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sup + inf for Riemannian surfaces and sup X inf
for bounded domains of R"”, n > 3
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Abstract

On a Riemannian surface, we give a condition to obtain a minoration of
sup +inf. On an open bounded set of R™ (n > 3) with smooth boundary, we
have a minoration of sup x inf for prescribed scalar curvature equation with
Dirichlet condition.
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In this paper, we study some inequalities of type sup + inf (in dimension 2)
and sup x inf (in dimension n > 3). We denote A = —V;(V?) the geometric
laplacian.

The paper is linking to the Note presented in Comptes Rendus de I’Académie
des Sciences de Paris (see [B1])

In dimension 2, we work on Riemannian surface (M, g) and we consider the
following equation:

Au+ f=Ve* (Ev)

where f and V are two functions.
We are going to prove a minoration of sup v + inf v under some conditions

on f and V.

Where f = R, with R the scalar curvature of M, we have the scalar curvature
equation studied by T. Aubin, H. Brezis, YY. Li, L. Nirenberg, R. Schoen.

In the case f = R = 27 and M = S?, we have a lower bound for sup + inf
assuming V' non negative, bounded above by a positive constant b and without
condition on VV (see Bahoura [B]).

The problem was studied when we suppose V' = V; uniformly lipschitzian
and between two positive constants. (See Bahoura [B] and Li [L]). In fact, there
exists ¢ = ¢(a, b, A, M) such that for all sequences u; and V; satisfying:
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Au; + R=V;ie", 0 <a <Vi(z) <band |[|[VVi]|e < A,

we have,
supu; + infu; > ¢ V1.
M M

We have some results about L*>° boundness and asymptotic behavior for the
solutions of euqations of this type on open set of R?, see [BM], [S], [SN 1] and
[SN 2].

Here, we try to study the same problem with minimal conditions on f and
V', we suppose 0 < V < b and without assumption on VV.

Theorem 1. Assume (M,g) a Riemannian surface and f,V two functions
satisfying:

f(x) >0, and 0 < V(z) <b< 400, Vael

suppose u solution of:

Au+ f=Ve"

then:
if 0 < fM f < 8w, there exists a constant ¢ = ¢(b, f, M) such that:

sup u + inf u > c,
M M

if 8w < [, f < 167, there exists C = C(f, M) €]0,1[ and ¢ = c(b, f, M)
such that:

supu + Cinfu > c.
M M

Remark: In fact, we can suppose f = k a constant. (See [B1]).

Now, we work on a smooth bounded domain Q C R™ (n > 3).

Let us consider the following equations:

Aue =uN"1¢ ue>01in Q and ue =0 on 9N (E9).
2n

n—2

The existence result for those equations depends on the geometry of the
domain. For example, if we suppose, {2 starshaped and ¢ = 0, the Pohozaev
identity assure a nonexistence result. If ¢ = 0, under assumption on {2, we can
have an existence result. When € > 0 there exists a solutions for the previous
equation.

with e > 0, N =




For ¢ > 0, [AP], [BP] and [H] , studied some properties of the previous
equation.

On unit ball of R™, Atkinson-Peletier(see [AP]) have proved:

Jimn inf ] ( ! 1)
im[sup we inf u]=(—-1),
=0, (0) Bk(0) ||

with |z| = k < 1.

In [H], Z-C Han, has proved the same estimation on a smooth open set
Q C R™ with the following condition :

. fQ |vu6|2
lim ——=— = Sn (1)7
2 Ml lov P

I'(n/2)

with S, = mn(n —2) { ] the best constant in the Sobolev imbedding.

I'(n)
In fact, the result of Z-C Han (see [H] ), is (with (1)),

liH(l) [|ue||Locte(x) = opn(n — 2)G(x, x0), with, z € Q — {x0}.

where zg € Q) and G is the Green function with Dirichlet condition.

In our work, we search to know if it is possible to have a lower bound of
sup x inf, without the assumption (1).

Theorem 2. For all compact K of €, there exists a positive constant ¢ =

2
c(K,Q,n) > 0, such that for all solution u. of (E3) with € €]0, p—

|, we have:
2

sup ue X infue > c.
Q K

Next, we are intersting by the following equation:

Au=u""T4+eu, u>0, in Q, and u=0 on AN.

We know that in dimension 3, there is no radial solution for the previous
equation if e < A, with Ax > 0, see [B N]. Next, we consider n > 4.

