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sup + inf for Riemannian surfaces and sup× inf

for bounded domains of R
n, n ≥ 3
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Abstract
On a Riemannian surface, we give a condition to obtain a minoration of

sup + inf. On an open bounded set of Rn (n ≥ 3) with smooth boundary, we
have a minoration of sup× inf for prescribed scalar curvature equation with
Dirichlet condition.
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In this paper, we study some inequalities of type sup + inf (in dimension 2)
and sup× inf (in dimension n ≥ 3). We denote ∆ = −∇i(∇

i) the geometric
laplacian.

The paper is linking to the Note presented in Comptes Rendus de l’Académie
des Sciences de Paris (see [B1])

In dimension 2, we work on Riemannian surface (M, g) and we consider the
following equation:

∆u + f = V eu (E1)

where f and V are two functions.
We are going to prove a minoration of supu + inf u under some conditions

on f and V .

Where f = R, with R the scalar curvature of M , we have the scalar curvature
equation studied by T. Aubin, H. Brezis, YY. Li, L. Nirenberg, R. Schoen.

In the case f = R = 2π and M = S2, we have a lower bound for sup + inf
assuming V non negative, bounded above by a positive constant b and without
condition on ∇V (see Bahoura [B]).

The problem was studied when we suppose V = Vi uniformly lipschitzian
and between two positive constants. (See Bahoura [B] and Li [L]). In fact, there
exists c = c(a, b, A, M) such that for all sequences ui and Vi satisfying:
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∆ui + R = Vie
ui , 0 < a ≤ Vi(x) ≤ b and ||∇Vi||∞ ≤ A,

we have,

sup
M

ui + inf
M

ui ≥ c ∀ i.

We have some results about L∞ boundness and asymptotic behavior for the
solutions of euqations of this type on open set of R2, see [BM], [S], [SN 1] and
[SN 2].

Here, we try to study the same problem with minimal conditions on f and
V , we suppose 0 ≤ V ≤ b and without assumption on ∇V .

Theorem 1. Assume (M, g) a Riemannian surface and f, V two functions

satisfying:

f(x) ≥ 0, and 0 ≤ V (x) ≤ b < +∞, ∀ x ∈M.

suppose u solution of:

∆u + f = V eu.

then:

if 0 <
∫

M
f ≤ 8π, there exists a constant c = c(b, f, M) such that:

sup
M

u + inf
M

u ≥ c,

if 8π <
∫

M
f < 16π, there exists C = C(f, M) ∈]0, 1[ and c = c(b, f, M)

such that:

sup
M

u + C inf
M

u ≥ c.

Remark: In fact, we can suppose f ≡ k a constant. (See [B1]).

Now, we work on a smooth bounded domain Ω ⊂ R
n (n ≥ 3).

Let us consider the following equations:

∆uǫ = uǫ
N−1−ǫ, uǫ > 0 in Ω and uǫ = 0 on ∂Ω (E2).

with ǫ ≥ 0, N =
2n

n− 2
.

The existence result for those equations depends on the geometry of the
domain. For example, if we suppose, Ω starshaped and ǫ = 0, the Pohozaev
identity assure a nonexistence result. If ǫ = 0, under assumption on Ω, we can
have an existence result. When ǫ > 0 there exists a solutions for the previous
equation.
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For ǫ > 0, [AP], [BP] and [H] , studied some properties of the previous
equation.

On unit ball of Rn, Atkinson-Peletier(see [AP]) have proved:

lim
ǫ→0

[ sup
B1(0)

uǫ inf
Bk(0)

uǫ] =

(

1

|k|
− 1

)

,

with |x| = k < 1.

In [H], Z-C Han, has proved the same estimation on a smooth open set
Ω ⊂ Rn with the following condition :

lim
ǫ→0

∫

Ω
|∇uǫ|

2

[||uǫ||LN−1−ǫ ]2
= Sn (1),

with Sn = πn(n− 2)

[

Γ(n/2)

Γ(n)

]

the best constant in the Sobolev imbedding.

