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Abstract

We introduce the notion of covariance measure structure for square integrable stochas-
tic processes. We define Wiener integral, we develop a suitable formalism for stochastic
calculus of variations and we make Gaussian assumptions only when necessary. Our
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the bifractional Brownian motion.
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1 Introduction

Different approaches have been used to extend the classical Itô’s stochastic calculus. When
the integrator stochastic process does not have the semimartingale property, then the pow-
erful Itô’s theory cannot be applied to integrate stochastically. Hence alternative ways have
been then developed, essentially of two types:

• a trajectorial approach, that mainly includes the rough paths theory (see [34]) or the
stochastic calculus via regularization (see [36]).

• a Malliavin calculus (or stochastic calculus of variations) approach.

Our main interest consists here in the second approach. Suppose that the integrator is a
Gaussian process X = (Xt)t∈[0,T ]. The Malliavin derivation can be naturally developed on
a Gaussian space, see, e.g. [47], [29] or [27]. A Skorohod (or divergence) integral can also
be defined as the adjoint of the Malliavin derivative. The crucial ingredient is the canonical
Hilbert space H (called also, improperly, by some authors reproducing kernel Hilbert space)
of the Gaussian process X which is defined as the closure of the linear space generated by
the indicator functions {1[0,t], t ∈ [0, T ]} with respect to the scalar product

〈1[0,t], 1[0,s]〉H = R(t, s) (1)

where R denotes the covariance of X. Nevertheless, this calculus remains more or less
abstract if the structure of the elements of the Hilbert space H is not known. When we say
abstract, we refer to the fact that, for example, it is difficult to characterize the processes
which integrable with respect to X, to estimate the Lp-norms of the Skorohod integrals or
to push further this calculus to obtain an Itô type formula.

A particular case can be analyzed in a deeper way. We refer here to the situation
when the covariance R can be explicitly written as

R(t, s) =

∫ t∧s

0
K(t, u)K(s, u)du,

where K(t, s), 0 < s < t < T is a deterministic kernel satisfying some regularity conditions.
Enlarging, if need, our probability space, we can express the process X as

Xt =

∫ t

0
K(t, s)dWs (2)

where (Wt)t∈[0,T ] is a standard Wiener process and the above integral is understood in the
Wiener sense. In this case, more concrete results can be proved, see [2, 9, 28]. In this
framework the underlying Wiener process (Wt) is strongly used for developing anticipating
calculus. In particular [28] puts emphasis on the case K(t, s) = ε(t− s), when the variance
scale of the process is as general as possible, including logarithmic scales.

2



The canonical space H can be written as

H = (K∗)−1 (L2([0, T ])
)

where the ”transfer operator” K∗ is defined on the set of elementary functions as

K∗(ϕ)(s) = K(T, s)ϕ(s) +

∫ T

s

(ϕ(r) − ϕ(s))K(dr, s)

and extended (if possible) to H (or a set of functions contained in H). Consequently,
a stochastic process u will be Skorohod integrable with respect to X if and only if K∗u
is Skorohod integrable with respect to W and

∫

uδX =
∫

(K∗u)δW . Depending on the
regularity of K (in principal the Hölder continuity of K and ∂K

∂t
(t, s) are of interest) it

becomes possible to have concrete results.
Of course, the most studied case is the fractional Brownian motion (fBm), due to

the multiple applications of this process in various area, like telecommunications, hydrology
or economics. Recall that the fBm (BH

t )t∈[0,T ], with Hurst parameter H ∈ (0, 1) is defined
as a centered Gaussian process starting from zero with covariance function

R(t, s) =
1

2

(

t2H + s2H − |t− s|2H
)

, t, s ∈ [0, T ]. (3)

The process BH admits the Wiener integral representation (2) and the kernel K and the
space H can be characterized by the mean of fractional integrals and derivatives, see [2,
3, 10, 33, 7] among others. As a consequence, one can prove for any H the following Itô’s
formula

f(BH
t ) = f(0) +

∫ t

0
f ′(BH

s )δBH
s +H

∫ t

0
f ′′(BH

s )s2H−1ds.

One can also study the relation between ”pathwise type” integrals and the divergence
integral, the regularity of the Skorohod integral process or the Itô formula for indefinite
integrals.

As we mentioned, if the deterministic kernel K in the representation (2) is not ex-
plicitly known, then the Malliavin calculus with respect to the Gaussian process X remains
in an abstract form; and there are of course many situations when this kernel is not ex-
plicitly known. As main example, we have in mind the case of the bifractional Brownian
motion (bi-fBm). This process, denoted by BH,K , is defined as a centered Gaussian process
starting from zero with covariance

R(t, s) =
1

2K

(

(

t2H + s2H
)K

− |t− s|2HK
)

(4)

whereH ∈ (0, 1) and K ∈ (0, 1]. When K = 1, then we have a standard fractional Brownian
motion.

This process was introduced in [18] and a ”pathwise type” approach to stochastic
calculus was provided in [35]. An interesting property of BH,K consists in the expression
of its quadratic variation (defined as usually as limit of Riemann sums, or in the sense of
regularization, see [36]). The following properties hold true.
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• If 2HK > 1, then the quadratic variation of BH,K is zero.

• If 2HK < 1 then the quadratic variation of BH,K does not exist.

• If 2HK = 1 then the quadratic variation of BH,K at time t is equal to 21−Kt.

The last property is remarkable; indeed, for HK = 1
2 we have a Gaussian process which

has the same quadratic variation as the Brownian motion. Moreover, the processes is not a
semimartingale (except for the case K = 1 and H = 1

2 ), it is self-similar, has no stationary
increments and it is a quasi-helix in the sense of J.P. Kahane [21], that is, for all s ≤ t,

2−K |t− s|2HK ≤ E
∣

∣

∣
BH,K
t −BH,K

s

∣

∣

∣

2
≤ 21−K |t− s|2HK . (5)

We have no information on the form and/or the properties of the kernel of the bifractional
Brownian motion. As a consequence, a Malliavin calculus was not yet introduced for this
process. On the other side, it is possible to construct a stochastic calculus of pathwise type,
via regularization and one gets an Itô formula of the Stratonovich type (see [35])

f(BH,K
t ) = f(0) +

∫ t

0
f ′(BH,K

s )d◦BH,K
s

for any parameters H ∈ (0, 1) and K ∈ (0, 1].

The purpose of this work is to develop a Malliavin calculus with respect to processes
X having a covariance measure structure in sense that the covariance is the distribution
function of a (possibly signed) measure on B([0, T ]2). This approach is particularly suitable
for processes whose representation form (2) is not explicitely given.

We will see that under this assumption, we can define suitable spaces on which the
construction of the Malliavin derivation/Skorohod integration is coherent.

In fact, our initial purpose is more ambitious; we start to construct a stochastic
analysis for general (non-Gaussian) processes X having a covariance measure µ. We define
Wiener integrals for a large enough class of deterministic functions and we define a Malliavin
derivative and a Skorohod integral with respect to it; we can also prove certain relations
and properties for these operators. However, if one wants to produce a consistent theory,
then the Skorohod integral applied to deterministic integrands should coincide with the
Wiener integral. This property is based on integration by parts on Gaussian spaces which
is proved in Lemma 6.7. As it can be seen, that proof is completely based on the Gaussian
character and it seems difficult to prove it for general processes. Consequently, in the
sequel, we concentrate our study on the Gaussian case and we show various results as the
continuity of the integral processes, the chaos expansion of local times, the relation between
the ”pathwise” and the Skorohod integrals and finally we derive the following Itô formula,
see Corollary 8.13, for f ∈ C2(R) such that f ′′ is bounded:

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)δXs +

1

2

∫ t

0
f ′′(Xs)dγ(s),
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where γ(t) = V ar(Xt). Our main examples include the Gaussian semimartingales, the
fBm with H ≥ 1

2 , the bi-fBm with HK ≥ 1
2 and processes with stationary increments. In

the bi-fbm case, when 2HK = 1, we find a very interesting fact, that is, the bi-fBm with
2HK = 1 satisfies the same Itô formula as the standard Wiener process, that is

f(BH,K
t ) = f(0) +

∫ t

0
f ′(BH,K

s )δBH,K
s +

1

2

∫ t

0
f ′′(BH,K

s )ds

where δ denotes the Skorohod integral.
We will also like to mention certain aspects that could be the object of a further

study:

• the proof of the Tanaka formula involving weighted local times; for the fBm case, this
has been proved in [8] but the proofs necessitates the expression of the kernel K.

• the two-parameter settings, as developed in e.g. [44].

• the proof of the Girsanov transform and the use of it to the study of stochastic equations
driven by Gaussian noises, as e.g. in [31].

We organized our paper as follows. In Section 2 and 3 we explain the general context
of our study: we define the notion of covariance measure structure and we give the basic
properties of stochastic processes with this property. Section 4 contains several examples
of processes having covariance measure µ. Section 5 is consecrated to the construction
of Wiener integrals for a large enough class of integrands with respect to (possibly non-
Gaussian) process X with µ. In Section 6, for the same settings, we develop a Malliavin
derivation and a Skorohod integration. Next, we work on a Gaussian space and our cal-
culus assumes a more intrinsic form; we give concrete spaces of functions contained in the
canonical Hilbert space of X and this allows us to characterize the domain of the divergence
integral, to have Meyer inequalities and other consequences. Finally, in Section 8 we present
the relation ”pathwise”-Skorohod integrals and we derive an Itô formula; some particular
cases are discussed in details.

2 Preliminaries

In this paper, a rectangle will be a subset I of R
2
+ of the form

I =]a1, b1]×]a2, b2]

and T > 0 will be fixed. Given F : R+ → R we will denote

∆IF = F (b1, b2) + F (a1, a2) − F (a1, b2) − F (b1, a2).

Such function will be said to vanish on the axes if F (a1, 0) = F (0, a2) = 0 for every
a1, a2 ∈ R+.
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Given a continuous function F : [0, T ] → R or a process (Xt)t∈[0,T ], continuous in
L2(Ω), will be prolongated by convention to R by continuity.

Definition 2.1 F : [0, T ]2 → R will be said to have a bounded planar variation if

sup
τ

n
∑

i,j=0

∣

∣

∣
∆]ti,ti+1]×]tj ,tj+1]F

∣

∣

∣
<∞. (6)

where τ = {0 = t0 < . . . < tn = 1} is a subdivsion of [0, T ]. A function F will be said to
be planarly increasing if for any rectangle I ⊂ [0, T ]2 we have ∆IF ≥ 0.

Lemma 2.1 Let F : [0, T ]2 → R vanishing on the axes having a bounded planar variation.
Then F = F+ − F− where F+, F− are planarly increasing and vanishing on the axes.

Proof: It is similar to the result of the one-parameter result, which states that a bounded
variation function can be decomposed into the difference of two increasing functions. The
proof of this result is written for instance in [41] section 9-4. The proof translates into the
planar case replacing F (b) − F (a) with ∆IF .

Lemma 2.2 Let F : [0, T ]2 → R+ be a continuous, planarly increasing function. Then
there is a unique non-atomic, positive, finite measure µ on B([0, T ]2) such that for any
I ∈ B([0, T ]2)

µ(I) = ∆IF.

Proof: See Theorem 12.5 of [5].

Corollary 2.3 Let F : [0, T ]2 → R vanishing on the axes. Suppose that F has bounded
planar variation. Then, there is a signed, finite measure µ on B([0, T ]2) such that for any
rectangle I of [0, T ]2

∆IF = µ(I).

Proof: It is a consequence of Lemma 2.1 and 2.2.

We recall now the notion of finite quadratic planar variation introduced in [37].

Definition 2.2 A function F : [0, T ]2 → R has finite quadratic planar variation if

1

ε2

∫

[0,T ]2

(

∆]s1,s1+ε]×]s2,s2+ε]F
)2
ds1ds2

converges. That limit will be called the planar quadratic variation of F .
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We introduce now some notions related to stochastic processes. Let (Ω,F , P ) be a
complete probability space. Let (Yt)t∈[0,T ] with paths in L1

loc and (Xt)t∈[0,T ] be a cadlag
L2-continuous process. Let t ≥ 0. We denote by

I−ε (Y, dX, t) =

∫ t

0
Ys
Xs+ε −Xs

ε
ds

I+
ε (Y, dX, t) =

∫ t

0
Ys
Xs −Xs−ε

ε
ds

Cε(X,Y, t) =
1

ε

∫ t

0
(Xs+ε −Xs)(Ys+ε − Ys)ds.

