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Length scale dependence of dynamical heterogeneity in a colloidal fractal gel
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LCVN UMR 5587, UM2 and CNRS, 34095 Montpellier, France∗

(Dated: June 2, 2006)

We use time-resolved dynamic light scattering to investigate the slow dynamics of a colloidal gel.
The final relaxation of the intensity autocorrelation function is faster than exponential : g2(q, τ )−1 ∼

exp[−(τ/τf)
p], with τf ∼ q−1 and p decreasing from 1.5 to 1 with increasing q. We quantify dynamical

fluctuations by means of the variance χ(τ, q) of the instantaneous autocorrelation function, the
analogous of the dynamical susceptibility χ4 studied in glass formers. The amplitude of χ is found
to grow linearly with q. We propose a simple model based on intermittent rearrangements that
accounts for both the average dynamics and its fluctuations.

PACS numbers: 82.70.Dd, 64.70.Pf, 82.70.Gg, 61.43.Hv

Soft matter systems where the constituents are packed
at high volume fraction or interact strongly have a
dynamical behavior reminiscent of that of molecular
glasses [1]: they exhibit very slow relaxations, non-
exponential response or correlation functions, history-
dependent dynamics, and dynamical heterogeneity [2].
However, soft glassy systems may also exhibit peculiar
dynamical features not found in hard glasses, because of
the wider variety of structures and interactions. An ex-
ample is provided by low volume fraction colloidal gels
resulting from the aggregation of strongly attractive par-
ticles. In these gels, the decay of the intensity correlation
function g2(q, τ) − 1 measured by dynamic light scatter-
ing is steeper than exponential and the relaxation time,
τf , has an anomalous q−1 dependence on the scattering
vector [3]. This “compressed” exponential, ballistic-like
dynamics has to be contrasted with the stretched expo-
nential relaxations and the diffusive behavior (τf ∼ q−2)
usually found in molecular systems [1]. Quite intrigu-
ingly, this unusual dynamics is not restricted to colloidal
gels, but has been observed recently in a large variety of
soft systems including closely packed deformable spheres,
micellar polycristals, sponge phases, and suspensions of
charged particles [4, 5, 6, 7, 8].

These systems share some common features: they all
are out-of-equilibrium and thus slowly evolve towards a
more stable configuration (aging); moreover, the relax-
ation of internal stress is believed to play a crucial role
in their dynamics [2]. Indeed, for colloidal gels it has
been proposed that the dynamics be due to the evolu-
tion of strain fields set by dipolar sources of internal
stress [3, 5, 9]. At a microscopic level, stress is pre-
sumably accumulated by local rearrangements, such as
the formation of new bonds and/or bond breaking (“mi-
crocollapses” in the language of ref. [9]). These rear-
rangements are the elementary steps in the direction of a
more stable, compact structure. This picture implies that
the slow dynamics should not be continuous but rather
temporally heterogeneous. Experiments on similar gels,
albeit at higher concentration (ϕ ∼ 0.1 as opposed to
10−3 − 10−4) and in the multiple scattering regime [10],

have indeed suggested qualitatively that the dynamics
is intermittent. However, no q-resolved information was
provided by these experiments, a crucial missing in the
attempt to build a unified understanding of both the av-
erage dynamics and its temporal fluctuations, especially
in view of the peculiar q dependence of g2(q, τ) − 1.

In this Letter, we investigate the dynamics of strongly
attractive colloidal gels at q vectors spanning one decade,
using time-resolved dynamic light scattering. We find
that at all q the final relaxation of the average intensity
correlation function g2(q, τ) − 1 is well fitted by a com-
pressed exponential with the same q−1 dependence of τf

as observed previously [3], and with p > 1. While at
the lowest q p ≈ 1.5 (as in ref. [3]), at larger scatter-
ing vectors p decreases approaching one. We show that
the dynamics is temporally heterogeneous and quantify
the fluctuations of the dynamics by means of a “multi-
point” correlation function χ analogous to the dynamical
susceptibility χ4 introduced in simulations of glass form-
ers [11, 12, 13]. We find that χ increases linearly with
q and introduce a simple model of intermittent dynam-
ics that accounts for both the average dynamics and its
temporal fluctuations.

