 4) deserve some comments.

(L2) In reactive synchronous programming, a program is usually supposed to read ‘input’
signals at the beginning of each instant and to react delivering ‘output’ signals at the end
of each instant. In particular, a program that does not reach a suspension point cannot
produce an observable output signal. For instance, if we run s | Ω then the emission on the
signal s should not be observable because the program never suspends. According to this
intuition, the condition (L2) requires that an output of a program P is observable only if
P ⇓L, i.e., only if P may potentially reach a suspension point. The reasons for choosing the
L-suspension predicate rather than, e.g., the weak suspension predicate will be clarified in
section 4 and have to do with the fact that L-suspension has better properties with respect
to parallel composition. We also anticipate that in the premise of condition (L2), it is
equivalent to require P ⇓L or P ′ ⇓L (cf. remark 19). Last but not least, we should stress
that in practice we are interested in programs that react at each instant and for this reason,
programs that do not satisfy the L-suspension predicate are usually rejected by means of
static analyses. In this relevant case, the condition (L2) is the usual output condition of
the π-calculus.

(L3) The reception of a signal is not directly observable just as the reception of a message
in the π-calculus with asynchronous communication. For instance, there is no reason to
distinguish s.0, 0 from 0. Techniques for handling this situation have already been devel-
oped in the framework of the π-calculus with asynchronous communication and amount to
modify the input clause as in condition (L3) (see [3]). It is a pleasant surprise that this
idea can be transposed to the current context.
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(L4) The condition (L4) corresponds to the end of the instant and of course it does not
arise in the π-calculus. The end of the instant is an observable event since, as we explained
above, it is at the end of the instant that we get the results of the program for the current
instant. Let us explain the role of the context S = s1v1 | · · · | snvn in this condition.
Consider the programs:

P = s1.0, A(!s2) Q = s1.0, A(nil) A(l) = [l = nil]0, s3

Then P ↓, Q ↓, P 7→ A(nil), and Q 7→ A(nil). Hovever, if we plug P and Q in the context
[ ] | s2 then the resulting programs exhibit different behaviours. In other terms, when
comparing two suspended programs we should also consider the effect that emitted values
may have on the computation performed at the end of the instant.

Admittedly, the definition of labelled bisimulation is technical and following previous
work [14, 3, 12], we seek its justification through suitable notions of barbed and contextual
bisimulation.

Definition 4 (commitment) We write P ց s if P
νt sv
→ · and say that P commits to

emit on s.

Definition 5 (barbed bisimulation) A symmetric relation R on programs is a barbed
bisimulation if whenever P R Q the following holds:

(B1) If P
τ
→ P ′ then ∃Q′ Q

τ
⇒ Q′ and P ′ R Q′.

(B2) If P ց s and P ⇓L then ∃Q′ (Q
τ
⇒ Q′, Q′ ց s, and P R Q′).

(B3) If P ↓ and P 7→ P ′′ then ∃Q′, Q′′ (Q
τ
⇒ Q′, Q′ ↓, P R Q′, Q′ 7→ Q′′, and P ′′ R Q′′).

We denote with ≈B the largest barbed bisimulation.

We claim that this is a ‘natural’ definition. Condition (B1) corresponds to the usual
treatment of τ moves. Condition (B2) corresponds to the observation of the output com-
mitments in the π-calculus with asynchronous communication modulo the L-suspension
predicate whose role has already been discussed in presenting the condition (L2). We will
see that the L-suspension predicate ⇓L can be defined just in terms of internal reduction
so that the definition of barbed bisimulation does not rely on the labelled transition sys-
tem (remark 10). Finally, condition (B3) corresponds to the observation of the end of the
instant and it is a special case of condition (L4) where the context S is empty.

Definition 6 A static context C is defined as follows:

C ::= [ ] || C | P || νs C (1)

A reasonable notion of program equivalence should be preserved by the static contexts,
i.e., by parallel composition and name generation. We define accordingly a notion of
contextual bisimulation (cf. [14, 12]).

11



Definition 7 (contextual bisimulation) A symmetric relation R on programs is a con-
textual bisimulation if it is a barbed bisimulation (conditions (B1−3)) and moreover when-
ever P R Q then

(C1) C[P ] R C[Q], for any static context C.

We denote with ≈C the largest contextual barbed bisimulation.

Our main result shows that labelled and contextual bisimulation collapse. In particular,
this implies that labelled bisimulation is preserved by the contexts C. The proof will be
developed in the following sections.

Theorem 8 Let P, Q be programs. Then P ≈L Q if and only if P ≈C Q.

4 Understanding L-suspension

In this section, we study the properties of the L-suspension predicate and justify its use in
the definition of labelled bisimulation.

Proposition 9 (characterisations of L-suspension) Let P be a program. The follow-
ing are equivalent:

(1) P ⇓L.

(2) There is a program Q such that (P | Q) ⇓.

(3) There is a static context C (cf. definition 6) such that C[P ] ⇓L.

Proof. (1 ⇒ 2) Suppose P0
α1→ P1 · · ·

αn→ Pn and Pn ↓. We build Q by induction on n. If
n = 0 we can take Q = 0. Otherwise, suppose n > 0. By inductive hypothesis, there is Q1

such that (P1 | Q1) ⇓. We proceed by case analysis on the first action α1.