We set
∫ t

0
Y d−X (resp.

∫ t

0
Y d+X)

the limit in probability of

I−ε (Y, dX, t) (resp. I+
ε (Y, dX, t)).

∫ t

0 Y d
−X (resp.

∫ t

0 Y d
+X) is called (definite) forward (resp. backward) integral of Y

with respect to X. We denote by [X,Y ]t the limit in probability of Cε(X,Y, t). [X,Y ]t is
called covariation of X and Y . If X = Y , [X,X] is called quadratic variation of X, also
denoted by [X].

Remark 2.4 If I is an interval with end-points a < b, then

∫ T

0
1Id

−X =

∫ T

0
1Id

+X = Xb −Xa.

Let (Ft)t∈[0,T ] be a filtration satisfying the usual conditions. We recall, see [36], that
if X is an (Ft)-semimartingale and Y is a cadlag process (resp. an (Ft)-semimartingale)
then

∫ t

0 Y d
−X (resp. [Y,X]) is the Itô integral (resp. the classical covariation).

If X is a continuous function and Y is a cadlag function then
∫ t

0 Y d
−X coincides

with the Lebesgue-Stieltjes integral
∫ t

0 Y dX.

3 Square integrable processes and covariance measure struc-

ture

In this section we will consider a cadlag zero-mean square integrable process (Xt)t∈[0,T ] with
covariance

R(s, t) = Cov(Xs,Xt).
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For simplicity we suppose that t→ Xt is continuous in L2(Ω). R defines naturally a finitely
additive function µR (or simply µ) on the algebra R of finite disjoint rectangles included in
[0, T ]2 with values on R. We set indeed

µ(I) = ∆IR.

A typical example of square integrable processes are Gaussian processes.

Definition 3.1 A square integrable process will be said to have a covariance measure if
µ extends to the Borel σ-algebra B([0, T ]2) to a signed σ-finite measure.

We recall that σ(I rectangle, I ⊂ [0, T ]2) = B([0, T ]2).

Remark 3.1 The process (Xt)t∈[0,T ] has covariance measure if and only if R has a bounded
planar variation, see Corollary 2.3.

Definition 3.2 Let us recall a classical notion introduced in [16] and [15]. A process
(Xt)t∈[0,T ] has finite energy (in the sense of discretization) if

sup
τ

n−1
∑

i=0

E(Xti+1
−Xti)

2 <∞.

Note that if X has a covariance measure then it has finite energy. Indeed for a given
subdivision t0 < t1 < . . . < tn, we have

n−1
∑

i=0

E(Xti+1
−Xti)

2 =
n−1
∑

i=0

∆]ti,ti+1]2R ≤
n−1
∑

i,j=0

∣

∣

∣
∆]ti,ti+1]×]tj ,tj+1]R

∣

∣

∣
.

Remark 3.2 Let X be a process with covariance measure. Then X has a supplementary
property related to the energy. There is a function E : [0, T ] → R+ such that, for each
sequence of subdivisions (τN ) = {0 = t0 < t1 < . . . < tn = T}, whose mesh converges to
zero, the quantity

n
∑

i=1

E
(

Xti+1∧t −Xti∧t

)2
, (7)

converges uniformly in t, to E.
Indeed

n
∑

i=1

E
(

Xti+1∧t −Xti∧t

)2
= µ(DN ∩ [0, t]2)

where DN =
⋃n−1
i=0 ]ti, ti+1]

2. We have
⋂∞
N=0D

N = {(s, s)|s ∈ [0, T ]} . From now on we will
set

D = {(s, s)|s ∈ [0, T ]} and Dt = D ∩ [0, t]2.

Then, for every t ∈ [0, T ],
E(t) = µ(Dt).
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We will introduce the notion of energy in the sense of regularization, see [37].

Definition 3.3 A process (Xt)t∈[0,T ] is said to have finite energy if

lim
ε→0

E(Cε(X,X, t))

uniformly exists. This limit will be further denoted by E(X)(t).

From now on, if we do not explicit contrary, we will essentially use the notion of
energy in the sense of regularization.

Lemma 3.3 If X has a covariance measure µ, then it has finite energy. Moreover

E(X)(t) = µ(Dt).

Proof: It holds that

E(Cε(X,X, t)) =
1

ε

∫ t

0
dsE (Xs+ε −Xs)

2 =
1

ε

∫ t

0
ds∆]s,s+ε]2R

=
1

ε

∫ t

0
ds

∫

]s,s+ε]2
dµ(y1, y2) =

1

ε

∫

[0,t+ε]2
dµ(y1, y2)fε(y1, y2),

where

fε(y1, y2) =

{

1
ε
Leb(](y1 − ε) ∨ (y2 − ε) ∨ 0, y1 ∧ y2]) if y1 ∈]y2 − ε, y2 + ε]

0 otherwise.

We observe that

|fε(y1, y2)| ≤
2ε

ε
= 2 and fε(y1, y2)

ε→0
−→

{

1 : y2 = y1

0 : y2 6= y1.

So by Lebesgue dominated convergence theorem,

E(Cε(X,X, t)) → E(X)(t),

with E(X)(t) = µ(Dt).

We recall a result established in [37], see Proposition 3.9.

Lemma 3.4 Let (Xt)t∈[0,T ] be a continuous, zero-mean Gaussian process with finite energy.
Then Cε(X,X, t) converges in probability and it is deterministic for every t ∈ [0, T ] if and
only if the planar quadratic variation of R is zero. In that case [X,X] exists and equals
E(X).

This allows to establish the following result.
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Proposition 3.5 Let (Xt)t∈[0,T ] be a zero-mean continuous Gaussian process, X0 = 0,
having a covariance measure µ. Then

[X,X]t = µ(Dt).

In particular the quadratic variation is deterministic.

Proof: First, if R has bounded planar variation, then it has zero planar quadratic varia-
tion. Indeed, by Corollary 2.3 R has a covariance measure µ and so

1

ε

∫ 1

0
dt
(

∆]t,t+ε]2R
)2

≤
1

ε

∫ 1

0
dt|µ|

(

]t, t+ ε]2
)

Γ(ε), (8)

where
Γ(ε) = sup

|s−t|<ε

∣

∣∆]s,t]2R
∣

∣ .

Since R is uniformly continuous, Γ(ε) → 0. Using the same argument as in the proof of
Lemma 3.3 we conclude that (8) converges to zero.

Second, observe that Lemma 3.3 implies that X has finite energy. Therefore the
result follows from Lemma 3.4.

4 Some examples of processes with covariance measure

4.1 X is a Gaussian martingale

It is well known, see [37, 40], that [X] is deterministic. We denote λ(t) = [X]t. In this case

R(s1, s2) = λ(s1 ∧ s2)

so that

µ(B) =

∫

B

δ(ds2 − s1)λ(ds1), B ∈ B([0, T ]2).

If X is a classical Wiener process, then λ(x) = x. The support of µ is the diagonal D, so µ
and the Lebesgue measure are mutually singular.

4.2 X is a Gaussian (Ft)-semimartingale

We recall, see [40, 13], that X is a semimartingale if and only if it is a quasimartingale, i.e.

E





n−1
∑

j=0

∣

∣E
(

Xtj+1
−Xtj |Ftj )

)∣

∣



 ≤ K.

We remark that if X is an (Ft)-martingale or a process such that E (‖X‖T ) < ∞,
where ‖X‖T is the total variation, then the above condition is easily verified. According to
[40] µ extends to a measure.
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4.3 X is a fractional Brownian motion BH , H > 1
2

We recall that its covariance equals, for every s1, s2 ∈ [0, T ]

R(s1, s2) =
1

2

(

s2H1 + s2H2 − |s2 − s1|
2H
)

.

In that case ∂2R
∂s1∂s2

= 2H(2H − 1) |s2 − s1|
2H−2 in the sense of distributions. Since R

vanishes on the axes, we have

R(t1, t2) =

∫ t1

0
ds1

∫ t2

0
ds2

∂2R

∂s1∂s2
.

The function R has bounded planar variation because ∂2R
∂s1∂s2

is non-negative. Therefore,
for given I =]a1, a2]×]b1, b2], we have

|∆IR| = ∆IR.

Hence for a subdivision (ti)
N
i=0 of [0, T ]

N
∑

i,j=0

∣

∣

∣
∆]ti,ti+1]×]tj ,tj+1]R

∣

∣

∣
=

N
∑

i,j=0

∆]ti,ti+1]×]tj ,tj+1]R = R(T, T ).

So the condition (6) is verified.

4.4 X is a bifractional Brownian motion with H ∈ (0, 1), K ∈ (0, 1] and

2HK ≥ 1

We refer to [18], [35] for the definition and the basic properties of this process. The covari-
ance of the bi-fBm is given by (4). We can write its covariance as

R(s1, s2) = R1(s1, s2) +R2(s1, s2),

where

R1(s1, s2) =
1

2K

[

(

s2H1 + s2H2
)K

−
(

s2HK1 + s2HK2

)

]

(9)

and

R2(s1, s2) =
1

2K
[

−|s2 − s1|
2HK + s2HK1 + s2HK2

]

. (10)

We therefore have

∂2R1

∂s1∂s2
=

4H2K(K − 1)

2K
(

s2H1 + s2H2
)K−2

s2H−1
1 s2H−1

2 .

Since R1 is of class C2(]0, T ]2) and ∂2R1

∂s1∂s2
is always negative, R1 is the distribution function

of a negative absolutely continuous finite measure, having ∂2R1

∂s1∂s2
for density.

Concerning the term R2 we suppose 2HK ≥ 1. R2 is (up to a constant) also the
covariance function of a fractional Brownian motion of index HK.
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• If 2HK > 1 then R2 is the distribution function of an absolutely continuous positive
measure with density ∂2R2

∂s1∂s2
= 2HK(2HK−1) |s1 − s2|

2HK−2 which belongs of course

to L1([0, T ]2).

• If 2HK = 1, R2(s1, s2) = 1
2K (s1 + s2 − |s1 − s2|).

4.5 Processes with weakly stationary increments

A process (Xt)t∈[0,T ] with covariance R is said with weakly stationary increments if
for any s, t ∈ [0, T ], h ≥ 0, the covariance R(t+ h, s + h) does not depend on h.

Remark 4.1 If (Xt)t∈[0,T ] is a Gaussian process then (Xt)t∈[0,T ] is with weakly stationary
increments if and only it has stationary increments, that is, for every subdivision 0 = t0 <
t1 < . . . < tn and for every h ≥ 0 the law of (Xt1+h−Xt0+h, . . . ,Xtn+h−Xtn−1+h) does not
depend on h.

We consider a zero-mean continuous in L2 process (Xt)t∈[0,T ] such that X0 = 0 a.s.
Let d(s, t) be the associate canonical distance, i.e.

d2(s, t) = E (Xt −Xs)
2 , s, t ∈ [0, T ].

Since (Xt)t∈[0,T ] has stationary increments one can write

d2(s, t) = Q(t− s), where Q(t) = d(0, t).

Therefore the covariance function R can be expressed as

R(s, t) =
1

2
(Q(s) +Q(t) −Q(s− t)).

A typical example is provided when X is a fractional Brownian motion BH . In that case

Q(s) = s2H .

Remark 4.2 X has finite energy if and only if Q′(0+) exists. This follows immediately
from the property

E (Cε(X,X, t)) =
tQ(ε)

ε
.

We can characterize conditions on Q so that X has a covariance measure.

Proposition 4.3 If Q′′ is a Radon measure, then X has a covariance measure.

Remark 4.4 Previous assumption is equivalent to Q′ being of bounded variation. In that
case Q is absolutely continuous.