In fact, the result of Z-C Han (see [H] ), is (with (1)),

lim
ǫ→0
||uǫ||L∞uǫ(x) = σn(n− 2)G(x, x0), with, x ∈ Ω− {x0}.

where x0 ∈ Ω and G is the Green function with Dirichlet condition.

In our work, we search to know if it is possible to have a lower bound of
sup× inf, without the assumption (1).

Theorem 2. For all compact K of Ω, there exists a positive constant c =

c(K, Ω, n) > 0, such that for all solution uǫ of (E2) with ǫ ∈]0,
2

n− 2
], we have:

sup
Ω

uǫ × inf
K

uǫ ≥ c.

Next, we are intersting by the following equation:

∆u = uN−1 + ǫu, u > 0, in Ω, and u = 0 on ∂Ω.

We know that in dimension 3, there is no radial solution for the previous
equation if ǫ ≤ λ∗ with λ∗ > 0, see [B N]. Next, we consider n ≥ 4.

We set G the Green function of the laplacian with Dirichlet condition. For
0 < α < 1, we denote:

β =
α

supΩ

∫

Ω
G(x, y)dy

.

Assume n ≥ 4, we have:
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Theorem 3. For all compact K of Ω and all 0 < α < 1 there is a positive

constant c = c(α, K, Ω, n) , such that for all sequences (ǫi)i∈N with 0 < ǫi ≤ β
and (uǫi

)i∈N) satisfying:

∆uǫi
= uǫi

N−1 + ǫiuǫi
, uǫi

> 0 and uǫi
= 0 on ∂Ω, ∀ i,

we have:

∀ i, sup
Ω

uǫi
× inf

K
uǫi
≥ c.
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Proof of the Theorem 1:

First part ( 0 <
∫

M
f ≤ 8π ) :

We have:

∆u + f = V eu,

We multiply by u the previous equation and we integrate by part, we obtain:

∫

M

|∇u|2 +

∫

M

fu =

∫

M

V euu,

But V ≥ 0 and f ≥ 0, then :

∫

M

|∇u|2 + inf
M

u

∫

M

f ≤ sup
M

u

∫

M

V eu.

On Riemannian surface, we have the following Sobolev inequality, (see [DJLW],
[F]):

∃ C = C(M, g) > 0, ∀v ∈ H2
1 (M), log

(
∫

M

ev

)

≤
1

16π

∫

M

|∇v|2+
1

V ol(M)

∫

M

v+log C.

Let us consider G the Green function of the laplacian such that:

G(x, y) ≥ 0 and,

∫

M

G(x, y)dVg(y) ≡ k = constant.

Then,

u(x) =
1

V ol(M)

∫

M

u +

∫

M

G(x, y)[V (y)eu(y) − f(y)]dVg(y),

and,

inf
M

u = u(x0) ≥
1

V ol(M)

∫

M

u− C1,

with,

∫

M

[G(x0, y)f(y)] ≤ sup
M

f

∫

M

G(x0, y)dVg(y) = k sup
M

f = C1.

But,
∫

M V eu =
∫

M f > 0, we obtain,

(
∫

M

f

)

(sup
M

u + inf
M

u) ≥ −2C1

∫

M

f +
2

V ol(M)

(
∫

M

u

)(
∫

M

f

)

+

∫

M

|∇u|2,

thus,

sup
M

u + inf
M

u ≥ 2

[

1

V ol(M)

∫

M

u +
1

2
∫

M
f

∫

M

|∇u|2
]

− 2C1.
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If we suppose, 0 <
∫

M f ≤ 8π, we obtain
1

2
∫

M
u
≥

1

16π
and then:

sup
M

u + inf
M

u ≥ 2

[

1

V ol(M)

∫

M

u +
1

16π

∫

M

|∇u|2
]

− 2C1,

We use the previous Sobolev inequality, we have:

sup
M

u + inf
M

u ≥ −2C1 − 2 log C + 2 log

(
∫

M

eu

)

,

but,

∫

M

f =

∫

M

V eu ≤ b

∫

M

eu,

then,

∫

M

eu ≥
1

b

∫

M

f,

and finaly,

sup
M

u + inf
M

u ≥ −2C1 − 2 logC + 2 log

(

1

b

∫

M

f

)

.