The gels are made of polystyrene particles of radius 10
nm suspended in a buoyancy matching mixture of H2O
and D2O (45/55 by volume). The particle suspension is
mixed with a MgCl2 solution in order to induce particle
aggregation in the DLCA regime [14]. The final particle
volume fraction and salt concentration are ϕ = 6× 10−4

and 10 mM, respectively. A gelled structure is obtained
after about 2 hours. This space-filling network is formed
by interconnected fractal clusters of radius Rc ≈ 10 µm,
as revealed by a peak in the static scattered intensity at
qmax ≈ 0.1 µm−1 [3, 14]. The dynamics of the gel slows
down with age [3]: here, we focus on a time window
280 000 sec < tw < 300 000 sec, where tw = 0 is the time
when the gel is formed. This time window is short enough
to prevent significant aging during the experiment.

The gel dynamics is measured by using a charge-
coupled device (CCD) camera-based light scattering ap-
paratus similar to that described in [15], slightly mod-
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FIG. 1: (Color online) Left panel: g2(q, τ ) − 1 for a gel at
ϕ = 6 × 10−4, measured simultaneously at various q vectors.
From left to right, q varies from 0.74 to 5.22 µm−1. The
lines are compressed exponential fits to the final relaxation
of g2 − 1. Right panel: instantaneous degree of correlation
cI(tw, τ, q) for τ = 1000 sec and q = 2.07 µm−1; the strong
fluctuations demonstrate that the dynamics is temporally het-
erogeneous. The time average of the signal shown in the right
panel corresponds to the solid diamond in the left panel.

ified to access larger q vectors. The setup allows us
to measure the dynamics simultaneously at several q’s
(0.4 µm−1 ≤ q ≤ 5.5 µm−1), corresponding to length
scales intermediate between the particle size and the
cluster size. In order to access both the average dy-
namics and its temporal fluctuations, we use the time-
resolved correlation (TRC) scheme [10, 16]. The de-
gree of correlation between pairs of images of the light
scattered at time tw and tw + τ is calculated according

to cI(tw, τ, q) = G2(tw, τ)/
(

〈Ip(tw)〉
p
〈Ip(tw + τ)〉

p

)

− 1,

where G2(tw, τ) = 〈Ip(tw)Ip(tw + τ)〉
p

and Ip(t) is the

scattered intensity at pixel p and time t. 〈· · ·〉p is
an average over a ring of pixels corresponding to the
same magnitude of q but different azimuthal orienta-
tions. The usual intensity autocorrelation function is
g2(q, τ) − 1 = cI(tw, τ, q), where · · · indicates a time
average. Dynamical fluctuations are quantified by the
temporal variance of cI at fixed τ and q [10, 16].

The average dynamics is shown in the left panel of fig. 1
for several q’s. At all scattering vectors, g2(q, τ) − 1 ex-
hibits an initial decay, followed by a slightly tilted plateau
and a final relaxation. The initial decay is barely observ-
able due to the limited frame rate of the CCD camera;
it is due to overdamped, thermally activated fluctuations
of the gel strands [17]. The height a of the plateau is re-
lated to the average amplitude, δp, of these fluctuations
by a ∼ exp(−q2δ2

p/3) [17], where δp = 490 ± 150 nm for
our gel. The final relaxation is well fitted by a compressed
exponential decay: g2(q, τ) − 1 = a exp[−(τ/τf)

p], where
a, τf , and p depend on q.

Figure 2 shows the q dependence of p for the experi-
ments reported here (solid circles) and those, on a similar
gel, of ref. [3] (semiopen circles). Collectively, the data
indicate that the stretching exponent saturates at p ≈ 1.5
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FIG. 2: Exponent p obtained by fitting the final decay of
g2(q, τ ) − 1 to a compressed exponential. Filled circles: this
work; semiopen circles: ref. [3]. Inset: same data and results
of the model described later in the text (line), as a function
of the dimensionless scattering vector qδ, with δ = 250 nm.
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FIG. 3: Symbols: relaxation time τf obtained by fitting the
final decay of g2(q, τ )−1 to a stretched exponential. The line
is a power law fit yielding an exponent −0.94 ± 0.03. Inset:
same data and results of the model (see text) vs qδ, with
δ = 250 nm and γ = 10−3 Hz.

at very small q and decreases towards p = 1 at larger scat-
tering vectors. Note that a similar decreasing trend of p
with q has also been reported for other systems where
p > 1 [6, 8], although its origin remained unclear. The
q dependence of the relaxation time is shown in Fig. 3.
We find τf ∼ q−0.94±0.03, consistently with measurements
at lower q [3]. This behavior rules out diffusive motion,
for which τf ∼ q−2; it rather indicates that the particle
displacement increases linearly with time.