12



Proof of the Proposition 4.3: Since

R(s1, s2) =
1

2
(Q(s1) +Q(s2) −Q(s2 − s1))

we have
∂2R

∂s1∂s2
= −

1

2

∂2

∂s1∂s2
(Q(s2 − s1)) =

1

2
Q′′(s2 − s1)

in the sense of distributions. This means in particular that for ϕ,ψ ∈ D(R) (the space of
smooth test functions with compact support)

∫

R2

R(s1, s2)ϕ
′(s1)ψ

′(s2)ds1ds2 = −

∫

R

ds2ψ(s2)

∫

R

ϕ(s1)
Q(s2 − ds1)

2
.

Example 4.5 We provide now an example of a process with stationary increments, inves-
tigated for financial applications purposes by [6]. It is called mixed fractional Brownian
motion and it is defined as X = W + BH , where W is a Wiener process and BH is a
fractional Brownian motion with Hurst parameter H > 1

2 , independent from W . [6] proves
that X is a semimartingale if and only if H > 3

4 .
X is a Gaussian process with

Q(t) = |t| + |t|2H . (11)

Moreover
Q′′(dt) = 2δ0 + q′(t)dt,

where q(t) = |t|2H−12Hsign(t).

The example above is still very particular.
Suppose that Q′′ is a Radon measure. Then, the function Q′ can be decomposed in

the following way
Q′ = Q′

sc +Q′
d +Q′

ac,

where Q′
sc is continuous and singular, Q′

ac is absolutely continuous and Q′′
d =

∑

n γnδxn ,
with (xn) - sequence of nonnegative numbers and γn ∈ R.

For instance if Q is as in (11) then

Q′
sc(t) = 0, Q′

ac(t) = 2H|t|2H−1sign(t), Q′′
d(t) = 2δ0.

A more involved example is the following. Consider Gaussian zero-mean process
(Xt)t∈[0,T ] with stationary increments, X0 = 0 such that

Q(t) =

{

|t| : |t| ≤ 1
2

22H−1|t|2H : |t| > 1
2

13



In this case it holds that

Q′(t) =

{

sign(t) : |t| ≤ 1
2

22HH|t|2H−1sign(t) : |t| > 1
2

and
Q′′
d = 2δ0 + (2H − 1)δ 1

2

+ (2H − 1)δ− 1

2

,

Q′′
ac =

{

0 : |t| < 1
2

22HH(2H − 1)|t|2H−2 : |t| > 1
2 .

Proposition 4.6 Let (Xt)t∈[0,T ] be a Gaussian process with stationary increments such
that X0 = 0. Suppose that Q′′ is a measure. Then

[X]t =
Q′′({0})t

2
.

Proof: It follows from the Proposition 3.5 and the fact that

µ(ds1, ds2) = ds1Q
′′(ds2 − s1).

4.6 Non-Gaussian examples

A wide class of non-Gaussian processes having a covariance measure structure can be pro-
vided. We will illustrate how to produce such processes living in the second Wiener chaos.
Let us define, for every t ∈ [0, T ],

Zt =

∫

R

(∫ t

0
f(u, z1)f(u, z2)du

)

dBz1dBz2,

where (Bz)z∈R is a standard Brownian motion and f : R
2 → R is a Borel function such that

∫ T

0

∫ T

0

(∫

R

f(t, z)f(s, z)dz

)2

dsdt <∞. (12)

Now, condition (12) assures that ∂2R
∂s∂t

belongs to L1([0, T ]2). Clearly, a large class of func-
tions f satisfies (12).

For example, the Rosenblatt process (see [43]) is obtained for f(t, z) = (t− z)k−1
+

with k ∈ (1
4 ,

1
2). In that case (12) is satisfied since k > 1

4 .
The covariance function of the process Z is given by

R(t, s) =

∫

R2

(
∫ t

0
f(u, z1)f(u, z2)du

)(
∫ s

0
f(v, z1)f(v, z2)dv

)

dz1dz2

=

∫ t

0

∫ s

0

(
∫

R2

f(u, z1)f(u, z2)f(v, z1)f(v, z2)dz1dz2

)

dvdu

14



and thus

∂2R

∂s∂t
=

∫

R2

f(t, z1)f(t, z2)f(s, z1)f(s, z2)dz1dz2

=

(∫

R

f(t, z)f(s, z)dz

)2

.

In the case of the Rosenblatt process we get ∂2R
∂s∂t

= cst.|t− s|4K−2.

It is also possible to construct non-continuous processes that admit a covariance
measure structure. Let us denote by K the usual kernel of the fractional Brownian motion
with Hurst parameter H (actually, the kernel appearing in the Wiener integral representa-
tion (2) of the fBm) and consider (Ñt)t∈[0,T ] a compensated Poisson process (see e.g. [22]).

Then Ñ is a martingale and we can define the integral

Zt =

∫ t

0
K(t, s)dÑs.

The covariance of Z can be written as

R(t, s) =

∫ t∧s

0
K(t, u)K(s, u)du =

1

2

(

t2H + s2H − |t− s|2H
)

.

Then it is clear that for H > 1
2 the above process Z has covariance measure structure.

5 The Wiener integral

The Wiener integral, for integrators X which are not the classical Brownian motion, was
considered by several authors. Among the most recent references there are [33] for the case
of fractional Brownian motion and [20] when X is a second order process.

We will consider in this paragraph a zero-mean, square integrable, continuous in L2,
process (Xt)t∈[0,T ] such that X0 = 0. We denote by R its covariance and we will suppose
that X has a covariance measure denoted by µ which is not atomic.

We construct here a Wiener integral with respect to such a process X. Our starting
point is the following result, see for instance [37]: if ϕ is a bounded variation continuous
real function, it is well known that

∫ t

0
ϕd−X = ϕ(t)Xt −

∫ t

0
Xsdϕs, t ∈ [0, T ].

Moreover, it holds that

lim
ε→0

I−(ε, ϕ, dX, t) =

∫ t

0
ϕd−X in L2(Ω). (13)

15



We denote by BV ([0, T ]) the space of real functions with bounded variation, defined on
[0, T ] and by C1([0, T ]) the set of functions on [0, T ] of class C1. Clearly the above relation
(13) holds for ϕ ∈ C1([0, T ]).

By S we denote the closed linear subspace of L2(Ω) generated by
∫ t

0 ϕd
−X,ϕ ∈

BV ([0, T ]). We define Φ : BV ([0, T ]) → S by

Φ(ϕ) =

∫ T

0
ϕd−X.

We introduce the set Lµ as the vector space of Borel functions ϕ : [0, T ] → R such
that

‖ϕ‖2
|H| :=

∫

[0,T ]2
|ϕ(u)||ϕ(v)|d |µ| (u, v) <∞. (14)

We will also use the alternative notation

‖ϕ‖2
|H| =

∫

[0,T ]2
|ϕ⊗ ϕ|d |µ| <∞. (15)

Remark 5.1 a) A bounded function belongs to Lµ, in particular if I is a real interval,
1I ∈ Lµ.

b) If φ ∈ Lµ, 1[0,t]φ ∈ Lµ for any t ∈ [0, T ].

For ϕ, φ ∈ Lµ we set

〈ϕ, φ〉H =

∫

[0,T ]2
ϕ(u)φ(v)dµ(u, v). (16)

Lemma 5.2 Let ϕ, φ ∈ BV ([0, T ]). Then

〈ϕ, φ〉H = E

(∫ T

0
ϕd−X

∫ T

0
φd−X

)

(17)

and

‖ϕ‖2
H = E

(
∫ T

0
ϕd−X

)2

. (18)

Proof: According to (13), when ε→ 0

E

(∫ T

0
ϕ(s)

Xs+ε −Xs

ε
ds

∫ T

0
φ(u)

Xu+ε −Xu

ε
du

)

. (19)
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converges to the right member of (17). We observe that (19) equals

1

ε2

∫ T

0
ds1

∫ T

0
ds2ϕ(s1)φ(s2)E ((Xs1+ε −Xs1) (Xs2+ε −Xs2))

=
1

ε2

∫ T

0
ds1

∫ T

0
ds2ϕ(s1)φ(s2)∆]s1,ss+ε]×]s2,s2+ε]R

=

∫

[0,T ]2
dµ(u1, u2)

1

ε2

∫ u1

(u1−ε)+
ds1ϕ(s1)

∫ u2

(u2−ε)+
ds2φ(s2). (20)

By Lebesgue dominated convergence theorem, when ε→ 0, the quantity (20) converges to
∫

[0,T ]2
dµ(u1, u2)ϕ(u1)φ(u2)

and the lemma is therefore proved.

Lemma 5.3 (ϕ, φ) → 〈ϕ, φ〉H defines a semiscalar product on BV ([0, T ]).

Proof: The bilinearity property is obvious. On the other hand, if ϕ ∈ BV ([0, T ]),

〈ϕ,ϕ〉H = E

(∫ T

0
ϕd−X

)2

≥ 0. (21)

We denote by ‖·‖H the associated seminorm.

Remark 5.4 We use the terminology semiscalar product and seminorm since the property
〈ϕ,ϕ〉H ⇒ ϕ = 0 does not necessarily hold. Take for instance a process

Xt =

{

0, t ≤ t0
Wt−t0 , t > t0,

where W is a classical Wiener process.

Remark 5.5 One of the difficulties in the sequel is caused by the fact that ‖ · ‖|H| does not
define a norm. In particular we do not have any triangle inequality.

Remark 5.6 If µ is a positive measure, then ‖ · ‖|H| constitutes a true seminorm. Indeed,
if f ∈ Lµ, we have

‖f‖2
|H| =

∫

[0,T ]2
|f(u1)||f(u2)|d|µ|(u1, u2)

=

∫

[0,T ]2
|f |(u1)|f |(u2)dµ(u1, u2) =

∥

∥|f |
∥

∥

2

H
.

The triangle inequality follows easily.
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In particular if X is a fractional Brownian motion B, H ≥ 1/2, then ‖·‖|H| consti-
tutes a norm.

We introduce the marginal measure ν associated with µ. We set

ν(B) = |µ|([0, T ] ×B)

if B ∈ B([0, T ]).

Lemma 5.7 If f ∈ Lµ, we have

‖f‖H ≤ ‖f‖|H| ≤ ‖f‖L2(ν) ,

where L2(ν) is the classical Hilbert space of square integrable functions on [0, T ] with respect
to ν.

Proof: The first inequality is obvious. Concerning the second one, we operate via Cauchy-
Schwartz inequality. Indeed,

‖f‖2
|H| =

∫

[0,T ]2
|f(u1)f(u2)|d|µ|(u1, u2)

≤

{

∫

[0,T ]2
f2(u1)d|µ|(u1, u2)

∫

[0,T ]2
f2(u2)d|µ|(u1, u2)

} 1

2

=

∫ T

0
f2(u)dν(u).

Let E be the linear subspace of Lµ constituted by the linear combinations
∑

i ai1Ii ,
where Ii is a real interval.

Lemma 5.8 Let ν be a positive measure on B([0, T ]). Then E (resp. C∞([0, T ])) is dense
in L2(ν).

Proof:
i) We first prove that we can reduce to Borel bounded functions. Let f ∈ L2(ν).

We set fn = (f ∧n)∨ (−n). We have fn −→ f pointwise (at each point). Consequently the
quantity

∫

[0,T ]2
|fn − f |2dν →n→∞ 0.

by the dominated convergence theorem.
ii) We can reduce to simple functions, i.e. linear combination of indicators of Borel

sets. Indeed, any bounded Borel function f is the limit of simple functions fn, again
pointwise. Moreover the sequence (fn) can be chosen to be bounded by |f |.

iii) At this point we can choose f = 1B , where B is a Borel subset of [0, T ]. By
the Radon property, for every n there is an open subset O of [0, T ] with B ⊂ O, such that
ν(O\B) < 1

n
. This shows the existence of a sequence of fn = 1On , where fn −→ f in L2(ν).
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iv) Since every open set is a union of intervals, if f = 1O, there is a sequence of step
functions fn converging pointwise, monotonously to f .

v) The problem is now reduced to take f = 1I , where I is a bounded interval. It
is clear that f can be pointwise approximated by a sequence of C0 functions fn such that
|fn| ≤ 1.

vi) Finally C0 functions can be approximated by smooth functions via mollification;
fn = ρn ∗ f and (ρn) is a sequence of mollifiers converging to the Dirac δ-function.