(α1 = τ) Then we can take Q = Q1 and (P0 | Q)
τ
→ (P1 | Q1).

(α1 = sv) Let Q = (Q1 | sv). We have (P0 | Q)
τ
→ (P1 | Q1 | sv). Since P1

sv
→ P1, we

observe that (P1 | Q1) ⇓ implies (P1 | Q1 | sv) ⇓.

(α1 = νt sv) We distinguish three subcases.

1. If α1 = st then define Q = s(t).Q1 and observe that (P0 | Q)
τ
→ (P1 | Q1).

2. If α1 = νt st then define again Q = s(t).Q1 and observe that (i) (P0 | Q)
τ
→ νt (P1 |

Q1) and (ii) (P1 | Q1) ⇓ implies νt (P1 | Q1) ⇓.

3. If α1 = νt sc(v) then let {t′} = fn(c(v))\{t} and t′′ a tuple of fresh names (one for
each name in t′). We define Q = s(x).[x = [t′′/t′]c(v)]Q1, 0 where x, t′′ /∈ FV (Q1)
and observe that: (i) (P0 | Q)

τ
⇒ νt (P1 | Q1) and (ii) (P1 | Q1) ⇓ implies νt (P1 |

Q1) ⇓. For instance, if P0
νt sc(t,t′)

→ P1 then we take Q = s(x).[x = c(t, t′′)]Q1 with
x, t′′ /∈ FV (Q1).

12



(2 ⇒ 3) Take C = [ ] | Q and note that by definition (P | Q) ⇓ implies (P | Q) ⇓L.

(3 ⇒ 1) First, check by induction on a static context C that P
τ
→ · implies C[P ]

τ
→ ·.

Hence C[P ] ↓ implies P ↓. Second, show that C[P ]
α
→ Q implies that Q = C ′[P ′] and

either P = P ′ or P
α′

→ P . Third, suppose C[P ]
α1→ Q1 · · ·

αn→ Qn with Qn ↓. Show by
induction on n that P ⇓L. 2

Remark 10 The second characterisation, shows that the L-suspension predicate can be
defined just in terms of the τ transitions and the suspension predicate. This means that the
definitions of barbed and contextual bisimulation are independent of the labelled transition
system.

Proposition 11 (L-suspension and labelled equivalence) (1) If ¬P ⇓L and ¬Q ⇓L

then P ≈L Q.

(2) If P ≈L Q and P ⇓L then Q ⇓L.

Proof. (1) First we note that ¬P ⇓L and P
α
→ P ′ implies ¬P ′ ⇓L. Second, we check

that R = {(P, Q) | ¬P ⇓L and ¬Q ⇓L} is a labelled bisimulation.

(L1) If P
τ
→ P ′ then ¬P ′ ⇓L. Then Q

τ
⇒ Q and P ′ R Q.

(L2) The condition holds since ¬P ⇓L.

(L3) If P
sv
→ P ′ then ¬P ′ ⇓L. Then Q

τ
⇒ Q and by proposition 9, ¬Q ⇓L implies

¬(Q | sv) ⇓L.

(L4) The condition holds since ¬(P | S) ↓. Indeed if (P | S) ↓ then (P | S) ⇓L and by
proposition 9, P ⇓L which contradicts the hypothesis.

(2) Suppose P0 ≈L Q0 and P0 ⇓L. We proceed by induction on the length n of the shortest
sequence of transitions to a suspended program: P0

α1→ · · ·
αn→ Pn and Pn ↓. If n = 0 then

by (L4), Q0
τ
⇒ Q′ and Q′ ↓. Thus Q0 ⇓L. If n > 0 then we analyse the first action α1.

(α1 = τ) By (L1), Q0
τ
⇒ Q1 and P1 ≈L Q1. By inductive hypothesis Q1 ⇓L and therefore

Q0 ⇓L.

(α1 = νt sv) By (L2) since P0 ⇓L we have Q0
νt sv
⇒ Q1 and P1 ≈L Q1. By inductive

hypothesis, Q1 ⇓L. Thus Q0 ⇓L.

(α1 = sv) According to (L3) we have two subcases. If Q0
sv
⇒ Q1 and P1 ≈L Q1 then

we reason as in the previous case. If Q0
τ
⇒ Q1 and P1 ≈L (Q1 | sv) then by inductive

hypothesis (Q1 | sv) ⇓L. By proposition 9, if (Q1 | sv) ⇓L then Q1 ⇓L. Thus Q0 ⇓L. 2

Thus labelled bisimulation equates all programs which cannot L-suspend and moreover
it never equates a program which L-suspends to one which cannot. In this sense, L-
suspension is reminiscent of the notion of solvability in the λ-calculus [6, p. 41]. In spite
of these nice properties, one may wonder whether the L-suspension predicate could be
replaced by the suspension or weak suspension predicate.
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Definition 12 We denote with ≈↓
L (≈⇓

L) the notion of labelled bisimulation obtained by
replacing in (L2) the condition P ⇓L with the condition P ↓ (P ⇓). Similarly, we de-
note with ≈↓

B,≈↓
C (≈⇓

B,≈⇓
C) the notions of barbed and contextual bisimulations obtained by

replacing in (B2) the condition P ⇓L with the condition P ↓ (P ⇓).