We set G the Green function of the laplacian with Dirichlet condition. For
0 < a < 1, we denote:

(0%

supg [, G(z,y)dy

Assume n > 4, we have:



Theorem 8. For all compact K of Q0 and all 0 < o < 1 there is a positive
constant ¢ = c(a, K,Q,n) , such that for all sequences (€;)ien with 0 < ¢; <
and (ue,)ien) satisfying:

N-1

A, = U, + €iUe;, U, >0 and ue, =0 on 09, V 1,

we have:

YV i, supue, X infu., > c.
Q K



Proof of the Theorem 1:
First part (0< [,, f <8 ):
We have:

Au+ f=VeY,

We multiply by u the previous equation and we integrate by part, we obtain:

/|Vu|2+/ fu= [ Ve'u,
M M M

But V>0 and f > 0, then :

/ |Vu|2+infu/ f <supu [ Ve
M M Jp M

M

On Riemannian surface, we have the following Sobolev inequality, (see [DJLW],

[F]):

1
3C=C(M 0, Vv € H{ (M), 1 v log C.
(M,g) >0, Vv e H{ (M), Og(/Me)_lﬁ A% | VOZ(M)/MU-f—Og
Let us consider G the Green function of the laplacian such that:
G(z,y) >0 and, / G(z,y)dVy(y) = k = constant.
M
Then,

o) = g [t [ GV - swlav ),

and,

1
i = > - _
1]1\14fu u(zg) > Vol (D) /Mu Cy,

with,

/ (G(zo,y)f(y)] <sup f | G(xo,y)dVy(y) = ksup f = C4.
M M M M

But, [,, Ve* = [,, f > 0, we obtain,

(/Mf) (supu-+infu) > —201/Mf+ VOZQ(M) (/Mu) (/Mf) +/M|Vu|2,

thus,

1 1
supu + infu > 2 7/ u+—/ VuQ}—QC.



If we suppose, 0 < fM f < 8w, we obtain and then:

1 S 1
2fMu — 167

supu + inf u > 2 [
M

1
U+ — |Vu|2] — 20y,
M M

Vol(M) /M 16w

We use the previous Sobolev inequality, we have:

supu + infu > —2C7 — 2log C + 2log (/ eu) ,
M M M

but,
/ f:/ Ve“ﬁb/ e,
M M M
then,
1
e Z 7 fa
/M b Jur

and finaly,

1
SHPU+infu22012log0+2log<—/ f>_
M M b Ju

Second part ( 87 < fn”, f < 16w ):
Like en the first part, we have:

a) |Vul? +infu/ f<supu | f,
M MM M

1 1
b) lo e ) < — Vul? + /u—Ho C,
) g(/M )— 167 Ml | Vol(M) Jy &

1
infu> ——— — 4.
c) infu ol( )/Mu Ch

We set A > 0. We use a),b), c) and we obtain:

([ 1) ewurrigro = -ownes [ p+E 2 ([ u) ([ ) [ o

thus,

1 1
supu+Ainfu > —(A+1)C1+(1+A 7/ U+ —-—
Mp M ( SO+ )[VOZ(M) M (1+>\)fo M

1

We choose A > 0, such that, ———— > —
(L+X) [, [~ 167



167rffo <1

thus, (1+A) [, f <16m, 0< A <
Ju !

Finaly, the choice of A, give:

SUPUJF)\inUZ()\Jrl)C&(1+)\)10gC+(1+)\)1og<1/ f).
M M b M

16w — [,, f
Jar !

167T_fo)inf _016_77_1(3_#1 C 167, (1 )
S}ép”( [P A P A 9 A W b/Mf‘

If we take A = €]0, 1], we obtain:

Proof of theorems 2 and 3:

Here, we give two methods to prove the theorems 2 and 3, but we do the
proof only for the theorem 2. In the first proof we use the Moser iterate scheme,
the second proof is direct.

Method 1: by the Moser iterate scheme.

We argue by contradiction and we suppose:
2
IKCC Q, Ve>0, Je. €0, —2] such that:
n—

N—-1—¢.

Au,, = u., , Ue, > 0in ©Q and ue, = 0 on 02,

with,

supue, X infu., <c
Q K

1
We take ¢ = =, there exists a sequence (€;);>0, such that Vi € N¢; €
i >

10 ] and

"n—2
Aue, = ue, N 717 u,, > 0in Q and u, =0, on 9N ()

with,
x inf u,, < ! 0 (k)
cx infue, < = — 0 ().
SUP e, X 1nf ue, < 7
Clearly the function u., which satisfy (x), there exists x., € Q such that:

SUD Ue, = MAX Ue, = U, (Te, )-
Q Q



Lemma:
There exists § = 0(2,n) > 0 such that for all ¢ > 0 and u. > 0, solution of
our problem with z. € Q, supg, u. = uc(x.) we have:

d(ze, 0) > 0.
Proof of the lemma:

We argue by contradiction. We suppose: V § > 0, 3z, such that: d(meié ,00) <
d.