The part concerning the density of elementary functions is contained in the previous
proof.

We can now establish an important density proposition.

Proposition 5.9 The set C∞([0, T ]) (resp. E) is dense in Lµ with respect to ‖·‖|H| and in
particular to the seminorm ‖·‖H.

Remark 5.10 As observed in Remark 5.5, in general ‖·‖|H| does not constitute a norm.
This is the reason, why we need to operate via Lemma 5.7.

Proof of the Proposition 5.9: Let f ∈ Lµ. We need to find a sequence (fn) in C∞([0, T ])
(resp. E) so that

‖fn − f‖|H| −→n→∞ 0.

The conclusion follows by Lemma 5.8 and 5.7.

Corollary 5.11 It holds that

i) 〈·, ·〉H is a semiscalar product on Lµ.

ii) The linear application
Φ : BV ([0, T ]) −→ L2(Ω)

defined by

ϕ −→

∫ T

0
ϕd−X

can be continuously extended to Lµ equipped with the ‖·‖H-norm. Moreover we will
still have identity (18) for any ϕ ∈ Lµ.

Proof: The part i) is a direct consequence of the previous result. To check ii), it is only
necessary to prove that Φ is continuous at zero. This follows from the property (18).

Definition 5.1 We will set
∫ T

0 ϕdX = Φ(ϕ) and it will be called the Wiener integral of
ϕ with respect to X.
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Remark 5.12 Consider the relation ∼ on Lµ defined by

ϕ ∼ φ⇔ ‖ϕ− φ‖H = 0.

Denoting L1
µ as the quotient of Lµ through ∼ we obtain a vector space equipped with a true

scalar product. However L1
µ is not necessarily complete and so it is not a Hilbert space.

For the simplicity of the notation, we will still denote by Lµ its quotient with respect to the
relation ∼. Two functions φ,ϕ will be said to be equal in Lµ if ϕ ∼ φ.

The fact that L1
µ is a metric non complete space, does not disturb the linear exten-

sion. The important property is that L2(Ω) is complete.

Lemma 5.13 Let h be cadlag. Then
i)
∫

hd−X =
∫

h−dX,
ii)
∫

hd+X =
∫

hdX,
where

h−(u) = lim
s↑u

h(s).

Proof: We only prove point i), because the other one behaves similarly. Since h is
bounded, we recall by Remark 5.1 that h ∈ Lµ. We have

∫ T

0
hu
Xu+ε −Xu

ε
du =

∫ T

0
hεdX

with hεs = 1
ε

∫ s

s−ε hudu. Since

‖hε − h−‖
2
H =

∫ T

0

∫ T

0
(hε(u1) − h−(u1)) (hε(u2) − h−(u2)) dµ(u1, u2)

and hε → h− pointwise, the conclusion follows by Lebesgue convergence theorem.

Corollary 5.14 If h is cadlag, then
∫ T

0
hd−X =

∫ T

0
hdX (=

∫ T

0
hd+X).

Proof: Taking into account Lemma 5.13, it is enough to show that
∫ T

0
(h− h−)dX = 0.

This follows because

‖h− h−‖
2
H =

∫ ∫

[0,T ]2
(h− h−)(u1)(h− h−)(u2)dµ(u1, u2)

=
∑

i,j

(h(ai) − h(ai−))(h(aj) − h(aj−))µ({ai, aj}) = 0

and because µ is non-atomic. .
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Remark 5.15 If I is an interval with end-points a < b, then
∫

1IdX = Xb −Xa.

This is a consequence of previous Corollary and Remark 2.4

Example 5.16 The bifractional Brownian motion case: a significant subspace of
Lµ.

We suppose again that HK ≥ 1
2 . A significant subspace included in Lµ is the set

L2([0, T ]) since X is a classical Brownian motion. If K = 1 and H = 1
2 , there is even

equality. For K = 1, and H > 1
2 , we refer to [3].

In the other cases, we prove that

‖f‖2
|H| ≤ C(H,K, T )‖f‖L2([0,T ]). (22)

where C(H,K) is a constant only depending on H,K. It holds that

‖f‖2
|H| =

∫ T

0

∫ T

0
|f(u1)||f(u2)|

∣

∣

∣

∣

∂2R

∂u1∂u2
(u1, u2)

∣

∣

∣

∣

du1du2

≤ C(H,K)

∫ T

0

∫ T

0
|f(u1)||f(u2)|

(

u2H
1 + u2H

2

)K−2
u2H−1

1 u2H−1
2 du1du2

+C(H,K)

∫ T

0

∫ T

0
|f(u1)||f(u2)||u1 − u2|

2HK−2du1du2

:= A+B.

Concerning B we refer to [3]), so we have only to bound the term A. It gives

∫ T

0

∫ T

0
|f(u1)||f(u2)|

(

u2H
1 + u2H

2

)K−2
u2H−1

1 u2H−1
2 du2du1

≤ C(H,K)

∫ T

0

∫ T

0
|f(u1)||f(u2)|(u1u2)

H(K−2)+2H−1du2du1

= C(H,K)

(
∫ T

0
|f(u)|uHK−1du

)2

≤ C(H,K)

∫ T

0
|f(u)|2du

∫ T

0
u2HK−2du ≤ C(H,K, T )‖f‖2

L2([0,T ]).

Let us summarize a few points of our construction. The space Lµ given by (14) is,
due to Remark 5.12, a space with scalar product and it is in general incomplete. The norm
of this space is given by the inner product (16). We also define (15) which is not a norm in
general but it becomes a norm when µ is a positive measure.

We denote by H the abstract completion of Lµ.
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Remark 5.17 Remark 5.1 says that 1[0,a] belongs to Lµ for any a ∈ [0, T ]. Therefore H
may be seen as the closure of 1[0,t], t ∈ [0, T ] with respect to the scalar product

< 1[0,s], 1[0,t] >H= R(s, t).

H is now a Hilbert space equipped with the scalar product 〈·, ·〉H; it coincides with
(17) when restricted to Lµ. H is isomorphic to the self-reproducing kernel space. Generally
that space is the space of v : [0, T ] → R, v(t) = E (XtZ) with Z ∈ L2(Ω). Therefore, if
Z =

∫

gdX, g ∈ Lµ, we have

v(t) =

∫

[0,t]

∫

[0,1]
g(s2)R(ds1, ds2).

Proposition 5.18 Suppose that X is Gaussian. For f ∈ Lµ, we have

E

(∫ T

0
fdX

)2

= E

(

∫ T

0
f2(s)d[X]s + 2

∫

[0,T ]2
1(s1>s2)f(s1)f(s2)dµ(s1, s2)

)

.

Proof: It is a consequence of the Proposition 3.5 and Corollary 5.11.

6 Wiener analysis for non-Gaussian processes having a co-

variance measure structure

The aim of this section is to construct some framework of Malliavin calculus for stochastic
integration related to continuous processes X, which are L2-continuous, with a covariance
measure defined in Section 2 and X0 = 0. We denote by C0([0, T ]) the set of continuous
functions on [0, T ] vanishing at zero. In this section we will also suppose that the law of
process X on C0([0, T ]) has full support, i. e. the probability that X belongs to any subset
of C0([0, T ]) is strictly positive.

We will start with a general framework. We will define the Malliavin derivative with
some related properties in this general, not necessarily Gaussian, framework. A Skorohod
integral with respect to X can be defined as the adjoint of the derivative operator in some
suitable spaces. Nevertheless, Gaussian properties are needed to go into a more practical and
less abstract situation: for instance if one wants to exhibit concrete examples of processes
belonging to the domain of the Skorohod integral and estimates for the Lp norm of the
integral. A key point, where the Gaussian nature of the process intervenes is Lemma 6.7.
We refer also to the comments following that lemma.

We denote by Cyl the set of smooth and cylindrical random variables of the form

F = f

(∫

φ1dX, . . . ,

∫

φndX

)

, (23)

where n ≥ 1, f ∈ C∞
b (Rn) and φi ∈ Lµ. Here

∫

φidX represents the Wiener integral
introduced before Remark 5.17.
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We denote by (Ft)t∈[0,T ] the canonical filtration associated with X fulfilling the
usual conditions. The underlying probability space is (Ω,FT , P ), where P is some suitable
probability. For our consideration, it is not restrictive to suppose that Ω = C0([0, T ]), so
that Xt(ω) = ω(t) is the canonical process. We suppose moreover that the probability
measure P has Ω as support. According to Section II.3 of [25], FC∞

b is dense in L2(Ω),
where

FC∞
b = {f (l1, . . . , lm) , m ∈ N, f ∈ C∞

b (Rm), l1, . . . , lm ∈ Ω∗} .

On the other side, using similar arguments as in [23] one can prove that for every
l ∈ Ω∗ there is a sequence of random variables Zn ∈ S, Zn → l in L2(Ω). Thus Cyl is dense
in L2(Ω).

The derivative operator D applied to F of the form (23) gives

DF =

n
∑

i=1

∂if

(∫

φ1dX, . . . ,

∫

φndX

)

φi.

In particular DF belongs a.s. to Lµ and moreover E‖DF‖2
|H| <∞.

Recall that the classical Malliavin operator D is an unbounded linear operator from
L2(Ω) into L2(Ω;H) where H is the abstract space defined in Section 5.

We define first the set
∣

∣D
1,2
∣

∣, constituted by F ∈ L2(Ω) such that there is a sequence
(Fn) of the form (23) and there exists Z : Ω → Lµ verifying two conditions:

i) Fn −→ F in L2(Ω);

ii) E‖DFn − Z‖2
|H| := E

∫ T

0

∫ T

0 |DuFn − Z| ⊗ |DvFn − Z| d |µ| (u, v)
n→∞
−→ 0.

The set D
1,2 will be the vector subspace of L2(Ω) constituted by functions F such

that there is a sequence (Fn) of the form (23)

i) Fn −→ F in L2(Ω);

ii) E ‖DFn −DFm‖
2
H
n,m→∞
−→ 0.

We will denote by Z = DF the H-valued r.v. such that ‖Z −DFn‖H
L2(Ω)
−→ 0. If

Z ∈ Lµ a.s. then

‖DF‖2
H =

∫

[0,T ]2
Ds1FDs2Fdµ(s1, s2).

Note that
∣

∣D
1,2
∣

∣ ⊂ D
1,2 and D

1,2 is a Hilbert space if equipped with the scalar
product

〈F,G〉1,2 = E(FG) + E 〈DF,DG〉H . (24)
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In general
∣

∣D
1,2
∣

∣ is not a linear space equipped with scalar product since (15) is not neces-
sarily a norm.

Remark 6.1 Cyl is a vector algebra. Moreover, if F, G ∈ Cyl

D(F ·G) = GDF + FDG. (25)

We prove some immediate properties of the Malliavin derivative.

Lemma 6.2 Let F ∈ Cyl, G ∈
∣

∣D
1,2
∣

∣. Then F ·G ∈
∣

∣D
1,2
∣

∣ and (25) still holds.

Proof: Let (Gn) be a sequence in Cyl such that

E(Gn −G)2 −→n→+∞ 0,

E

{

∫

[0,T ]2
|DGn −DG| ⊗ |DGn −DG| d |µ|

}

−→n→+∞ 0. (26)

Since F ∈ L∞(Ω), FGn −→ FG in L2(Ω). Remark 6.1 implies that

D(FGn) = GnDF + FDGn.