Proposition 13 (comparing bisimulations) (1) The following inclusions hold:

≈B ⊂ ≈⇓
B ⊂ ≈↓

B , ≈L ⊂ ≈⇓
L ⊂ ≈↓

L , ≈C ⊆ ≈⇓
C ⊆ ≈↓

C .

(2) The barbed bisimulations and the labelled bisimulations ≈⇓
L and ≈↓

L are not preserved
by parallel composition.

Proof. (1) The non-strict inclusions follow from the remark that P ↓ implies P ⇓ which
implies P ⇓L. We provide examples for the 4 strict inclusions.

• Consider P = (s1 | (s2 ⊕ s3)) and Q = (s1 | s2)⊕ (s1 | s3). Note that P, Q ⇓ but ¬P, Q ↓
and that to reach a suspension point, P and Q have to resolve their internal choices. Now
we have P ≈↓

L Q (and therefore P ≈↓
B Q) but P 6≈⇓

B Q (and therefore P 6≈⇓
L Q). To see the

latter, observe that P ց s1 and that to match this commitment Q must choose between
s2 and s3.

• Let (t, t′) abbreviate cons(t, cons(t′, nil)) and s → 0, Ω abbreviate s(x).[x = 0]0, Ω.
Consider:

P1 = νt, t′ (s(t, t′) | (t.s1 ⊕ t.s2) | Q)
P2 = νt, t′ (((s(t, t′) | (t.s1)) ⊕ (s(t, t′) | (t.s2))) | Q)
Q = t′ → 0, Ω | t′1

Note that P1, P2 ⇓L but ¬P1, P2 ⇓. The point is that the program Q loops unless the name
t′ is extruded to the environment and the latter provides a value 0 on the signal t′. Then
P1 ≈⇓

L P2. However, P1 6≈L P2. To see this, notice that P1 ց s and that to match this
commitment, P2 has to resolve first the internal choice between s1 and s2. A variant of
this example where we remove the input prefix t. before the emissions si, i = 1, 2, shows
that ≈B is strictly included in ≈⇓

B.

(2) It is well known that barbed bisimulation is not preserved by parallel composition.
For instance, s.s1 ≈B s.s2, but (s.s1 | s) 6≈B (s.s2 | s) if s1 6= s2. To show that ≈↓

L and ≈⇓
L

are not preserved by parallel composition consider again the programs P1 and P2 above in
parallel with:

R = s(t, t′).((t | t′0) ⊕ (t | t′0 | s3))

where s(t, t′).P abbreviates s(x).[x = cons(t, cons(t′, nil))]P . Remark that

(P1 | R)
τ
⇒ νt, t′ (s(t, t′) | (t.s1 ⊕ t.s2) | Q | t | t′0) ≡ P ′

1

To match this move, suppose (P2 | R)
τ
⇒ P ′

2. Now P ′
2 must be able to suspend while losing

the possibility of committing on s3. Hence, there must be a synchronisation on s between
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P2 and R. In turn, this synchronisation forces P2 to choose between s1 and s2. Suppose,
e.g., (P2 | R) chooses s1, then in a following move P ′

1 chooses s2 and becomes:

νt, t′ (s(t, t′) | s2 | 0 | t | t′0 | t′1)

which is suspended and commits on s2. The program P ′
2 cannot match this move. 2

Note that in (1) the inclusions for the barbed and labelled bisimulations are strict. On
the other hand, we do not know whether the inclusions of the contextual bisimulations
are strict. However, by (2) we do know that the notions of labelled bisimulation where L-
suspension is replaced by (weak) suspension are not preserved by parallel composition and
therefore cannot characterise the weaker notions of contextual bisimulation. The conclusion
we draw from this analysis is that ≈L is the good notion of labelled bisimulation among
those considered.

5 Strong labelled bisimulation and an up-to technique

It is technically convenient to introduce a strong notion of labelled bisimulation which is
used to bootstrap the reasoning about the weaker notion we are aiming at.

Definition 14 (strong labelled bisimulation) A symmetric relation R on programs is
a strong labelled bisimulation if whenever P R Q the following holds:

(S1) P
α
→ P ′ and bn(α) ∩ fn(Q) = ∅ implies ∃Q′ (Q

α
→ Q′ and P ′ R Q′).

(S2) (P | S) ↓ with S = (s1v1 | · · · | snvn), n ≥ 0 and (P | S) 7→ P ′ implies (P | S) R (Q |
S) and ∃Q′ (Q 7→ Q′ and P ′ R Q′).

We denote with ≡L the largest strong labelled bisimulation.

Proposition 15 If P ≡L Q then P ≈L Q.

Proof. We check that ≡L is a labelled bisimulation. Conditions (L1−3) follow from con-
dition (S1). Condition (L4) follows from condition (S2) noticing that (P | S) ≡L (Q | S)
and (P | S) ↓ implies by (S1) that (Q | S) ↓. 2

When comparing strong labelled bisimulation with labelled bisimulation it should be
noticed that in the former not only we forbid weak internal moves but we also drop the
convergence condition in (L2) and the possibility of matching an input with an internal
transition in (L3). For this reason, we adopt the notation ≡L rather than the usual ∼L.