The right panel of Fig. 1 shows the time evolution of
a representative degree of correlation. The large fluctua-
tions of cI(tw, τ, q) demonstrate unambiguously that the
dynamics is temporally heterogeneous. In order to quan-
tify the fluctuations of the dynamics, we calculate χ(τ, q),
the variance of cI corrected for the measurement noise
contribution [16]. As discussed in refs. [16, 18], this quan-
tity is the analogous in light scattering experiments of the
dynamical susceptibility χ4 much studied in theoretical
and numerical works on glass formers [11, 12, 13] and
recently investigated in simulations of gels [19]. In order
to compare data taken at different q vectors, we focus on
the relative fluctuations by normalizing the variance of cI



3

10
2

10
3

10
4

10
-3

10
-2

10
-1

 

 

χ

τ (sec)
FIG. 4: Dynamical susceptibility χ(τ, q) for several q vec-
tors (same symbols as in Fig. 1). From left to right,
q = 0.74, 1.24, 2.07, 3.78, and 5.22 µm−1. To avoid over-
crowding the plot, not all the curves at the available q’s have
been displayed.

with respect to the amplitude of the final decay of g2−1:

χ(τ, q) = a−2
[

cI(tw, τ, q)2 − (g2(q, τ) − 1)2
]

. Results for

some representative q vectors are shown in Fig. 4: for all
q, χ has a peaked shape, the peak position corresponding
approximately to the decay time of the average correla-
tion function, as observed in previous simulations and
experiments [12, 16, 18, 19, 20]. Surprisingly, the height
of the peak, χ∗, increases strongly with q, in contrast
with recent measurements in a granular system where
the peak of χ4 showed virtually no q dependence [20].
For the gels, χ∗ ∼ q1.13±0.11, as shown in Fig. 5. To
understand this nearly linear growth, we propose a sim-
ple scaling argument. As suggested by the highly in-
termittent behavior of cI , we assume the slow dynamics
to be due to a series of discrete rearrangement events,
which we take –for simplicity– to have equal amplitude.
Within this scenario, the fluctuations of cI are due to
fluctuations of the number n(tw, τ) of events occurring
between tw and tw + τ ; thus χ ∼ (n − n)2/n2 = n−1,
where the last equality derives from the Central Limit
theorem. Because the average number of events scales
with the observation time τ , for τ = τf one obtains

χ∗ ∼ χ(τf) ∼ n(τf)
−1

∼ τ−1
f ∼ q, in very good agree-

ment with the data.
In order to capture not only the scaling of χ∗ vs q

but also its absolute magnitude and the q dependence of
the final relaxation of g2, we further develop our simple
model of intermittent dynamics. We write cI(tw, τ, q) =
h[n(tw, τ), q] and

g2(τ, q) − 1 =

∞
∑

n=0

Pτ (n)h(n, q) (1)

χ(τ, q) =
∞
∑

n=0

Pτ (n)[h(n, q) − (g2(τ, q) − 1)]2 . (2)

Here h(n, q) is the correlation left when n events have oc-
curred and Pτ (n) is the probability of actually observing
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FIG. 5: Peak of the dynamical susceptibility as a function of
q (solid circles). The line is a power law fit with an exponent
1.13 ± 0.11. Inset: same data and results of the model (see
text), as a function of qδ, with δ = 250 nm.

n events during a time span τ . In writing Eq. (2), we have
assumed that the dynamics is spatially correlated over a
length scale much larger than the size of the scattering
volume, so that fluctuations are not reduced by averaging
the collected signal over several dynamically independent
regions [12, 13]. Direct measurements of the spatial cor-
relation of the gel dynamics support this hypothesis [23].
Therefore, in the case of the gel χ is dictated only by the
temporal heterogeneity of the dynamics. This has to be
contrasted with experiments on granular materials [20]
and hard spheres [21] and numerical and analytical works
on glass formers [11, 12, 13], where χ4 reflects also the
spatial correlation of the dynamics.