1
We take § = —,j — +o00, we have a subsequence ¢;;, noted ¢;, such that,

d(z;,00) = 0.

Let us consider G the Green function of the laplacian with Dirichlet condition
and w satisfying:

Aw=11n Q and w = 0 on 0N.

Using the variational method, we can prove the existence of w and w €
().

The Green representation formula and the fact z., — yo € 09 give:
0= wlyn)  wle) = | Gla o).
Q
we can write,

/ G(xe;,y)dy — 0.
Q

The function wu., satisfy () and thus:

e o) < e 1 [ Gl v,
Q

consequently,

1 < fue, (e )V 2 / G, y)dy.
Q

Then,

Ue,; (Te;,) — +00 and z., — yo € I (x * ).

But, if we use the result of Z-C.Han (see [H] page 164) and [DLN] (pages
44-45 and 50-53) and the moving plane method (see [GNN]) we obtain:

if  is smooth bounded domain, f a function in C' and u is a solution of:



Au = f(u), in Q and v = 0 on 99,

there exists two positive constants § and -y, which depend only on the geom-
etry of the domain €, such that:

)
Va e {zdz00) <4} 3T, C {z,d(z00) > 5} with mes(T'y) > v et
u(z) <wu(f) for all £ € Ty

Thus,

with Q' cc Q.

)
If we replace x by x.,, u by u., and we take Q' = {z € Q,d(z,00) > 5}, we

obtain (after using the argument of the first eigenvalue like in [H]):

1
+00 — ug, (z,) < —/ e, < c2(Q',n) < oo,
Yy /

it is contradiction. The lemma is proved.

We continue the proof of the Theorem.

Without loss of generality , we can assume z., — yo. We consider (x,)i>0

0
and p > 0, such that z, € B(yo, 1) CC Q. ( we take u = 3 for example).

We have:

e, () = [ G y)ue, N1 (y)dy

According to the properties of the Green functions and maximum priciple,
on the compact K of Q:
G(z,y) > c3 =c¢(K,Q,n) >0, Ve e K, ye By, ).
Thus,

: N—-1—¢;
1%f Ue; = Ue, (Ye;) = 03/ U, i
B(yo,m)

and then,

e e SUpE Ue, X Inf i Ue,
B(yo,u) Q B(yo,u) €3



Finaly,

0</ qu—” —0 (% ok ).
B(yo,u)

Let n be a smooth function such that :

2
OSUS 1) 7751’ on B(yOa/j//2)a 7750’ OnQ_B(yOa_M)

3
Set k > 1. We multiply the equation of u., by u,?*~!1? and we integrate
by part the first member,

(2k—1)/ |Vue, |2uq2k_2n2+2/
B(yo,24/3)

B(yo,21/3)

We compute |V (ue,*n)|? and we deduce:

< Ve, |V > nue, 21 = / e, N2k 2.
B(yo,241/3)

2k -1 2 -2k
22wt R [ <o,
B(yo,241/3) B(yo,21/3)

2% — 1 / Yy o
|V77| Ue,
k2 I B(yo,2u/3)

vn > uei%_lnf

_ / 772U€iN+2k_2_€i-
B(yo,211/3)
And

)

1 1
/ < Vue, [V > ue 1y / < V(e )V (P) >= / AP .
B(yo.2u/3) 4k JB(yo.21/3) 4k ) B(yo,20/3)

Then,

2k -1

2 — 2k 2k —1
1V (e, )P = 2 2F / AP yue / IVl +
k? /B<yo,2u/3> 4k JB(ye.20/3) k2 JByo.2u/3)

+/ qu-}-Qk—Q—q-
B(yo,2p/3)
But,

R N U R}
B(yo,211/3) B(yo,214/3)

Using Holder inequality with p = (N —¢;)/2 and p’ = (N —¢;) /(N —¢; — 2),
we obtain:

2k —1
T[HV(WQ)

L2(Bo))” < [l|ue,

LN*Ci(BO)]N7€i72 x| lnue,”

|LN*%'(BO)]2+C[||U61-

L2k (Bo)]Qk

10



2 -2k 2k —

. 1
with By = B(yo,2p/3) and C = C(k,n) = WHAnHO@ + THVHHOO.

Holder and Sobolev inequalities give,
nue, | pv—ei (poy)* < [Bol* /W= IK |V (que, )] 12 (50)]° -

‘We obtain:

2k —1

N—2—¢; X [
K/{Z2|BO |26i/[N(N—€i)]

||Tlu’5ik |LN*%'(B0)]27L

[”nuqk |LN*Ei(Bg)]2 < [l LN*Ei(BO)]

+C (k) el Lar (5) "
with |By| = mes[B(0,2u/3)].