Definition 16 We say that a relation R is a strong labelled bisimulation up to strong
labelled bisimulation if the conditions (S1 − 2) hold when we replace R with the larger
relation (≡L) ◦ R ◦ (≡L).
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The following proposition summarizes some useful properties of strong labelled bisim-
ulation. In the present context, an injective renaming is an injective function mapping
signal names to signal names.

Proposition 17 (properties of ≡L) (1) If P ≡L Q and σ is an injective renaming then
σP ≡L σQ.

(2) ≡L is a reflexive and transitive relation.

(3) The following laws hold:

(P | 0) ≡L P, P1 | (P2 | P3) ≡L (P1 | P2) | P3, (P1 | P2) ≡L (P2 | P1),
νs1, s2 P ≡L νs2, s1 P νs P1 | P2 ≡L νs (P1 | P2) if s /∈ fn(P2).

(4) If P ≡L Q then (P | S) ≡L (Q | S) where S = (P1 | · · · | Pn) and Pi = 0 or Pi = sivi,
for i = 1, . . . , n, n ≥ 0.

Proof hint. Most properties follow by routine verifications. We just highlight some
points.

(2) Recalling that P ≡L Q and P ↓ implies Q ↓.

(3) Introduce a notion of normalised program where parallel composition associates to the
left, all restrictions are carried at top level, and 0 programs are the identity for parallel
composition. Then define a relation R where two programs are related if their normalised
forms are identical up to bijective permutations of the restricted names and the parallel
components. A pair of programs equated by the laws under consideration is in R. Show
that R is a strong labelled bisimulation.

(4) Show that {(P | S, Q | S) | P ≡L Q} is a strong labelled bisimulation where S is
defined as in the statement. 2

The following proposition summarizes the properties of the output transition.

Proposition 18 (emission) (1) If P
νt sv
→ P ′ then P ≡L νt (sv | P ′′) and P ′ ≡L (sv |

P ′′).

(2) If P
νt sv
→ P ′ then P ⇓L if and only P ′ ⇓L.

Proof. (1) In deriving P
νt sv
→ P ′ one can only rely on the rules (out , par , ν, νex ). We

use the laws of strong labelled bisimulation (proposition 17(2)) to put the program in the
desired form.

(2) Relying on (1), we assume that the program has the shape νt (sv | P ). We also know
that the program L-suspends. By proposition 9, there is a program Q such νt (sv | P ) |
Q ⇓. That is, assuming {t}∩ fn(Q) = ∅, we have that νt (sv | P | Q) ⇓. The latter implies
that there is a Q′ such that (sv | P | Q)

τ
⇒ Q′ and Q′ ↓. Again, by proposition 9, this

means that (sv | P ) ⇓L. 2
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Remark 19 By proposition 18(2), in condition (L2) of definition 3, it is equivalent to
require P ⇓L or P ′ ⇓L.

Our main application of strong labelled bisimulation is in the context of a rather stan-
dard ‘up to technique’.

Definition 20 A relation R is a labelled bisimulation up to ≡L if the conditions (L1− 4)
are satisfied when we replace the relation R with the (larger) relation (≡L) ◦ R ◦ (≡L).

Proposition 21 (up-to technique) Let R be a labelled bisimulation up to ≡L. Then:

(1) The relation (≡L) ◦ R ◦ (≡L) is a labelled bisimulation.

(2) If P R Q then P ≈L Q.

Proof. (1) A direct diagram chasing using proposition 17.

(2) Follows directly from (1). 2

6 Congruence properties of labelled bisimulation

We are now ready to study the congruence properties of labelled bisimulation.

Proposition 22 (1) If P1 ≈L P2 and σ is an injective renaming then σP1 ≈L σP2.

(2) If P1 ≈L P2 then (P1 | sv) ≈L (P2 | sv).

(3) The relation ≈L is reflexive and transitive.

(4) If P1 ≈L P2 then νs P1 ≈L νs P2 and (P1 | Q) ≈L (P2 | Q).

Proof. (1) Standard argument.

(2) We show that the relation R =≈L ∪{( P1 | sv, P2 | sv ) | P1 ≈L P2} is a labelled
bisimulation up to ≡L. We assume P1 ≈L P2 and we analyse the conditions (L1 − 4).

(L1) Suppose (P1 | sv)
τ
→ (P ′

1 | sv). If the action τ is performed by P1 then the hypothesis
and condition (L1) allow to conclude. Otherwise, suppose P1

sv
→ P ′

1. Then we apply the
hypothesis and condition (L3). Two cases may arise: (1) If P2

sv
⇒ P ′

2 and P ′
1 ≈L P ′

2 then
the conclusion is immediate. (2) If P2

τ
⇒ P ′

2 and P ′
1 ≈L (P ′

2 | sv) then we note that
(P ′

2 | sv) ≡L (P ′
2 | sv) | sv and we close the diagram up to ≡L.

(L2) Suppose (P1 | sv) ⇓L and (P1 | sv)
νt s′v
→ (P ′

1 | sv). If the emission action is performed
by sv then the conclusion is immediate. Otherwise, note that P1 ⇓L. Hence by (L2),

P2
νt s′v
⇒ P ′

2 and P ′
1 ≈L P ′

2. But then (P2 | sv)
νt s′v
⇒ (P ′

2 | sv) and we can conclude.