So
∫

[0,T ]2
d |µ| |GnDF −GDF | ⊗ |GnDF −GDF | = (Gn −G)2

∫

[0,T ]2
|DF | |DF | d |µ| (27)

If F is of type (23) then

DF =
n
∑

i=1

Ziφi,

where φi ∈ Lµ, Zi ∈ L
∞(Ω). Therefore the expectation of (27) is bounded by

cst.

n
∑

i,j=1

∫

[0,T ]2
|φi| ⊗ |φj | d |µ|E

(

(Gn −G)2 ZiZj

)

. (28)

When n converges to infinity, (28) converges to zero since Gn → G in L2(Ω). On the other
hand

∫

[0,T ]2
d |µ| (|F (DGn −DG)| ⊗ |F (DGn −DG)|)

= |F |2
∫

[0,T ]2
d |µ| |DGn −DG| ⊗ |DGn −DG| .

Since F ∈ L∞(Ω), previous term converges to zero because of (26). By additivity the result
follows.
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We denote by L2(Ω;Lµ) the set of stochastic processes (ut)t∈[0,T ] verifying

E
(

‖u‖2
|H|

)

<∞.

We can now define the divergence operator (or the Skorohod integral) which is an unbounded
map defined from Dom(δ) ⊂ L2(Ω;Lµ) to L2(Ω). We say that u ∈ L2(Ω;Lµ) belongs to
Dom(δ) if there is a zero-mean square integrable random variable Z ∈ L2(Ω) such that

E(FZ) = E (〈DF, u〉H) (29)

for every F ∈ Cyl. In other words

E(FZ) = E

(

∫

[0,T ]2
Ds1Fu(s2)µ(ds1, ds2)

)

for every F ∈ Cyl. (30)

Using Riesz theorem we can see that u ∈ Dom(δ) if and only if the map

F 7→ E (〈DF, u〉H)

is continuous linear form with respect to ‖·‖L2(Ω). Since Cyl is dense in L2(Ω), Z is uniquely
characterized. We will set

Z =

∫ T

0
uδX.

Z will be called the Skorohod integral of u towards X.

Definition 6.1 If u1[0,t] ∈ Dom(δ) for any t ∈ [0, T ], we set
∫ t

0 usδXs :=
∫ T

0 us1[0,t]δXs

Remark 6.3 If (29) holds, then it will be valid by density for every F ∈ D
1,2.

An important preliminary result in the Malliavin calculus is the following.

Proposition 6.4 Let u ∈ Dom(δ), F ∈
∣

∣D
1,2
∣

∣. Suppose F ·
∫ T

0 usδXs ∈ L2(Ω). Then
Fu ∈ Dom(δ) and

∫ T

0
F · usδXs = F

∫ T

0
usδXs − 〈DF, u〉H .

Proof: We proceed using the duality relation (29). Let F0 ∈ Cyl. We need to show

E

(

F0

{

F

∫ T

0
usδXs − 〈DF, u〉H

})

= E (〈DF0, Fu〉H) . (31)

Lemma 6.2 implies that F0F ∈
∣

∣D
1,2
∣

∣. The left member of (31) gives

E

(

F0F

∫ T

0
usδXs

)

− E (F0 〈DF, u〉H)

= E (〈D (F0F ) , u〉H) − E (F0 〈DF, u〉H) = E(< D(F0F ) − F0DF, u >H). (32)
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This gives the right member of (31) because of the Lemma 6.2. Remark 6.3 allows to
conclude.

We state a useful Fubini type theorem which allows to interchange Skorohod and
measure theory integrals. When X is a Brownian motion and the measure theory integral
is Lebesgue integral, then the result is stated in [29].

Proposition 6.5 Let (G,G, λ) be a σ-finite measured space. Let u : G × [0, T ] × Ω −→ R

be a measurable random field with the following properties

i) For every x ∈ G, u(x, ·) ∈ Dom(δ),

ii)

E

∫

G

dλ(x1)

∫

G

dλ(x2)

∫

[0,T ]2
d|µ| |u| (x1, ·) ⊗ |u| (x2, ·) <∞,

iii) There is a measurable version in Ω ×G of the random field
(

∫ T

0 u(x, t)δXt

)

x∈G
,

iv) It holds that
∫

G

dλ(x)E

(
∫ T

0
u (x, t) δXt

)2

<∞.

Then
∫

G
dλ(x)u(x, ·) ∈ Dom(δ) and

∫ T

0

(
∫

G

dλ(x)u(x, ·)

)

δXt =

∫

G

dλ(x)

(
∫ T

0
u(x, t)δXt

)

.

Proof: We need to prove two properties:

a)
∫

G

dλ(x) |u| (x, ·) ∈ L2(Ω;Lµ)

b) For every F ∈ Cyl we have

E

(

F

∫

G

dλ(x)

∫ T

0
u(x, t)δXt

)

= E

(〈

DF,

∫

G

dλ(x)u(x, ·)

〉

H

)

.

It is clear that without restriction to the generality we can suppose λ to be a finite measure.
Concerning a) we write

E

(

∣

∣

∣

∣

∫

G

dλ(x) |u| (x, ·)

∣

∣

∣

∣

2

|H|

)

=

∫

[0,T ]2
d |µ| (s1, s2)

∫

G

dλ(x1) |u| (x1, s1)

∫

G

dλ(x2) |u| (x2, s2)

(33)

=

∫

G×G
dλ(x1)dλ(x2)

∫

[0,T ]
d |µ| (s1, s2) |u| (x1, s1) |u| (x2, s2).
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Taking the expectation of (33), the result a) follows from ii). For the part b) let us consider
F ∈ Cyl. Classical Fubini theorem implies

E

(

F

∫

G

dλ(x)

(∫ T

0
u(x, t)δXt

))

=

∫

G

dλ(x)E

(

F

∫ T

0
u(x, t)δXt

)

=

∫

G

dλ(x)E (〈DF, u(x, ·)〉H)

= E

{

∫

G

dλ(x)

∫

[0,T ]2
Ds1Fu(x, s1)Ds2Fu(x, s2)dµ(s1, s2)

}

= E

(

∫

[0,T ]2
dµ(s1, s2)Ds1FDs2F

∫

G

dλ(x)u(x, s1)

∫

G

dλ(x)u(x, s2)

)

=

〈

DF,

∫

G

dλ(x)u(x, ·)

〉

H

.

At this point the proof of the proposition is concluded.

We denote by Lµ,2 the set of φ : [0, T ]2 → R such that

• φ(t1, ·) ∈ Lµ, ∀t1 ∈ [0, T ],

• t1 → ‖φ(t1, ·)‖|H| ∈ Lµ.

For φ ∈ Lµ,2 we set

‖φ‖2
|H|⊗|H| =

∫

[0,T ]2
‖φ(t1, ·)‖|H|‖φ(t2, ·)‖|H|d|µ|(t1, t2).

Similarly to |D1,2| we will define |D1,2(Lµ)| and even |D1,p(Lµ)|, p ≥ 2.

We first define Cyl(Lµ) as the set of smooth cylindrical random elements of the
form

ut =

n
∑

ℓ=1

ψℓ(t)Gℓ, t ∈ [0, T ], ψℓ ∈ Lµ, Gℓ ∈ Cyl. (34)

.
On Lµ,2 we also define the following inner semiproduct:

< u1, u2 >H⊗H=

∫

[0,T ]2
< u1(t1, ·), u2(t2, ·) >H dµ(t1, t2).

This inner product naturally induces a seminorm ‖u‖H⊗H and we have of course

‖u‖|H|⊗|H| ≥ ‖u‖H⊗H.

We denote by |D1,p(Lµ)| the vector space of random elements u : Ω → Lµ such that
there is a sequence (un) ∈ Cyl(Lµ) and
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i) ‖u− un‖
2
|H| −→n→∞ 0 in Lp(Ω),

ii) there is Z : Ω −→ Lµ,2 with ‖Dun − Z‖|H|⊗|H| −→ 0 in Lp(Ω).

We convene here that
Dun : (t1, t2) −→ Dt1un(t2).

Note that until now we did not need the Gaussian assumption on X. But this is
essential in following result. It says that when the integrand is deterministic, the Skorohod
integral coincide with the Wiener integral.

Proposition 6.6 Suppose X to be a Gaussian process. Let h ∈ Lµ. Then

∫ T

0
hδXs =

∫ T

0
hdXs.

Proof: Let F ∈ Cyl. The conclusion follows from the following Lemma 6.7 and density
arguments.

Lemma 6.7 Let F ∈ Cyl. Then

E (〈DF,h〉H) = E

(

F

∫ T

0
hdX

)

. (35)

Proof: We use the method given in [29], Lemma 1.1. After normalization it is possible

to suppose that ‖h‖H = 1. There is n ≥ 1 such that F = f̃
(

∫

hdX,
∫

φ̃1dX, . . . ,
∫

φ̃ndX
)

,

h, φ̃1, . . . , φ̃1 ∈ Lµ, f̃ ∈ C∞
b (Rn). We set φ0 = h and we proceed by Gram-Schmidt othogo-

nalization. The first step is given by

Y1 =

∫

hdX −
〈

h, φ̃1

〉

H

∫

hdX =

∫

φ1dX,

where φ1 =
h−〈h,φ̃1〉h

‖h−〈h,φ̃1〉h‖
and so on. Therefore it is possible to find a sequence φ0, . . . , φn ∈ Lµ

orthonormal with respect to 〈·, ·〉H, such that

F = f

(
∫

φ0dX, . . . ,

∫

φndX

)

, f ∈ C∞
b (Rn+1).

Let ρ be the density of the standard normal distribution in R
n+1, i.e.
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ρ(x) = (2π)−
n+1

2 exp
(

−1
2

∑n
i=0 x

2
i

)

. Then we have

E (〈DF,h〉H) = E

(

n
∑

i=0

∂if

(
∫

φ0dX, . . . ,

∫

φndX

)

)

〈φi, h〉H

= E

(

∂0f

(∫

φ0dX, . . . ,

∫

φndX

))

=

∫

Rn+1

∂0f(y)ρ(y)dy

=

∫

R

f(y)ρ(y)y0dy0 = E

(

F

∫

hdX

)

which completes the proof of the lemma.

Remark 6.8 It must be pointed out that the Gaussian property of X appears to be crucial
in the proof of Lemma 6.7. Actually we used the fact that uncorrelated Gaussian random
variables are independent and also the special form of the derivative of the Gaussian kernel.
As far as we know, there are two possible proofs of this integration by parts on the Wiener
spaces, both using the Gaussian structure: one (that we used) presented in Nualart [29] and
other given in Bass [4] using a Bismut’s idea and based on the Fréchet form of the Malliavin
derivative.

7 The case of Gaussian processes with a covariance measure

structure

Let X = (Xt)t∈[0,T ] be a zero-mean Gaussian process such that X0 = 0 a.s. that is contin-
uous. A classical result of [14] (see Th. 1.3.2. and Th. 1.3.3) says that

sup
t∈[0,T ]

|X| ∈ L2. (36)

This implies in particular that X is L2-continuous. We suppose also as in previous section
that the law of X in C0([0, T ]) has full support.

We suppose moreover that it has covariance R with covariance measure µ. Since
X is Gaussian, according to the Section 5, the canonical Hilbert space H of X (called
reproducing kernel Hilbert space by some authors) provides an abstract Wiener space and
an abstract structure of Malliavin calculus was developed, see for instance [39, 30, 47].

Recently, several papers were written in relation to fractional Brownian motion and
Volterra processes of the type Xt =

∫ t

0 G(t, s)dWs, where G is a deterministic kernel, see for
instance [2, 9]. In this work we remain close to the intrinsic approach based on the covariance
as in [39, 30, 47]. However their approach is based on a version of self-reproducing kernel
space H which is abstract. Our construction focuses on the linear subspace Lµ of H which
is constituted by functions.
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7.1 Properties of Malliavin derivative and divergence operator

We introduce some elements of the Malliavin calculus with respect to X. Remark 5.17 says
that the abstract Hilbert space H introduced in Section 5 is the topological linear space
generated by the indicator functions {1[0,t], t ∈ [0, T ]} with respect to the scalar product

〈1[0,t], 1[0,s]〉H = R(t, s).

In general, the elements of H may not be functions but distributions. This is actually the
case of the fractional Brownian motion with H > 1

2 , see Pipiras and Taqqu [33]. Therefore
it is more convenient to work with one subspace of H that contains only functions, for
instance Lµ.