In order to calculate g2 and χ from Eqs. (1,2), we
need expressions for Pτ and h. For the former, we
choose for simplicity a Poisson distribution: Pτ (n) =
exp(−γτ)(γτ)n/n!, corresponding to random rearrange-
ment events affecting the scattering volume at an av-
erage rate γ. For the latter, we write h(n, q) in terms
of the displacement field generated by n rearrangement
events. The q−1 scaling of the relaxation time suggests
a drift mechanism where the displacement increases lin-
early with time and thus with the number of events.
Therefore, the typical displacement after n events is n
times that due to one single event. The correlation left
after n events is then h(n, q) =< exp(−inq ·∆R) > [22],
where ∆R is the particle displacement due to one single
event and the average is taken over all possible orienta-
tions of q and over all particles. By assuming that the
displacement field is due to the strain of the gel under
the action of dipolar sources of internal stress [5, 9] and
following ref. [5] one has h(n, q) = exp[−(qnδ)β ], where
δ is the typical displacement of the particles due to one
single event and β is equal to 1.5.

We insert the above expressions for Pτ and h in
Eqs. (1,2) and calculate both the average dynamics and
its fluctuations. The resulting g2(τ, q)−1 is very well ap-
proximated by a compressed exponential decay, in agree-
ment with the experimental data. We show in the in-
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set of Fig. 2 the compressing exponent p issued from
the fit of the model, as a function of the dimension-
less scattering vector qδ (line). For qδ → 0, we find
p → β = 1.5. At larger scattering vectors, p decreases
approaching one. Indeed, when the typical displacement
is much larger than the length scale 1/q probed by light
scattering (qδ >> 1) one single event is sufficient to lead
to a complete decorrelation of the scattered light and
h(n, q) ≈ 0 for n > 0. The only non vanishing term in
the r.h.s. of Eq. (1) corresponds then to n = 0, yielding
g2(q, τ) − 1 = exp(−γτ) independently of q. The in-
set shows also the experimentally determined p. A very
good agreement between the model and the experiments
is found by setting δ = 250 nm. Remarkably, this value
is of the same order of magnitude of the amplitude of
the fluctuations of the gel strands due to thermal mo-
tion (δp = 490 nm). This strongly supports the intuitive
picture that the rearrangement events correspond to the
formation of new bonds and/or the breaking of the bonds
along the gel network. Since both processes are ulti-
mately triggered by thermal energy, they would typically
cause particle displacements comparable to those due to
the thermal fluctuations of the gel. The average ballistic
dynamics would thus be the result of a slow compaction
of the gel that proceeds by discrete rearrangements rather
than continuously. The relaxation time extracted from
the fit of the model is shown as a line in the inset of
Fig. 3. For qδ < 1, τf ∼ q−1, a consequence of the
assumption that the typical displacement scales linearly
with n. At larger qδ, τf saturates to γ−1 since in this
regime g2 relaxes exponentially with a characteristic time
dictated only by the rearrangement rate γ. By using the
same value δ = 250 nm as determined above, we find that
the experimentally measured τf falls onto the theoretical
curve when choosing γ = 10−3 Hz, corresponding to an
average time between events of 1000 sec.

Having fixed the three parameters β, δ, and γ, we now
compare the theoretical predictions for the dynamical
susceptibility to the experiments. We find that χ has
the same peaked shape as for the experiments; the hight
of the peak is shown in the inset of Fig. 5 (line) together
with the experimental points (filled circles). The model
captures correctly the linear growth of χ∗ with q and
the order of magnitude of the dynamical fluctuations, al-
though it overestimates them by about a factor of two.
Given the simplicity of the assumptions and the fact that
no adjustable parameter has been introduced specifically
for χ, this agreement is quite remarkable, showing that
the model captures the essential physics of the slow dy-
namics of the gel. Interestingly, the χ∗ ∼ q growth at
low q and the saturation regime at large q are similar to
asymptotic predictions for χ4(τ, q) in glass formers pro-
posed very recently by Chandler et al. Indeed, in ref. [24]
a saturation regime at large q and a χ4 ∼ q2 scaling for
q → 0 are identified, the q2 rather that q dependence be-
ing the consequence of diffusive rather than ballistic-like

dynamics.

As a concluding remark, we note that although some
of the ingredients of our model and their physical in-
terpretation are specific to the colloidal gels, the un-
derlying picture of intermittent rearrangements driven
by internal stress may apply also to other soft systems
whose average dynamics shares the same features of the
gels [4, 5, 6, 7, 8]. Indeed, we find similar results for 2D
foams, where the dynamics is driven by the relaxation
of internal stress due to coarsening. More time-resolved
experiments will be needed to fully test the generality of
these ideas.
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