(L3) Suppose (P1 | sv)
s′v′
→ (P ′

1 | sv). Necessarily, P1
s′v′
→ P ′

1. By (L3) two cases may arise.

If P2
s′v′
⇒ P ′

2 and P ′
1 ≈L P ′

2 then the conclusion is direct. On the other hand, if P2
τ
⇒ P ′

2

and P ′
1 ≈L (P ′

2 | s′v′) then we note that

(P ′
1 | sv) R ((P ′

2 | s′v′) | sv) ≡L ((P ′
2 | sv) | s′v′)
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and we close the diagram up to ≡L.

(L4) Let S = s1v1 | · · · | snvn. Suppose (P1 | sv | S) ↓ and (P1 | sv | S) 7→ P ′
1. By

(L4) applied to (sv | S) we derive that (P2 | sv | S)
τ
⇒ (P ′′

2 | sv | S), (P ′′
2 | sv | S) ↓,

(P1 | sv | S) ≈L (P ′′
2 | sv | S), (P ′′

2 | sv | S) 7→ P ′
2, and P ′

1 ≈L P ′
2.

(3) It is easily checked that the identity relation is a labelled bisimulation. Reflexivity fol-
lows. As for transitivity, we check that the relation R =≈L ◦ ≈L is a labelled bisimulation
up to ≡L. Suppose P1 ≈L P2 ≈L P3.

(L1) Standard argument.

(L2) Suppose P1 ⇓L and P1
νt sv
→ P ′

1. Note that by (1) we can assume that the names t are

not in P2. By (L2), P2
νt sv
⇒ P ′

2 and P ′
1 ≈L P ′

2. By proposition 18(2), P1 ⇓L implies P ′
1 ⇓L.

By proposition 11(2), P ′
1 ⇓L and P ′

1 ≈L P ′
2 implies P ′

2 ⇓L. We conclude by applying (L1)
and (L2) to P2 and P3.

(L3) Suppose P1
sv
→ P ′

1. Two interesting cases arise when either P2 or P3 match an
input action with an internal transition. (1) Suppose first P2

τ
⇒ P ′

2 and P1 ≈L (P ′
2 | sv).

By P2 ≈L P3 and repeated application of (L1) we derive that P3
τ
⇒ P ′

3 and P ′
2 ≈L P ′

3.
By property (2), the latter implies that (P ′

2 | sv) ≈L (P ′
3 | sv) and we combine with

P1 ≈L (P ′
2 | sv) to conclude. (2) Next suppose P2

τ
⇒ P 1

2
sv
→ P 2

2
τ
⇒ P ′

2 and P1 ≈L P ′
2.

Suppose that P3 matches these transitions as follows: P3
τ
⇒ P 1

3
τ
⇒ P 2

3 , P 2
2 ≈L (P 2

3 | sv),
and moreover (P 2

3 | sv)
τ
⇒ (P ′

3 | sv) with P ′
2 ≈L (P ′

3 | sv). Two subcases may arise: (i)
P 2

3
τ
⇒ P ′

3. Then we have P3
τ
⇒ P ′

3, P ′
2 ≈L (P ′

3 | sv) and we can conclude. (ii) P 2
3

sv
⇒ P ′

3.
Then we have P3

sv
⇒ P ′

3 and P ′
2 ≈L (P ′

3 | sv) ≡L P ′
3. Note that P 2

3 does not need to perform
the action sv more than once.

(L4) Let S = s1v1 | · · · | snvn. Suppose (P1 | S) ↓ and (P1 | S) 7→ P ′
1. By (L4),

(P2 | S)
τ
⇒ (P ′′

2 | S), (P ′′
2 | S) ↓, (P1 | S) ≈L (P ′′

2 | S), (P ′′
2 | S) 7→ P ′

2, and P ′
1 ≈L P ′

2.
By (L1), (P3 | S)

τ
⇒ (P ′′

3 | S) and (P ′′
2 | S) ≈L (P ′′

3 | S). By (L4), (P ′′
3 | S)

τ
⇒ (P ′′′

3 | S),
(P ′′′

3 | S) ↓, (P ′′
2 | S) ≈L (P ′′′

3 | S), (P ′′′
3 | S) 7→ P ′

3, P ′
2 ≈L P ′

3 and we can conclude.

(4) We show that R = {(νt (P1 | Q), νt (P2 | Q)) | P1 ≈L P2}∪ ≈L is a labelled
bisimulation up to ≡L.

(L1) Suppose νt (P1 | Q)
τ
→ ·. This may happen because either P1 or Q perform a τ action

or because P1 and Q synchronise. We consider the various situations that may occur.

(L1)[1] Suppose Q
τ
→ Q′. Then νt (P2 | Q)

τ
→ νt (P2 | Q′) and we can conclude.

(L1)[2] Suppose P1
τ
→ P ′

1. By (L2) P2
τ
⇒ P ′

2 and P ′
1 ≈L P ′

2. Then νt (P2 | Q)
τ
⇒ νt (P ′

2 |
Q) and we can conclude.