We establish here some peculiar and useful properties of Skorohod integral.

Proposition 7.1 Let u ∈ Cyl(Lµ). Then u ∈ Dom(δ) and
∫ T

0 uδX ∈ Lp(Ω) for every
1 ≤ p <∞.

Proof: Let u = Gψ, ψ ∈ Lµ, G ∈ Cyl. Proposition 6.6 says that ψ ∈ Dom(δ). Applying
Proposition 6.4 with F = G and u = ψ, we get that ψG belongs to Dom(δ) and

∫ T

0
uδX = G

∫ T

0
ψδXs −

∫

[0,T ]2
ψ(t1)Dt2Gdµ(t1, t2).

If G = g(Y1, . . . , Yn), where Yi =
∫

φidX, 1 ≤ i ≤ n, then

∫ T

0
uδX = −

n
∑

j=1

< φj , ψ >H ∂jg(Y1, . . . , Yn) + g(Y1, . . . , Yn)

∫ T

0
ψdX. (37)

The right member belongs obviously to each Lp since Yj is a Gaussian random variable and
g, ∂jg are bounded. The final result for u ∈ Cyl(Lµ) follows by linearity.

Remark 7.2 (37) provides an explicit expression of
∫ T

0 uδX.

We discuss now the commutativity of the derivative and Skorohod integral. First
we observe that if F ∈ Cyl, (DtF ) ∈ Dom(δ). Moreover, if u ∈ Cyl(Lµ), (Dt1u(t2)) belongs
to |D1,2(Lµ,2)|. Similarly to (1.46) Ch. 1 of [29], we have the following property.

Proposition 7.3 Let u ∈ Cyl(Lµ). Then

∫ T

0
uδX ∈ |D1,2|

and we have for every t

Dt

(∫ T

0
uδX

)

= ut +

∫ T

0
(Dtus)δXs. (38)
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Proof: It is enough to write the proof for u = ψG, where G ∈ Cyl of the type

G = g(Y1, . . . , Yn),

Yi =
∫

φidX, 1 ≤ i ≤ n. According to (37) in the proof of Proposition 7.1, the left member
of (38) gives

−

n
∑

j=1

< φj , ψ >H Dt(∂jg(Y1, . . . , Yn)) +DtG

∫ T

0
ψdX +Gψ(t)

= −

n
∑

j=1

< φj, ψ >H

n
∑

l=1

∂2
ilg(Y1, . . . , Yn)φl(t) (39)

+
n
∑

j=1

∂jg(Y1, . . . , Yn)

∫ T

0
ψdXφj(t) + g(Y1, . . . , Yn)ψ(t).

On the other hand

Dtu(s) = ψ(s)

n
∑

j=1

∂jg(Y1, . . . , Yn)φj(t).

Applying again (37), through linearity, we obtain for t ∈ [0, T ],

∫ T

0
DtuδX =

n
∑

j=1

φj(t)

∫ T

0
ψ∂jg(Y1, . . . , Yn)δX

=
n
∑

j=1

φj(t)

[

−
n
∑

l=1

< φl, ψ >H ∂2
ljg(Y1, . . . , Yn) + ∂jg(Y1, . . . , Yn)

∫ T

0
ψdX

]

.

Coming back to (39) we get

Dt

(∫ T

0
ψGδX

)

=

∫ T

0
Dt(ψG)δX + ψ(t)G.

We can now evaluate the L2(Ω) norm of the Skorohod integral.

Proposition 7.4 Let u ∈ |D1,2(Lµ)|. Then u ∈ Dom(δ),
∫ T

0 uδX ∈ L2(Ω) and

E

(
∫ T

0
uδX

)2

= E(‖u‖2
H) + E

(

∫

[0,T ]2
dµ(t1, t2)

∫

[0,T ]2
dµ(s1, s2)Ds1ut1Dt2us2

)

. (40)

Moreover

E

(
∫ T

0
uδX

)2

≤ E

(

‖u‖2
|H| +

∫

[0,T ]2
d|µ|(t1, t2) ‖D·ut1‖

2
|H|

)

. (41)
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Remark 7.5 i) Let u, v ∈ |D1,2(Lµ)|. Polarization identity implies

E

(∫ T

0
uδX

∫ T

0
vδX

)

= E (< u, v >H)

(42)

+E

(

∫

[0,T ]2
dµ(t1, t2)

∫

[0,T ]2
dµ(s1, s2)Ds1ut1Dt2vs2

)

.

ii) If u ∈ |D1,2(Lµ)|, then u1[0,t] ∈ |D1,2(Lµ)| for any t ∈ [0, T ] and consequently to Dom(δ).

Proof (of Proposition 7.4): Let u ∈ Cyl(Lµ). By the Proposition 7.3, since
∫ T

0 uδX ∈ D
1,2

we get

E

(∫ T

0
uδX

)2

= E

(〈

u,D

∫ T

0
uδX

〉

H

)

= E

(

∫

[0,T ]2
ut1Dt2

(
∫ T

0
uδX

)

dµ(t1, t2)

)

= E

(

∫

[0,T ]2
ut1

(

ut2 +

∫ T

0
Dt2usδXs

)

dµ(t1, t2)

)

= E
(

‖u‖2
H

)

+

∫

[0,T ]2
dµ(t1, t2)E

(

ut1

∫ T

0
Dt2usδXs

)

.

Using again the duality relation, we get

E

(

‖u‖2
H +

∫ T

0
dµ(t1, t2) < D·ut1 ,Dt2u· >H

)

,

which constitutes formula (40).
Moreover, using Cauchy-Schwarz, we obtain

E

(∫ T

0
uδX

)2

≤ E
(

‖u‖2
H

)

+ E

(

∫

[0,T ]2
d|µ|(t1, t2) ‖Dt1u·‖H ‖D·ut2‖H

)

. (43)

Since
∫

[0,T ]2
d|µ|(t1, t2) ‖Dut2‖

2
H =

∫

[0,T ]2
d|µ|(t1, t2) ‖Dt1u‖

2
H

(43) is equal or smaller than

E

(

∫

[0,T ]2
d|µ|(t1, t2) ‖Dut2‖

2
H

)

and this shows (41).
Using the fact that Cyl(Lµ) is dense in |D1,2(Lµ)| we obtain the result.
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7.2 Continuity of the Skorohod integral process

It is possible to connect previous objects with the classical Wiener analysis on an abstract
Wiener space, related to Hilbert spaces H, see [30, 39].

In the classical theory the Malliavin gradient (derivative) ∇ and the divergence
operator δ are well defined with its domain. For instance δ : D

1,2(H) → L2(Ω) is continuous
and D

1,2(H) is contained in the classical domain. However as we said the realizations of
u ∈ D

1,2(H) may not be functions.
If u ∈ |D1,2(Lµ)|, it belongs to D

1,2(H) and its norm is given by

‖u‖2
1,2 = E

(

‖u‖2
H +

∫

[0,T ]2
dµ(s1, s2) ‖D·us1‖H ‖D·us2‖H

)

.

Classically ∇u is an element of L2(Ω,H⊗H), where H⊗H is the Hilbert space of
bilinear continuous functionals H⊗H → R equipped with the Hilbert-Schmidt norm.

Given u ∈ |D1,2(Lµ)| ⊂ D
1,2(H), we have Du ∈ L2(Ω;Lµ,2). The associated gradient

∇u is given by

(h, k) 7→

∫

[0,T ]2
Ds1ut1h(s2)k(t2)dµ(s1, s2)dµ(t1, t2),

where h, k ∈ Lµ. Its Hilbert-Schmidt norm coincides with
∫

[0,T ]2
< Dus1,Dus2 >H dµ(s1, s2).

Remark 7.6 If u ∈ |D1,2(Lµ)|
∫ T

0
usdXs = δ(u).

Remark 7.7 The standard Sobolev-Wiener space D
1,p(H), p ≥ 2 is included in the classical

domain of δ and the Meyer’s inequality holds:

E|δ(u)|p ≤ C(p)E
(

‖u‖pH + ‖∇u‖pH⊗H

)

. (44)

This implies that if u ∈ |D1,2(Lµ)|

E

∣

∣

∣

∣

∫ T

0
uδX

∣

∣

∣

∣

p

≤ C(p)E



‖u‖pH +

{

∫

[0,T ]2
< Dus1,Dus2 >H dµ(s1, s2)

}
p

2



 . (45)

Consequently this gives

E

(

∣

∣

∣

∣

∫ T

0
uδX

∣

∣

∣

∣

p
)

≤ C(p)E

{

∫

[0,T ]2
|< Dus1,Dus2 >H| d|µ|(s1, s2)

}
p

2

. (46)

The last inequality can be shown in a similar way as in the case of Brownian motion. One
applies Proposition 3.2.1 p. 158 in [29] and then one argument in the proof of Proposition
3.2.2 again in [29].
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The Meyer inequalities are very useful in order to prove the continuity of the tra-
jectories for Skorohod integral processes. We illustrate this in the next proposition.

Proposition 7.8 Assume that the covariance measure of the process X satisfies

[µ ((s, t] × (s, t])]p−1 ≤ |t− s|1+β, β > 0 (47)

for some p > 1 and consider a process u ∈ |D1,2p(Lµ)| such that

∫ T

0

∫ T

0

(
∫ T

0

∫ T

0
|Daur||Dbuθ|d|µ|(a, b)

)p

d|µ|(r, θ) <∞. (48)

Then the Skorohod integral process
(

Zt =
∫ t

0 usδXs

)

t∈[0,T ]
admits a continuous version.

Proof: We can assume that the process u is centered because the process
∫ t

0 E(us)δXs

always admits a continuous version under our hypothesis. By (46), (47) and (48) we have

E |Zt − Zs|
2p ≤ c(p)E

(∫ T

0

∫ T

0

∫ T

0

∫ T

0

∣

∣Daur1(s,t](r)
∣

∣

∣

∣Dbuθ1(s,t](θ)
∣

∣ d|µ|(a, b)d|µ|(r, θ)

)p

≤ c(p) [µ ((s, t] × (s, t])]p−1
∫ T

0

∫ T

0

(
∫ T

0

∫ T

0
|Daur||Dbuθ|d|µ|(a, b)

)p

d|µ|(r, θ)

≤ c(p, T )|t − s|1+β.

Remark 7.9 In the fBm case we have that

µ ((s, t] × (s, t]) = |t− s|2H

and (47) holds with pH > 1. In the bifractional case, it follows from [18] that

|µ ((s, t] × (s, t])| ≤ 21−K |t− s|2HK

and therefore (47) holds if pHK > 1.

7.3 On local times

We will make in this paragraph a few observations on the chaotic expansion of the local
time of a Gaussian process X having a covariance measure structure. Our analysis is basic
and we will only aim to anticipate a possible further study. We illustrate the fact that the
covariance measure appears to play an important role for the existence and the regularity
of the local time.
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Let us use the standard way to introduce the local time L(t, x) of the process X;
that is, for every t ∈ [0, T ] and x ∈ R, L(t, x) is defined as the density of the occupation
measure

µA =

∫ t

0
1A(Xs)ds, A ∈ B(R).

It can be formally written as

L(t, x) =

∫ t

0
δx(Xs)ds,

where δ denotes the Dirac delta function and δx(Xs) represents a distribution in the Watan-
abe sense, see [47].

Since X is a Gaussian process, it is possible to construct related multiple Wiener-Itô
integrals. We refer to [29] or [26] for the elements of this construction.