Second part ( 8π <
∫

M
f < 16π ):

Like en the first part, we have:

a)

∫

M

|∇u|2 + inf
M

u

∫

M

f ≤ sup u

∫

M

f,

b) log

(
∫

M

eu

)

≤
1

16π

∫

M

|∇u|2 +
1

V ol(M)

∫

M

u + log C,

c) inf
M

u ≥
1

V ol(M)

∫

M

u− C1.

We set λ > 0. We use a), b), c) and we obtain:

(
∫

M

f

)

(sup
M

u+λ inf
M

u) ≥ −(λ+1)C1

∫

M

f+
(1 + λ)

V ol(M)

(
∫

M

u

)(
∫

M

f

)

+

∫

M

|∇u|2,

thus,

sup
M

u+λ inf
M

u ≥ −(λ+1)C1+(1+λ)

[

1

V ol(M)

∫

M

u +
1

(1 + λ)
∫

M
f

∫

M

|∇u|2
]

.

We choose λ > 0, such that,
1

(1 + λ)
∫

M
f
≥

1

16π
,
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thus, (1 + λ)
∫

M f ≤ 16π, 0 < λ ≤
16π −

∫

M f
∫

M f
< 1.

Finaly, the choice of λ, give:

sup
M

u + λ inf
M

u ≥ −(λ + 1)C1 − (1 + λ) log C + (1 + λ) log

(

1

b

∫

M

f

)

.

If we take λ =
16π −

∫

M
f

∫

M
f

∈]0, 1[, we obtain:

sup
M

u +

(

16π −
∫

M
f

∫

M f

)

inf
M

u ≥ −C1
16π
∫

M f
−

16π
∫

M f
log C +

16π
∫

M f
log

(

1

b

∫

M

f

)

.

Proof of theorems 2 and 3:

Here, we give two methods to prove the theorems 2 and 3, but we do the
proof only for the theorem 2. In the first proof we use the Moser iterate scheme,
the second proof is direct.

Method 1: by the Moser iterate scheme.

We argue by contradiction and we suppose:

∃ K ⊂⊂ Ω, ∀ c > 0, ∃ ǫc ∈]0,
2

n− 2
] such that:

∆uǫc
= uǫc

N−1−ǫc , uǫc
> 0 in Ω and uǫc

= 0 on ∂Ω,

with,

sup
Ω

uǫc
× inf

K
uǫc
≤ c

We take c =
1

i
, there exists a sequence (ǫi)i≥0, such that ∀ i ∈ N, ǫi ∈

]0,
n

n− 2
] and

∆uǫi
= uǫi

N−1−ǫi , uǫi
> 0 in Ω and uǫi

= 0, on ∂Ω (∗)

with,

sup
Ω

uǫi
× inf

K
uǫi
≤

1

i
→ 0 (∗∗).

Clearly the function uǫi
which satisfy (∗), there exists xǫi

∈ Ω such that:

sup
Ω

uǫi
= max

Ω
uǫi

= uǫi
(xǫi

).

7



Lemma:
There exists δ = δ(Ω, n) > 0 such that for all ǫ > 0 and uǫ > 0, solution of

our problem with xǫ ∈ Ω, supΩ uǫ = uǫ(xǫ) we have:

d(xǫ, ∂Ω) ≥ δ.

Proof of the lemma:

We argue by contradiction. We suppose: ∀ δ > 0, ∃ xǫiδ
such that: d(xǫiδ

, ∂Ω) ≤
δ.

We take δ =
1

j
, j → +∞, we have a subsequence ǫij

, noted ǫi, such that,

d(xǫi
, ∂Ω)→ 0 .

Let us consider G the Green function of the laplacian with Dirichlet condition
and w satisfying:

∆w = 1 in Ω and w = 0 on ∂Ω.

Using the variational method, we can prove the existence of w and w ∈
C∞(Ω̄).

The Green representation formula and the fact xǫi
→ y0 ∈ ∂Ω give:

0 = w(y0)← w(xǫi
) =

∫

Ω

G(xǫi
, y)dy,

we can write,

∫

Ω

G(xǫi
, y)dy → 0.