(L1)[3] Suppose P1
sv
→ P ′

1 and Q
νt′ sv
→ Q′. According to (L3), we have two subcases.

(L1)[3.1] Suppose P2
sv
⇒ P ′

2 and P ′
1 ≈L P ′

2. Then νt (P2 | Q)
τ
⇒ νt, t′ (P ′

2 | Q′) and we can
conclude.

(L1)[3.2] Suppose P2
τ
⇒ P ′

2 and P ′
1 ≈L (P ′

2 | sv). By proposition 18(2), Q ≡L νt′ Q′ and
Q′ ≡L (Q′′ | sv) for some Q′′. Then νt (P2 | Q)

τ
⇒ νt (P ′

2 | Q) ≡L νt, t′ (P ′
2 | sv) | Q′′ and

we can conclude up to ≡L.
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(L1)[4] Suppose P1
νt′ sv
→ P ′

1 and Q
sv
→ Q′. We have two subcases.

(L1)[4.1] Suppose ¬P1 ⇓L. By propositions 9 and 11, ¬νt (P1 | Q) ⇓L, ¬P2 ⇓L, ¬νt (P2 |
Q) ⇓L, ¬P ′

1 ⇓L, and ¬νt, t′ (P ′
1 | Q′) ⇓L. Hence, νt, t′ (P ′

1 | Q′) ≈L νt (P2 | Q) and we can
conclude.

(L1)[4.2] Suppose P1 ⇓L. By (L2), P2
νt′ sv
⇒ P ′

2. Hence νt (P2 | Q)
τ
⇒ νt, t′ (P ′

2 | Q′) and
we can conclude.

(L2) Suppose νt (P1 | Q)
νt′ sv
→ · and νt (P1 | Q) ⇓L. Also assume t = t1, t2 and t′ = t1, t3

up to reordering so that the emission extrudes exactly the names t1 among the names in
t. We have two subcases depending which component performs the action.

(L2)[1] Suppose Q
νt3 sv
→ Q′. Then νt (P2 | Q)

νt′ sv
→ νt2 (P2 | Q′) and we can conclude.

(L2)[2] Suppose P1
νt3 sv
→ P ′

1. By proposition 9, we know that P1 ⇓L. Hence P2
νt3 sv
⇒ P ′

2

and P ′
1 ≈L P ′

2. Then νt (P2 | Q)
νt′ sv
→ νt2 (P ′

2 | Q) and we can conclude.

(L3) Suppose νt (P1 | Q)
sv
→ · We have two subcases depending which component performs

the action.

(L3)[1] Suppose Q
sv
→ Q′. Then νt (P2 | Q)

sv
→ νt (P2 | Q′) and we can conclude.

(L3)[2] Suppose P1
sv
→ P ′

1. According to (L3) we have two subcases.

(L3)[2.1] Suppose P2
sv
⇒ P ′

2 and P ′
1 ≈L P ′

2. Then νt (P2 | Q)
sv
⇒ νt (P ′

2 | Q) and we can
conclude.

(L3)[2.2] Suppose P2
τ
⇒ P ′

2 and P ′
1 ≈L (P ′

2 | sv). Then νt (P2 | Q)
sv
⇒ νt (P ′

2 | Q) and
since νt (P ′

2 | Q) | sv ≡L νt ((P ′
2 | sv) | Q) we can conclude up to ≡L.

(L4) Suppose S = s1v1 | · · · | snvn and νt (P1 | Q) | S ↓. Up strong labelled bisimulation,
we can express Q as νtQ (SQ | IQ) where SQ is the parallel composition of emissions and
IQ is the parallel composition of receptions. Thus we have: νt (P1 | Q) | S ≡L νt, tQ (P1 |
SQ | IQ | S), and νt (P2 | Q) | S ≡L νt, tQ (P2 | SQ | IQ | S) assuming {t}∩ fn(S) = ∅ and
{tQ} ∩ fn(Pi | S) = ∅ for i = 1, 2.

If νt (P1 | Q) | S 7→ P then P ≡L νt, tQ (P ′′
1 | Q′) where in particular, we have that

(P1 | SQ | S) ↓ and (P1 | SQ | S) 7→ (P ′
1 | 0 | 0).

By the hypothesis P1 ≈L P2 and (L4) we derive that: (i) (P2 | SQ | S)
τ
⇒ (P ′′

2 | SQ | S),
(ii) (P ′′

2 | SQ | S) ↓, (iii) (P ′′
2 | SQ | S) 7→ (P ′

2 | 0 | 0), (iv) (P1 | SQ | S) ≈L (P ′′
2 | SQ | S),

and (v) (P ′
1 | 0 | 0) ≈L (P ′

2 | 0 | 0).
Because (P1 | SQ | S) and (P ′′

2 | SQ | S) are suspended and labelled bisimilar, the
two programs must commit (cf. definition 4) on the same signal names and moreover
on each signal name they must emit the same set of values up to renaming of bound
names. It follows that the program νt, tQ (P ′′

2 | SQ | IQ | S) is suspended. The only
possibility for an internal transition is that an emission in P ′′

2 enables a reception in IQ

but this contradicts the hypothesis that νt, tQ (P1 | SQ | IQ | S) is suspended. Moreover,
(P ′′

2 | SQ | IQ | S) 7→ (P ′
2 | 0 | Q′ | 0).