There is a standard method to compute the Wiener-Itô chaos expansion of L(t, x).
It consists in approaching the Dirac function by mean-zero Gaussian kernels pε of variance
ε and to take the limit in L2(Ω) as ε→ 0. We get (see e.g. [12])

L(t, x) =
∞
∑

n=0

∫ t

0

pR(s,s)(x)

R(s, s)
n
2

Hn

(

x
√

R(s, s)

)

In

(

1⊗n[0,s]

)

ds (49)

for all t ∈ [0, T ], x ∈ R where In denotes the multiple Wiener integral of order n with
respect to X and Hm represents the Hermite polynomial of degree m. For recent references
on the subject one can see [30, 24]. Note that the integral I1 is nothing else that the Wiener
integral discussed in Section 5. One can compute the second moment of L(t, x) by using
the isometry of multiple stochastic integrals

EIn

(

1⊗n[0,s]

)

Im

(

1⊗m[0,t]

)

=

{

m!R(s, t)m if m = n
0 if m 6= n

Using standard bounds as in [12], it follows that the L2 norm of (49) is finite if

∑

n≥1

n−
1

2

∫ t

0

∫ t

0

|µ ([0, u] × [0, v])|n

(|µ ([0, u] × [0, u])| |µ ([0, v] × [0, v])|)
n+1

2

dvdu <∞.

It can be seen that the existence of the local time L(t, x) as random variable in L2(Ω) is
closely related to the properties of the covariance measure µ. A possible condition to ensure
the existence of L could be

∫ t

0

∫ t

0

|µ ([0, u] × [0, v])|n

(|µ ([0, u] × [0, u])| |µ ([0, v] × [0, v])|)
n+1

2

dvdu < cst.n−β

with β > 1
2 . Of course, this remains rather abstract and it is interesting to be checked in

concrete cases. We refer to [32] for the Brownian case, to [12] for the fractional Bownian
case and to [35] for the bifractional case.
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We also mention that the properties of the covariance measure of Gaussian processes
are actually crucial to study sample path regularity of local times like level sets, Hausdorff
dimension etc. in the context of the existence of local non-determinism. We refer e.g. [46]
for a complete study of path properties of Gaussian random fields and to [45] for the case
of bifractional Brownian motion.

8 Itô formula in the Gaussian case and related topics

The next step will consist in expressing the relation between Skorohod integral and integrals
obtained via regularization. The first result is illustrative. It does not enter into specificity
of the examples.

Theorem 8.1 Let (Yt)t∈[0,T ] be a cadlag process. We take into account the following hy-
potheses

a) supt≤T |Yt| is square integrable.

b) Y ∈ |D1,2(Lµ)|. Moreover DY verifies

|Dt1Yt2 | ≤ Z2, ∀(t1, t2) ∈ [0, T ]2 |µ| a.e. (50)

where Z2 is a square integrable random variable.

c) For |µ| almost all (t1, t2) ∈ [0, T ]2

lim
ε→0

1

ε

∫ t2

t2−ε
Dt1Ysds (51)

exists a.s. This quantity will be denoted (Dt1Yt2−). Moreover for each s, the set of t
such that DtYs− = DtYs is null with respect to the marginal measure ν.

c’) For |µ| almost all (t1, t2),

lim
ε→0

1

ε

∫ t2+ε

t2

Dt1Ysds (52)

exists a.s. It will be denoted by (Dt1Yt2+). Moreover for each s, the set of t such that
DtYs+ = DtYs is null with respect to measure ν.

If a), b), c) (resp. a), b), c’)) are verified then Y ∈ Dom(δ) and the forward integral
∫ T

0 Y d−X (resp. the backward integral
∫ T

0 Y d+X) exists and
∫ t

0
Y d−X =

∫ t

0
Y δX +

∫

[0,t]2
Dt1Yt2−dµ(t1, t2) (53)

(resp.
∫ t

0
Y d+X =

∫ t

0
Y δX +

∫

[0,t]2
Dt1Yt2+dµ(t1, t2).) (54)
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Remark 8.2 i) Condition (50) implies trivially

E

(

∫

[0,T ]2
|Dt1Ys1|

∫

[0,T ]2
|Dt2Ys2|

)

d |µ| (s1, s2)d |µ| (t1, t2) <∞. (55)

ii) By Proposition 7.4 we know that Y ∈ Dom(δ).
iii) Taking into account the definition if

∫ t

0 Y δX, it will be enough to prove (53) and (54)
replacing t with T .

Remark 8.3 In the case of Malliavin calculus for classical Brownian motion, see Section
4, one has

dµ(s1, s2) = δ(ds2 − s1)ds1.

So (55) becomes

E

(

∫∫

[0,T ]2
|DtYs|

2 dsdt

)

<∞. (56)

Remark 8.4 Condition (51) (resp. (52)) may be replaced by the existence a.s. of the trace
TrDu, where

TrDu(t) = lim
ε→0

1

ε

∫ t

0
〈DYs, 1]s,s+ε]〉Hds, t ∈ [0, T ]. (57)

This is a direct consequence of Fubini theorem. A similar condition related to symmetric
integral appears in [1].

Lemma 8.5 Let (Yt)t∈[0,T ] be a process fulfilling points a), b), c) of Theorem 8.1. We set

Y ε
t =

1

ε

∫ t

(t−ε)+
Ysds. (58)

Then Y ε ∈ Dom(δ) and for every t

∫ t

0
Y εδX

ε→0
−→

∫ t

0
Y δX in L2(Ω). (59)

Proof: Again, in this proof it will be enough to set t = T . First, one can prove that if
Y ∈ Cyl(Lµ), Y

ε ∈ Cyl(Lµ) and

DtY
ε
s =

1

ε

∫ s

s−ε
DtYrdr. (60)

Then we can establish that Y ε is a suitable limit of elements in Cyl(Lµ) so that Y ε ∈
|D1,2(Lµ)|. We omit details at this level. Relation (60) extends then to every Y fulfilling
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the assumptions of the theorem. According to Proposition 7.4, Y ε ∈ Dom(δ). Relation
(41) in Proposition 7.4 gives

E

(∫ T

0
(Y − Y ε)δX

)2

≤ E(‖Y − Y ε‖2
H) + E

(

∫

[0,T ]2
d|µ|(t1, t2)‖D·(Yt1 − Y ε

t1
)‖2

H

)

. (61)

We have to show that both expectations converge to zero. The first expectation
gives

E

(

∫

[0,T ]2
dµ(t1, t2)(Yt1 − Y ε

t1
)(Yt2 − Y ε

t2
)

)

. (62)

Using assumption a) of the theorem, Lebesgue dominated convergence theorem implies that
(62) converges to

E

(

∫

[0,T ]2
dµ(t1, t2)(Yt1 − Yt1−)(Yt2 − Yt2−)

)

.

For each ω a.s. the discontinuities of Y (ω) are countable. The fact that |µ| is non-atomic
implies that previous expectation is zero.

We discuss now the second expectation. It gives
∫

[0,T ]2
d|µ|(t1, t2)

∫

[0,T ]2
E
(

Ds1(Yt1 − Y ε
t1

)Ds2(Yt1 − Y ε
t1

)
)

d|µ|(s1, s2). (63)

Taking into account assumptions b), c) of the theorem, previous term converges to

E

(

∫

[0,T ]2
d|µ|(t1, t2)

∫

[0,T ]2
d|µ|(s1, s2)(Ds1Yt1 −Ds1Yt1−)(Ds2Yt1 −Ds2Yt1−)

)

.

Using Cauchy-Schwarz this is bounded by

E

(∫ T

0
dν(t)

∫ T

0
dν(s)(DsYt −DsYt−)2

)

.

This quantity is zero because of c).

Remark 8.6 If point c’) is verified (instead of c) it is possible to state a similar version of
the lemma with Y ε

t = 1
ε

∫ t+ε
t

Ysds.

It is interesting to observe that convergence (59) holds weakly in L2(Ω) even without
assumption c). This constitutes the following proposition.

Proposition 8.7 Let (Yt)t∈[0,T ] be a process fulfilling points a), b) of Theorem 8.1. We set
Y ε as in (58). Then for every t,

∫ t

0
Y εδX

ε→0
−→

∫ t

0
Y δX (64)

weakly in L2(Ω).
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Proof: We set again t = T . One can prove directly that Y ε belongs to Dom(δ) because
of Fubini type Proposition 6.5. Indeed, we set

G = [0, T ], ν(ds) = ds, u(s, t) = Ys1]s,s+ε](t)

and we verify the assumptions of the Proposition. Using Proposition 7.4 and points a), b) it

is clear that E(
∫ T

0 Y εδX)2 is bounded. Then it is possible to show that the left term in (59)

admits a subsequence (
∫ T

0 Y εnδW ) converging weakly to some square integrable random
variable Z.

Let F ∈ Cyl. By duality of Skorohod integral

E

(

F

∫ T

0
Y εnδX

)

= E (〈DF,Y εn〉H)

= E

(

∫

[0,T ]2
Ds1FY

εn
s2
µ(ds1, ds2)

)

= E

(

∫

[0,T ]2
Ds1FYs2−µ(ds1, ds2)

)

.

Now since X is L2 continuous, it is not difficult to see that the

|µ| ({s1} × [0, T ]) = |µ| ([0, T ] × {s2}) = 0. (65)

Using Banach-Steinhaus theorem and the density of Cyl in L2(Ω), the convergence (59) is
established. For ω a.s the set N(ω) of discontinuity of Y (ω) is countable. Consequently
|µ| ([0, T ] ×N(ω)) = 0 and so

E

(

∫

[0,T ]2
Ds1FYs2−µ(ds1, ds2)

)

= E

(

∫

[0,T ]2
Ds1FYs2µ(ds1, ds2)

)

= E (< DF,Y >H) = E

(

F

∫ T

0
Y δX

)

.

Proof of the Theorem 8.1: We set again t = T . We operate only for the forward
integral. The backward case can be treated similarly.

Proposition 6.4 implies that

I−(ε, Y, dX, T ) =
1

ε

∫ T

0
dsYs

∫ T

0
1]s,s+ε](t)δXt

=
1

ε

∫ T

0
ds

∫ T

0
Ys1]s,s+ε](t)δXt +

1

ε

∫ T

0
ds

(

∫

[0,T ]2
dµ(t1, t2)Dt1Ys1]s,s+ε](t2)

)

= I1(T, ε) + I2(T, ε).
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Proposition 6.5 says that

I1(T, ε) =

∫ T

0
Y ε
t δXt.

According to Lemma 8.5, I1(T, ε) converges in L2(Ω) to
∫ T

0 Y δX.
We observe now that I2(T, ε) gives

∫

[0,T ]2
dµ(t1, t2)

1

ε

∫ t2

t2−ε
dsDt1Ys. (66)

Assumptions b) and c) together with Lebesgue dominated convergence theorem show that
(66) converges in L2(Ω) to

∫

[0,T ]2
dµ(t1, t2)Dt1Yt2 .

In particular, we retrieve the result in Lemma 5.13.

Corollary 8.8 Let h be a cadlag function h : [0, T ] → R. Then

∫ T

0
hdX =

∫ T

0
hd−X =

∫ T

0
hd+X.

Proof: This is obvious because the Malliavin derivative of h vanishes. .

Corollary 8.9 Let (Yt)t∈[0,T ] to be a process fulfilling assumptions a), b), c), c’) of Theorem
8.1. Then the symmetric integral of Y with respect to X is defined and

∫ t

0
Y doX =

∫ t

0
Y δX +

1

2

∫

[0,t]2
(Dt1Yt2+ +Dt1Yt2−) dµ(t1, t2)

and

[X,Y ]t =

∫

[0,t]2
(Dt1Yt2+ +Dt1Yt2−) dµ(t1, t2).

Example 8.10 The case of a Gaussian martingale X.

We recall by Section 4 that [X] = λ, where λ is a deterministic increasing function vanishing
at zero. Under assumption a), b), c) of Theorem 8.1

∫ T

0
Y d−X =

∫ T

0
Y δX +

∫ T

0
dλ(t1)Dt1Yt1−.

Let Y be F-progressively measurable cadlag, such that
∫ T

0 Y 2
s d[X]s < ∞ a.s. In [38] it is

also shown that
∫ T

0 Y d−X equals the Itô integral
∫ T

0 Y dX.

40



It is possible to see that the Itô integral Z =
∫ T

0 Y dX verifies the duality relation
(25) and so Y ∈ Dom(δ). Moreover

∫ T

0
Y d−X =

∫ T

0
Y δX.

We will discuss now Itô formula. Theorem 8.1 allows to state the following prelimi-
nary formulation.