The function uǫi
satisfy (∗) and thus:

uǫi
(xǫi

) ≤ (max
Ω

uǫi
)N−1−ǫi

∫

Ω

G(xǫi
, y)dy,

consequently,

1 ≤ [uǫi
(xǫi

)]N−2−ǫi

∫

Ω

G(xǫi
, y)dy.

Then,

uǫi
(xǫi

)→ +∞ and xǫi
→ y0 ∈ ∂Ω (∗ ∗ ∗).

But, if we use the result of Z-C.Han (see [H] page 164) and [DLN] (pages
44-45 and 50-53) and the moving plane method (see [GNN]) we obtain:

if Ω is smooth bounded domain, f a function in C1 and u is a solution of:
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∆u = f(u), in Ω and u = 0 on ∂Ω,

there exists two positive constants δ and γ, which depend only on the geom-
etry of the domain Ω, such that:

∀ x ∈ {z, d(z, ∂Ω) ≤ δ}, ∃ Γx ⊂ {z, d(z, ∂Ω) ≥
δ

2
} with mes(Γx) ≥ γ et

u(x) ≤ u(ξ) for all ξ ∈ Γx.

Thus,

u(x) ≤
1

mes(Γx)

∫

Γx

u ≤
1

γ

∫

Ω′

u (∗′),

with Ω′ ⊂⊂ Ω.

If we replace x by xǫi
, u by uǫi

and we take Ω′ = {z ∈ Ω, d(z, ∂Ω) ≥
δ

2
}, we

obtain (after using the argument of the first eigenvalue like in [H]):

+∞← uǫi
(xǫi

) ≤
1

γ

∫

Ω′

uǫi
≤ c2(Ω

′, n) <∞,

it is contradiction. The lemma is proved.

We continue the proof of the Theorem.

Without loss of generality , we can assume xǫi
→ y0. We consider (xǫi

)i≥0

and µ > 0, such that xǫi
∈ B(y0, µ) ⊂⊂ Ω. ( we take µ =

δ

2
for example).

We have:

uǫi
(x) =

∫

Ω

G(x, y)uǫi

N−1−ǫi(y)dy

According to the properties of the Green functions and maximum priciple,
on the compact K of Ω:

G(x, y) ≥ c3 = c(K, Ω, n) > 0, ∀ x ∈ K, y ∈ B(y0, µ).

Thus,

inf
K

uǫi
= uǫi

(yǫi
) ≥ c3

∫

B(y0,µ)

uǫi

N−1−ǫi ,

and then,

∫

B(y0,µ)

uǫi

N−ǫi ≤ (sup
Ω

uǫi
)×

∫

B(y0,µ)

uǫi

N−1−ǫi ≤
(supΩ uǫi

× infK uǫi
)

c3
→ 0.
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Finaly,

0 <

∫

B(y0,µ)

uǫi

N−ǫi → 0 (∗ ∗ ∗∗).

Let η be a smooth function such that :

0 ≤ η ≤ 1, η ≡ 1, on B(y0, µ/2), η ≡ 0, on Ω−B(y0,
2µ

3
).

Set k > 1. We multiply the equation of uǫi
by uǫi

2k−1η2 and we integrate
by part the first member,

(2k−1)

∫

B(y0,2µ/3)

|∇uǫi
|2uǫi

2k−2η2+2

∫

B(y0,2µ/3)

< ∇uǫi
|∇η > ηuǫi

2k−1 =

∫

B(y0,2µ/3)

uǫi

N−2k−2−ǫiη2,

We compute |∇(uǫi

kη)|2 and we deduce:

2k − 1

k2

∫

B(y0,2µ/3)

|∇(uǫi

kη)|2+
2− 2k

k

∫

B(y0,2µ/3)

< ∇uǫi
|∇η > uǫi

2k−1η−
2k − 1

k2

∫

B(y0,2µ/3)

|∇η|2uǫi

2k

=

∫

B(y0,2µ/3)

η2uǫi

N+2k−2−ǫi .