Therefore, we have that

νt (P2 | Q) | S ≡L νt, tQ (P2 | SQ | IQ | S)
τ
⇒ νt, tQ (P ′′

2 | SQ | IQ | S),
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νt, tQ (P ′′
2 | SQ | IQ | S) ↓, and νt, tQ (P ′′

2 | SQ | IQ | S) 7→ νt, tQ (P ′
2 | 0 | Q′ | 0). Now

νt, tQ (P1 | SQ | IQ | S) R νt, tQ (P ′′
2 | SQ | IQ | S) because (P1 | SQ | S) ≈L (P ′′

2 | SQ | S)
and νt, tQ (P ′

1 | Q′) R νt, tQ (P ′
2 | Q′) because P ′

1 ≈L P ′
2. 2

We can now derive the first half of the proof of theorem 8.

Corollary 23 Let P, Q be programs. Then P ≈L Q implies P ≈C Q.

Proof. Labelled bisimulation is a barbed bisimulation and by proposition 22 it is pre-
served by the contexts C. Hence it is a contextual bisimulation. 2

7 Building discriminating contexts

To complete the proof of theorem 8, it remains to show that our contexts are sufficiently
strong to make all distinctions labelled bisimulation does. First we note the analogous of
proposition 11 for contextual bisimulation.

Proposition 24 (1) If ¬P ⇓L and ¬Q ⇓L then P ≈C Q.

(2) If P ≈C Q and P ⇓L then Q ⇓L.

Proof. (1) By proposition 11, P ≈L Q and by corollary 23, P ≈C Q.

(2) By proposition 9, there is a program R such that (P | R) ⇓, i.e., (P | R)
τ
⇒ P1 and

P1 ↓. By (C1), (P | R) ≈C (Q | R). By (B1), (Q | R)
τ
⇒ Q′

1 and P1 ≈C Q′
1. By (B3),

Q′
1

τ
⇒ Q1 and Q1 ↓. Thus (Q | R) ⇓ and again by proposition 9 this implies that Q ⇓L. 2

Proposition 25 If P ≈C Q then P ≈L Q.

Proof. We denote with ai, bi, ci, . . . ‘fresh’ signal names not occurring in the programs
under consideration. We will rely on the signal names ai to extrude the scope of some signal
names and on the signal names bi, ci to monitor the internal transitions of the programs.
We define a relation R:

P1 R P2 if νt (P1 | O) ≈C νt (P2 | O) for some t, O,
where: t = t1 . . . , tn, O = a1t1 | · · · | antn, {a1, . . . , an} ∩ fn(P1 | P2) = ∅.

By definition, if P1 ≈C P2 then P1 R P2 taking t as the empty vector and O as the empty
parallel composition. The purpose of the relation R is to enlarge the definition of contextual
bisimulation so that some signal names t are at once restricted and observable thanks to
the emission performed by O. We will will show that R is a labelled bisimulation up to
strong labelled bisimulation so that we have the following implications:

P1 ≈C P2 ⇒ P1 R P2 ⇒ P1 ≈L P2 .
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• We have seen in section 2.4 that an internal choice operator ⊕ is definable in the Sπ-
calculus. In order to simplify the notation, in the following we assume that P1⊕P2 reduces
to either P1 or P2 by just one τ -transition. In reality, the reduction takes one τ -transition
to perform the internal choice, a second deterministic τ -transition to select the right branch
of the matching operator, and some garbage collection to remove signals that are under
the scope of a restriction and cannot be received. The second transition and the garbage
collection do not affect the structure of the proof and we will ignore them.

• Assuming O = a1t1 | · · · | antn and a = a1, . . . , an, we will repeatedly use a program
R(a)[P ] which is defined as follows:

R(a)[P ] = a1(t1).b1 ⊕ (c1⊕
a2(t2).b2 ⊕ (c2⊕

. . .

an(tn).bn ⊕ (cn ⊕ P ) . . .)

Next we assume P1 R P2 because νt (P1 | O) ≈C νt (P2 | O) for some t, O, and consider
the conditions (L1 − 4).

(L1) Suppose P1
τ
→ P ′

1. Then νt (P1 | O)
τ
→ νt (P ′

1 | O). By (B1), νt (P2 | O)
τ
⇒ Q

and νt (P ′
1 | O) ≈C Q. Note however that O cannot interact with P2 and its derivatives

because the signal names a do not occur in (P1 | P2). Hence it must be that P2
τ
⇒ P ′

2 and
Q = νt (P ′

2 | O). Then by definition of the relation R, we derive that P ′
1 R P ′

2.

(L2) Suppose P1 ⇓L and P1
νt′ sv
→ P ′

1 with t′ = t′1, . . . , t
′
m. Let X = fn(P1 | P2). Let

R = R(a)[s(x).[x = νt′ v]X∪{t′} (bn+1 ⊕ (cn+1 ⊕ O′))], where
O′ = an+1t

′
1 | · · · | an+mt′m

Now we have:
νt (P1 | O) | R

τ
⇒ νt, t′ (P ′

1 | O | O′)

by a series of reductions where first R interacts with O to learn the names t1 . . . , tn, then
it interacts with P1 to read a value νt′ v (note that the freshness of t′ is checked with
respect to both X and t), and finally it emits with O′ the names t′ extruded by P1. We
remark that in all the intermediate steps the program has the L-suspension property, thus
condition (B2) applies and in particular the commitments on bi, ci are observable.