Lemma 8.11 Let f ∈ C2(R) such that f ′′ is bounded. Then, for every t, f ′(Xt) ∈ Dom(δ),
and

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)δXs +

∫

∆t

f ′′(Xs2)dµ(s1, s2) +
1

2

∫ t

0
f ′′(Xs)dE(s),

where
E(t) = µ(Dt), Dt = {(s, s)|s ≤ t} , ∆t = {(s1, s2)|0 ≤ s1 < s2 ≤ t} .

Proof: Itô formula for finite quadratic variation processes was established for instance by
[37]. It says

f(Xt) = f(X0) +

∫ t

0
f ′(X)d−X +

1

2

∫ t

0
f ′′(X)d[X].

Now we need to apply Theorem 8.1. For this we need to verify its hypotheses. The
assumption a) is verified because

sup
s≤t

|f(Xs)| ≤ sup |f ′| sup
t≤t

|Xs|.

Since X is a Gaussian process, (36) recalls that supt≤T |Xt| ∈ L2(Ω). On the other
hand, setting Yt = f ′(Xt),

Dt1Yt2 = f ′′(Xt2)1]0,t2[(t1)

and so b) is also verified.

lim
ε→0

∫ t2

t2−ε
Dt1Ysds =

{

0 t1 ≥ t2
f ′′(Xt2) t1 < t2

and c) is verified. Therefore
∫ t

0
f ′(X)d−X =

∫ t

0
f ′(X)δX +

∫

∆t

f ′′(Xt2)dµ(t1, t2).

Moreover, by Lemmas 3.3 and 3.4 we have

1

2

∫ t

0
f ′′(Xs)d[X]s =

1

2

∫ t

0
f ′′(Xs)dE(s).

The statement of Lemma 8.11 can be precised better.
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Lemma 8.12 Let γ(t) = R(t, t). For every ψ ∈ C0(R+),

∫ t

0
ψd−γ =

∫ t

0
ψ(s)dE(s) + 2

∫

∆t

ψ(s2)dµ(s, s2), (67)

where
∫ t

0
ψd−γ = lim

ε→0

∫ t

0
ψ(s)

γ(s + ε) + γ(s)

ε
ds (68)

pointwise. Moreover γ is a bounded variation function.

Proof: The integral inside the right-hand side of (68) gives

∫ t

0
ψ(s)

R(s + ε, s+ ε) −R(s, s)

ε
ds = (I1 + 2I2)(ε, t),

where

I1(ε, t) =

∫ t

0
ψ(s)∆]s,s+ε]2R

ds

ε
,

I2(ε, t) =

∫ t

0

R(s+ ε, s) −R(s, s)

ε
ψ(s)ds.

We have

I1(ε, t) =

∫ t

0
ψ(s)E(Xs+ε −Xs)

2 ds

ε
=

∫ t

0
ψ(s)d(E(Cε(X,X, s)))ds.

Taking into account Definition 3.3 and the fact that E is a continuous function,

I1(ε, t) −→ε→0

∫ t

0
ψ(s)dE(s),

for any t ∈ [0, T ]. It remains to control I2(ε, t).
Since

R(s+ ε, s) −R(s, s) =

∫

[0,t]2
1]0,s]×]s,s+ε]dµ(s1, s2),

we have

I2(ε, t) =

∫

[0,t]2
dµ(s1, s2)

∫

]s1∨(s2−ε)+,s2]
ψ(s)

ds

ε
,

with the convention that ]a, b] = ∅ if b ≤ a.
We distinguish two cases:

• If s2 ≤ s1, then
I2(ε, t) = 0.
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• If s2 > s1, then
1

ε

∫

]s1∨(s2−ε),s2]
ψ(s)ds −→ε→0 ψ(s2).

pointwise.

Finally

I2(ε, t) −→

∫

∆t

dµ(s1, s2)ψ(s2).

and the proof of (67) is established.
In particular

γt = E(t) + 2µ(∆t).

Since E has bounded variation and the total variation of t 7−→ µ(∆t) is bounded by
|µ|([0, T ]2), then γ is also a bounded variation function.

Corollary 8.13 Let f ∈ C2(R) such that f ′′ is bounded. We set γt = V ar(Xt). Then

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)δXs +

1

2

∫ t

0
f ′′(Xs)dγ(s).

Proof: It follows from Lemma 8.11 and Lemma 8.12 setting ψ(t) = f ′′(Xt).

We would like to examine some particular cases. For this we decompose µ into
µd + µod where for every A ∈ B([0, T ]2)

µd(A) = µ(A ∩DT ), µod(A) = µ(A\DT ).

Hence µd is concentrated on the diagonal, µod outside the diagonal.

We recall that
E(t) = µ(Dt),

where E = E(X) is the energy function defined in Section 3. Consider the repartition
functions Rd, Rod of µd, µod. We have

Rd(s1, s2) = µd (]0, s1]×]0, s2]) = E(s1 ∧ s2)

and
Rod(s1, s2) = µod (]0, s1]×]0, s2]) .

Remark 8.14 i) Setting ψ = E, there is a Gaussian martingale M with covariance Rd. It
is enough to take Mt = Wψ(t), where (Wt) is a classical Brownian motion.
ii) Rod(s1, s2) = Cov(Xs1 ,Xs2) − Cov(Ms1,Ms2).
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Proposition 8.15 Suppose that

i) E is absolutely continuous, i.e. there is a locally integrable function E ′ such that

E(t) =

∫ t

0
E ′(s)ds :

ii) µod is absolutely continuous with respect to Lebesgue measure. In particular one has

µod(]0, s1]×]0, s2]) =

∫

]0,s1]×]0,s2]

∂2R

∂s1∂s2
ds1ds2.

In fact it is clear that

∂2R

∂s1∂s2
=

∂2Rod
∂s1∂s2

on [0, T ]2\DT .

Then the conclusion of the Theorem 8.1 holds replacing assumptions

• Y is cadlag,

• c) (resp. c’),

with

• For t a.e. Lebesgue

DtYt− = lim
ε→0

1

ε

∫ t

t−ε
DtYsds exists a.s. (69)

(resp.

DtYt+ = lim
ε→0

1

ε

∫ t+ε

t

DtYsds exists a.s.) (70)

Moreover the conclusion of the theorem can be stated as

∫ T

0
Y d−X =

∫ T

0
Y δX +

∫ T

0
DtYt−E

′(t)dt +

∫

[0,T ]2
Dt1Yt2

∂2R

∂s1∂s2
(t1, t2)dt1, dt2. (71)

(resp.

∫ T

0
Y d+X =

∫ T

0
Y δX +

∫ T

0
DtYt+E

′(t)dt +

∫

[0,T ]2
Dt1Yt2

∂2R

∂s1∂s2
(t1, t2)dt1, dt2.) (72)
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Remark 8.16 If c) and c’) of Theorem 8.1, with (69) and (70) are verified then

∫ t

0
Y doX =

∫ t

0
Y δX +

∫ t

0
(DsYs+ +DsYs−)E ′(s)dt+

∫

[0,t]2
Dt1Yt2

∂2R

∂s1∂s2
(t1, t2)dt1dt2

and

[X,Y ]t =

∫ t

0
(DsYs+ +DsYs−)E ′(s)dt.

Before proceeding to the proof, we recall a basic result which can be found in [42].

Lemma 8.17 Let g ∈ Lp(R), 1 ≤ p <∞. We set

gε(x) =
1

ε

∫ x

x−ε
g(y)dy or gε(x) =

1

ε

∫ x+ε

x

g(y)dy.

Then gε → g a.e. and in Lp.

Proof of Proposition 8.15: The proof follows the same line as the proof of Theorem 8.1.
a) First we need to adapt Lemma 8.5 to show that limε→0

∫ T

0 Y ε
s δXs =

∫ T

0 YsδXs in L2(Ω)
where Y ε still denotes the same approximation process. Again we need to show that the
right hand side of (61) converges to zero when ε→ 0. Its first term gives (I1 + I2)(ε), where

I1(ε) = E

(

∫

[0,T ]2
ds1ds2

∂2R

∂s1∂s2
(Y ε
s1

− Ys1)(Y
ε
s2

− Ys2)

)

,

I2(ε) = E

(∫ T

0
dsE ′(s)(Y ε

s − Ys)
2)

)

.

Lemma 8.17 implies that Y ε −→ Y a.e. dP ⊗ Leb. Lebesgue dominated convergence
theorem and Assumption a) imply that I1(ε) −→ 0 and I2(ε) −→ 0, when ε converges to
zero. It remains to control the second term in (61) which is given by (63). This second
term gives K1(ε) +K2(ε) with

K1(ε) = E

(

∫

[0,T ]2
ds1ds2

∣

∣

∣

∣

∂2R

∂s1∂s2

∣

∣

∣

∣

∫

[0,T ]2
dt1dt2

∣

∣

∣

∣

∂2R

∂t1∂t2

∣

∣

∣

∣

|Ds1Y
ε
t1
−Ds1Yt1 ||Ds2Y

ε
t1
−Ds2Yt1 |

)

,

K2(ε) = E

(∫ T

0
ds|E ′(s)|

∫ T

0
dt(DsY

ε
t −DsYt)

2)

)

.

Point b) and (69) allow to show that K1(ε) +K2(ε) −→ 0.
b) The other point concerns the convergence of I2(T, ε) appearing in the proof of

Theorem 8.1. To prove the convergence of (66) we separate again µ = µd + µod and we

45



use (69) on the diagonal. Finally Lemma 8.17, (50) and Lebesgue dominated convergence
theorem show that for t1, t2, t1 6= t2 a.e.

1

ε

∫ t2+ε

t2

dsDt1Ys
ε→0
−→ Dt1Yt2 a.e. dP ⊗ dt1dt2.

Example 8.18 Let us apply the obtained results to some particular examples.

a) Case of a Gaussian martingale with absolutely continuous quadratic variation λ(t) =
λ(0) +

∫ t

0 λ̇(s)ds.

R(t1, t2) = λ(t1 ∧ t2), γ(t) = V ar(Xt) = λ(t),

E ′(t) = λ̇(t), R = Rd,

∂2R

∂t1∂t2
= 0 a.e. Lebesgue.

Let Y be as in Proposition 8.15. Then

∫ T

0
Y d−X =

∫ T

0
Y δX +

∫ T

0
DtYt−λ̇(t)dt.

b) The case of fractional Brownian motion H > 1/2.
We have

R = Rod
∂2R

∂t1∂t2
= 2H(2H − 1)|t2 − t1|

2H−2, γ(t) = t2H . (73)

One obtains the classical results for fractional Brownian motion as in [3], for instance

∫ T

0
Y d−X =

∫ T

0
Y δX +H(2H − 1)

∫

[0,T ]2
Dt1Yt2 |t2 − t1|

2H−2dt1dt2.

Corollary 8.13 provides the following Itô formula:

f(Xt) = f(X0) +

∫ t

0
f ′(X)δX +H

∫ t

0
f ′′(Xs)s

2H−1ds. (74)

c) The case of bifractional Brownian motion X = BH,K, HK ≥ 1
2 .

It is easy to verify that V ar(Xt) = t2HK so that

Corollary 8.13 implies

f(Xt) = f(0) +

∫ t

0
f ′(Xs)δXs +HK

∫ t

0
f ′′(Xs)s

2HK−1ds.
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In particular, if HK = 1
2 we get a formula which looks very similar to the one for the

Brownian motion:

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)δXs +

1

2

∫ t

0
f ′′(Xs)ds.
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[44] C.A. Tudor and F. Viens (2003): Itô formula and local times for the fractional Brownian
sheet. Electronic Journal of Prob., 8, paper 14, pag. 1–31.

[45] C.A. Tudor and Y. Xiao (2006): Sample paths properties of the Bifractional BM. To
appear: Bernoulli.

49



[46] Y. Xiao (2005): Strong local nondeterminism and the sample path properties of Gaus-
sian random fields. Preprint.

[47] S. Watanabe (1994): Lecture on stochastic differential equations and Malliavin calculus,
Tata institute of fundamental research, Springer-Verlag.

50