And,

∫

B(y0,2µ/3)

< ∇uǫi
|∇η > uǫi

2k−1η =
1

4k

∫

B(y0,2µ/3)

< ∇(uǫi

2k)|∇(η2) >=
1

4k

∫

B(y0,2µ/3)

∆(η2)uǫi

2k.

Then,

2k − 1

k2

∫

B(y0,2µ/3)

|∇(uǫi

kη)|2 =
2− 2k

4k2

∫

B(y0,2µ/3)

∆(η2)uǫi

2k+
2k − 1

k2

∫

B(y0,2µ/3)

|∇η|2uǫi

2k+

+

∫

B(y0,2µ/3)

uǫi

N+2k−2−ǫi .

But,

∫

B(y0,2µ/3)

uǫi

N+2k−2−ǫi =

∫

B(y0,2µ/3)

(uǫi

2kη2)(uǫi

N−2−ǫi).

Using Hölder inequality with p = (N − ǫi)/2 and p′ = (N − ǫi)/(N − ǫi− 2),
we obtain:

2k − 1

k2
[||∇(ηuǫi

)||L2(B0)]
2 ≤ [||uǫi

||LN−ǫi (B0)]
N−ǫi−2×[||ηuǫi

k||LN−ǫi (B0)]
2+C[||uǫi

||L2k(B0)]
2k

10



with B0 = B(y0, 2µ/3) and C = C(k, η) =
2− 2k

4k2
||∆η||∞ +

2k − 1

k2
||∇η||∞.

Hölder and Sobolev inequalities give,

[||ηuǫi

k||LN−ǫi (B0)]
2 ≤ |B0|

2ǫi/[N(N−ǫi)]K[||∇(ηuǫi

k)||L2(B0)]
2.

We obtain:

2k − 1

Kk2|B0|2ǫi/[N(N−ǫi)]
[||ηuǫi

k||LN−ǫi(B0)]
2 ≤ [||uǫi

||LN−ǫi (B0)]
N−2−ǫi×[||ηuǫi

k||LN−ǫi (B0)]
2+

+C(k, η))[||uǫi
||L2k(B0)]

2k,

with |B0| = mes[B(0, 2µ/3)].

We choose k =
N − ǫi

2
and we denote αi = [||ηuǫi

(N−ǫi)/2||LN−ǫi (B0)]
2 > 0.

We have:

c1αi ≤ βiαi + c2γi,

with c1 = c1(N, µ) > 0, c2 = c2(N, µ) > 0, βi = [||uǫi
||LN−ǫi ]

N−2−ǫi and
γi = [||uǫi

||LN−ǫi ]
N−ǫi .

with ǫi ∈]0,
2

n− 2
]. According to (∗ ∗ ∗∗), we have, βi → 0 and γi → 0.

Thus,

(c1/2)αi ≤ (c1 − βi)αi ≤ γi → 0.

Finaly,

0 <

∫

B(y0,µ/2)

uǫi

(N−ǫi)
2/2 ≤

∫

B(y0,2µ/3)

ηuǫi

(N−ǫi)
2/2 → 0.

We iterate this process with k =
(N − ǫi)

2

4
after with k =

(N − ǫi)
r

2r
, r ∈ N∗,

we obtain, for all q ≥ 1, there exists l > 0, such that:

∫

B(y0,l)

(uǫi
)q → 0.

Using the Green representation formula, we obtain:

∀ x ∈ B(x, l′), uǫi
(x) =

∫

B(y0,l)

G(x, y)uǫi

N−1−ǫi(y)dy+

∫

∂B(y0,l)

∂νG(x, σl)uǫi
(σl)dσl (∗∗∗∗∗).
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where 0 < l′ ≤ l.

We have,

∫

B(y0,l)

uǫi

q =

∫ l

0

∫

∂B(y0,r)

uǫi

q(rσr)dσrdr → 0,

We set, si,q(r) =
∫

∂B(y0,r) uǫi

q(rσr). Then,

∫ l

0

si,q(r)dr → 0,

We can extract of, si,q, a subsequence which noted si,q and which tends to
0 almost every-where on [0, l].