Next, we decompose this series of reductions in several steps and analyse how the
program νt (P2 | O) | R may match them according to the definition of contextual bisim-
ulation. Suppose first

νt (P1 | O) | R
τ
⇒ νt1 (νt2, . . . , tn (P1 | O) | (c1 ⊕ a2(t2) · · · ))

The reduced program cannot commit on b1 while it can commit on c1. If νt (P1 | O) | R
has to match this reduction, then R must necessarily perform the input action and stop
at the same point of the control (c1 ⊕ a2(t2) · · · ). By this communication, the scope of
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the restricted name t1 is extruded to R. The program O is composed only of emissions
and therefore it cannot change. The program P2 may peform some internal actions but it
cannot interact with O and R.

If we repeat this argument n times, we conclude that νt (P1 | O) | R
τ
⇒ νt (P1 |

O | cn ⊕ s(x) · · · ) and νt (P2 | O) | R
τ
⇒ νt (P ′

2 | O | cn ⊕ s(x) · · · ) where P2
τ
⇒ P ′

2.
Now the first program performs a communication on s between P1 and the residual of R
and, provided the emitted value has the expected shape νt′ v, it reduces to νt, t′ (P ′

1 |

O | cn+1 ⊕ O′). In order to match this transition, it must be that P ′
2

νt′ sv
⇒ P ′′

2 and the
second program reduces to νt, t′ (P ′′

2 | O | cn+1 ⊕ O′). Now if the first program moves to
νt, t′ (P ′

1 | O | O′), the second must move to νt, t′ (P ′′′
2 | O | O′) where P ′′ τ

⇒ P ′′′
2 and

νt, t′ (P ′
1 | O | O′) ≈C νt, t′ (P ′′′

2 | O | O′). Since P2
τ
⇒ ·

νt′ sv
⇒ ·

τ
⇒ P ′′′

2 , we can conclude

that P2
νt′ sv
⇒ P ′′′

2 and P ′
1 R P ′′′

2 .

(L3) Suppose P1
sv
→ P ′

1. We consider two subcases.

(L3)[1] Suppose ¬P1 ⇓L. Then, ¬P ′
1 ⇓L. By proposition 9, ¬νt (P1 | O) ⇓L and ¬νt (P ′

1 |
O) ⇓L. By proposition 24, ¬νt (P2 | O) ⇓L. Let us show that the latter implies ¬P2 ⇓L.
If P2 ⇓L, by proposition 9 there is Q such that (P2 | Q)

τ
⇒ Q′ and Q′ ↓. Then we would

have:
νt (P2 | O) | R(a)[Q]

τ
⇒ νt (P2 | O | Q)

τ
⇒ νt Q′ | O .

Now if Q′ ↓ then νt Q′ | O ↓, and this contradicts the hypothesis that ¬P2 ⇓L.

(L3)[2] Suppose P1 ⇓L. We define

R = R(a)[sv]

Then νt (P1 | O) | R
τ
⇒ νt (P ′

1 | O | sv) and ντ (P2 | O) | R
τ
⇒ ντ (P ′

2 | O | sv). We note
that νt (P ′

1 | O | sv) ≡L νt (P ′
1 | O) since P1

sv
→ P ′

1. We have two subcases.

(L3)[2.1] Suppose P2
sv
⇒ P ′

2. Then P ′
2 ≡L (P ′

2 | sv) and therefore P ′
1 R P ′

2 up to ≡L.

(L3)[2.2] Suppose P2
τ
⇒ P ′

2. Then P ′
1 R (P ′

2 | sv) up to ≡L.

(L4) Suppose (P1 | S) ↓ and (P1 | S) 7→ P ′
1. We consider

R1 = R(a)[S] R2 = R(a)[S | pause.O]

By (C1), νt (P1 | O) | Ri ≈C νt (P2 | O) | Ri for i = 1, 2. Also

νt (P1 | O) | R1
τ
⇒ νt (P1 | O | S) ↓

and
νt (P1 | O) | R2

τ
⇒ νt (P1 | O | S | pause.O) 7→ νt (P ′

1 | O) .

Then we must have:

(1) νt (P2 | O) | R1
τ
⇒ νt (P ′′

2 | O | S) ↓ and νt (P1 | O | S) ≈C νt (P ′′
2 | O | S).

(2) νt (P2 | O) | R2
τ
⇒ νt (P ′′

2 | O | S | pause.O) 7→ νt (P ′
2 | O) and νt (P1 | O) ≈C

νt (P ′
2 | O). 2

22



8 Conclusion

We have proposed a synchronous version of the π-calculus which borrows the notion of
instant from the SL model–a relaxation of the Esterel model. We have shown that the
resulting language is amenable to a semantic treatment similar to that available for the π-
calculus. Retrospectively, we feel that the developed theory relies on two key insights: the
introduction of the notion of L-suspension and the remark that the observation of signals
is similar to the observation of channels with asynchronous communication.
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