N —
We choose k =

‘i and we denote a; = [||77u61.(N_Q')/QHLN%I-(BU)]2 > 0.
We have:

cra; < Biag + cavi,

with ¢1 = c1(N,p) > 0,¢c2 = co(N, ) > 0, B; = [||ue;
Vi = [[lue; JVe.

LNfsi]N7276i and

LN—«i

2
with e; €]0, —2] According to (x * xx), we have, 3; — 0 and ~; — 0.
n—

Thus,
(c1/2)a; < (e1 = Bi)a; < — 0.
Finaly,
B(yo,u/2) B(yo,211/3)
N — 1 2 N — i r
We iterate this process with k = 7( 1 i) after with k& = 7( QTE ) , e N

we obtain, for all ¢ > 1, there exists [ > 0, such that:

/ (ue,)? — 0.
B(yo,l)

Using the Green representation formula, we obtain:

vV x € B(z,l'), u () :/ Gz, y)u, N 1e (y)dy+/ 0y G(x, 07)ue, (07)doy (skskskk).
B(yo,l) 0B (yo,l)

11



where 0 < I’ <.

We have,
1
/ ue, = / / ue, (roy)do.dr — 0,
B(yo,l) 0 JOB(yo,r)

We set, si,q(r) = [5p(y.r) Ue.?(707). Then,

!
/ Si,q(r)dr — 0,
0

We can extract of, s; 4, a subsequence which noted s; ; and which tends to
0 almost every-where on [0, ].

g(n+2)

n
First, we choose, ¢1 = E—— with ¢ > 3 after we choose o > 0, such
n

that, fB(yo ) Ue,™ — 0. Finaly, we take Iy €]0, 5], such that, s; 4, (1) — 0. We

take lg = 51 =1"in (x**x*%) and [ = [} in (**** ), we obtain (if we use Holder

inequality for the two integrals of (s * %)),

3l >0, sup wu, — 0.
B(yo,lo)

But, z., — yo, for i large, z., € B(yo,lo), which imply,
Ue,; (Te;) = max e, — 0.

But if we write,

e (2e)) = / Ger, y)ue, N1 () dy,

we obtain,

max e, = e, (v,) < (sup e, )V / Glae y)dy = [ue, ()] ™~ w(ae,),
Q
and finaly,
1< ue, (‘rﬁi)]N_2_€iw($€i)'

2
But, w > 0on Q, ||w||ec >0and N —2 —¢; > g Ve have,
n—
(we,) > L > c4(n, Q) >0
u€i xﬁi - —2—¢; - C4 n) *
[leofloe 727

It is a contradiction.

For the Theorem 3, we obtain a contradiction if we write:

12



max e, < (maxue, )Y 1 ||w]|so+maxue, e sup [ G(z,y)dy < (maxue, ) ! ||w]|so+amaxu,,,
Q Q Q Q Jo Q Q

and finaly,

10\ VN2
Ileloo)

Method 2: proof of theorem 2 directly.

m&xuq > (

Suppose that:

sup x infu; — 0,
Q K

then, for § > 0 small enough, we have:

sup u; X i — 0.

inf U
{z,d(x,00)>6}
Like in the first method (see [H]), for 6 > 0 small,

sup u; <M = M(n,Q).
{z,d(x,00)>6}

We have,

wi() = /Q G, y)u 1 dy.

Let us consider K’ another compact of €2, using maximum principle, we
obtain:

dep = 1 (K, K',n,Q) > 0, such that G(z,y) > 1 V2 € K, y € K,

thus,

i%f u; = ui(x;) > cl/ ufv_l_eidy.

/

We take, K/ = K5 = {x,d(x,00) > 4§}, there exists ca = c2(d,n, K,Q) > 0
such that:

sup u; X inf u; > 02/ ufv_eidy,
Q K Ks
we deduce,

€

luslly=c; = ¢ supus x i+ mes({, d(z, 090) < 5})M*
' Q

inf
{z,d(x,00)>5}

13



If we take § small and for i large, we have:

|[wil|N—e, — 0.

Now, we use the Sobolev imbedding, Hg in LY, we multiply the equation of
u; by u;, we intgrate by part and finaly, by Holder inequality, we obtain:

Klnuz—nszvfeﬁsfﬁnums/QWuiF:/Qui-V—“:||uz-||%:izs

2
we know that, 0 < ¢; < — the previous inequality:
n—

||ui||N7€i Z K?) > 05 v iv

it is a contradiction.

14
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