First, we choose, q1 =
q(n + 2)

n− 2
with q >

n

2
, after we choose l2 > 0, such

that,
∫

B(y0,l2)
uǫi

q1 → 0. Finaly, we take l1 ∈]0, l2], such that, si,q1
(l1)→ 0. We

take l0 =
l1
2

= l′ in (∗∗∗∗∗) and l = l1 in (∗∗∗∗∗), we obtain (if we use Hölder

inequality for the two integrals of (∗ ∗ ∗ ∗ ∗)),

∃ l0 > 0, sup
B(y0,l0)

uǫi
→ 0.

But, xǫi
→ y0, for i large, xǫi

∈ B(y0, l0), which imply,

uǫi
(xǫi

) = max
Ω

uǫi
→ 0.

But if we write,

uǫi
(xǫi

) =

∫

Ω

G(xǫi
, y)uǫi

N−1−ǫi(y)dy,

we obtain,

max
Ω

uǫi
= uǫi

(xǫi
) ≤ (sup

Ω
uǫi

)N−1−ǫi

∫

Ω

G(xǫi
, y)dy = [uǫi

(xǫi
)]N−1−ǫiw(xǫi

),

and finaly,

1 ≤ uǫi
(xǫi

)]N−2−ǫiw(xǫi
).

But, w > 0 on Ω, ||w||∞ > 0 and N − 2− ǫi >
2

n− 2
, we have,

uǫi
(xǫi

) ≥
1

[||w||∞
1/(N−2−ǫi)]

≥ c4(n, Ω) > 0.

It is a contradiction.

For the Theorem 3, we obtain a contradiction if we write:
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max
Ω

uǫi
≤ (max

Ω
uǫi

)N−1||w||∞+max
Ω

uǫi
ǫi sup

Ω

∫

Ω

G(x, y)dy ≤ (max
Ω

uǫi
)N−1||w||∞+αmax

Ω
uǫi

,

and finaly,

max
Ω

uǫi
≥

(

1− α

||w||∞

)1/(N−2)

.

Method 2: proof of theorem 2 directly.

Suppose that:

sup
Ω
× inf

K
ui → 0,

then, for δ > 0 small enough, we have:

sup
Ω

ui × inf
{x,d(x,∂Ω)≥δ}

ui → 0.

Like in the first method (see [H]), for δ > 0 small,

sup
{x,d(x,∂Ω)≥δ}

ui ≤M = M(n, Ω).

We have,

ui(x) =

∫

Ω

G(x, y)uN−1−ǫi

i dy.

Let us consider K ′ another compact of Ω, using maximum principle, we
obtain:

∃ c1 = c1(K, K ′, n, Ω) > 0, such that G(x, y) ≥ c1 ∀ x ∈ K, y ∈ K,

thus,

inf
K

ui = ui(xi) ≥ c1

∫

K′

uN−1−ǫi

i dy.

We take, K ′ = Kδ = {x, d(x, ∂Ω) ≥ δ}, there exists c2 = c2(δ, n, K, Ω) > 0
such that:

sup
Ω

ui × inf
K

ui ≥ c2

∫

Kδ

uN−ǫi

i dy,

we deduce,

||ui||
N−ǫi

N−ǫi
≥ c′2 sup

Ω
ui × inf

{x,d(x,∂Ω)≥δ}
ui + mes({x, d(x, ∂Ω) ≤ δ})MN−ǫi.

13



If we take δ small and for i large, we have:

||ui||N−ǫi
→ 0.

Now, we use the Sobolev imbedding, H1
0 in LN , we multiply the equation of

ui by ui, we intgrate by part and finaly, by Hölder inequality, we obtain:

K̄1||ui||8N − ǫi
2 ≤ K̄2||ui||

2
N ≤

∫

Ω

|∇ui|
2 =

∫

Ω

uN−ǫi

i = ||ui||
N−ǫi

N−ǫi
,

we know that, 0 < ǫi ≤
2

n− 2
, the previous inequality:

||ui||N−ǫi
≥ K̄3 > 0, ∀ i,

it is a contradiction.
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