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The 2-trimethyl silyl ethylsulfonyl (or SES) group is a
valuable protecting group of amines in organic synthesis.1

It can be cleaved by fluoride-promotedâ-elimination. The
SES-activated imines generated either from the corresponding
sulfinyl chloride,2 SES-NH2

3 or from SES-NSO4 are
promising synthetic intermediates, since they can be involved
in various reactions for the construction of more complex
molecules, such as Diels-Alder4a,5or [3 + 2] cycloadditions,3b

aziridination,3a,6 reduction,4c,7 and addition of organo-
metallics4b,d,8 or enol ethers.3c,9

Recently, sulfonyl imines have been involved in an
efficient method for the synthesis ofâ-aminoesters10 via the
so-called aza-Baylis-Hillman reaction.11 An in situ prepara-
tion of the imine starting from tosylamine1 has been
described11d-g, and subsequent reaction with acrylate4
provided the amino ester (eq 1, R1 ) Ts). To our knowledge,
such a reaction with an easily removable sulfonyl protection
is unprecedented. We now report the first nitrogen-anchored
polymer-supported aza-Baylis-Hillman reaction (eq 1, R1

) PEG-SES).

For this purpose, a novel SES-type linker was pre-
pared12 and attached to an appropriate PEG polymer.13

The synthesis of PEG-SES amine2, precursor of the
imine involved in the aza-Baylis-Hilman, is described in
Scheme 1.

Tosylated PEG diamine9 was reacted with the mesylate
8 (obtained from the known alcohol714) in the presence
of a base to give10. Bisulfitic transformation12,15 of the

silylated olefin resulted in the formation of sulfonate11.
Action of PCl5 provided the corresponding sulfonyl chloride,
which was reacted with ammonia gas to yield PEG-SES-
NH2 2. At each step, the reaction was monitored by1H
NMR16, and the product was recovered after precipitation
in Et2O.

As a first experiment, PEG-SES-NH2 2 was reacted with
methyl acrylate and benzaldehyde in the presence of DABCO
in dioxane to provide the expected amino ester with a
complete conversion and in good yield as the sole product
(eq 1, R2 ) Ph, R3 ) Me). THF as solvent was also tried,
but the reaction still needed 24 h to reach completion (Table
1). Since the Baylis-Hillman reaction is known to be slowed
by dilution with a solvent, we performed the reaction in the
absence of solvent.11l In that case, reaction time was
dramatically reduced since 100% conversion into the final
product was obtained within only 3 h at 70°C in the case of
benzaldehyde. Furthermore, the reaction conditions presented
herein were also tested for aldehydes that are known to react
slowly,11l such as a deactivated aromatic aldehyde (3,5-
dimethoxybenzaldehyde) and an aliphatic aldehyde (iso-
valeraldehyde) (Table 1). In both cases, when a solvent was
present, full conversion could not be obtained within 24 h.
In sharp contrast, in the absence of solvent, the reaction was
complete within 12 h. Switching the base from DABCO to
quinuclidine did not significantly modify the reaction rate.
Microwave activation20 was also investigated and provided
results similar to those of conventional heating, but with a
shorter reaction time (30-40 min).

The presence of a polymeric support provides the pos-
sibility of employing a large excess of reactants that is easily
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Scheme 1

Table 1. Influence of the Solvent on the Conversion to
Product (%) at 24 h of Reactiona

R2 THF dioxane no solvent

phenyl 100 100 100 (3)
3,5-dimethoxyphenyl 93 95 100 (12)
2-isobutyl 33 65 100 (12)
a When the reaction is faster, the reaction time is given in brackets

(in hours).
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removed after precipitation by filtration and washing.
Consequently, the reaction, including the in situ imine
formation, was driven to completion by the large excess of
reactants (20 equiv) (Scheme 2). Moreover, one possible
competing process is the concomitant formation of the
â-hydroxy ester via a direct Baylis-Hillman reaction
between methyl acrylate and benzaldehyde.11f Since the
polymer is connected to the nitrogen atom of the starting
material, only the nitrogen containing-products were isolated
upon precipitation, whereas the hydroxyester side-product
was eliminated by filtration and washing. This resulted in
the isolation of theâ-amino ester as the sole product (Scheme
2). An alternative to this supported synthesis would have
been to anchor acrylate4 via an ester bond to the polymer.11e,17

But the preferred sulfonyl connection to nitrogen has further
advantages. First, an ester bond is more prone to cleavage

in basic medium, especially with the possible presence of
moisture associated with an oxophilic polymer, which would
result in the loss of the product.18 Second, one can envisage
a supported reaction with other Michael acceptors than
acrylate.11f,19

This aza-Baylis-Hillman represents one more example
of a PEG-supported reaction that can be performed in the
absence of solvent. Indeed, we have shown recently that
PEG-supported molecules could participate in reactions, such
as phase-transfer catalyzed alkylation20 or ring-closing me-
tathesis,21 under solvent-free conditions. A PEG-supported
molecule such as2 is solid at room temperature but melts at
the reaction temperature, providing a solvent-like environ-
ment for the reaction.

This three-component aza-Baylis-Hillman reaction was
performed in parallel with various aldehydes. Figure 1 shows
the diversity of synthesized unsaturatedâ-aminoesters.

The substituents and their different positions on the
aromatic ring of the arylic aldehyde were varied. Hetero-
aromatic aldehydes can also take part in this reaction to yield
unsaturatedâ-aminoesters, such as6d, 6h, and6l. Although
the use of other aliphatic aldehydes has not been investigated,
the preparation of6n shows that such and maybe other
unreactive aldehydes could be considered. Interestingly, the
nonprotected 3-hydroxy benzaldehyde could react in good
yield. Direct release from the polymer (CsF, Ac2O) resulted
in the cleavage but with the concomitant formation of the
corresponding acetate.

The unsaturatedâ-aminoesters6a-n are valuable syn-
thons, since they own various functionalities that can be used
in further reactions.22 As a proof of concept, we tested the
hydrogenation/cleavage sequence on four of the unsatu-
ratedâ-aminoesters (6a-d). Since the hydrogenation with
classical conditions (H2, Pd/C, or Pd(OH)2) was very slow,
this reaction was performed with H2 in the presence of

Figure 1. Examples of amino esters obtained by reaction of aza-Baylis-Hillman in the absence of solvent.

Scheme 2
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Wilkinson’s catalyst to yield12a-d with excellent conver-
sion (eq 2).

Release from the polymer support was performed by
action of fluoride ions, followed by trapping with acetic
anhydride, to yield the acetylated aminoesters13a-d. Re-
sults for the syntheses ofâ-amino esters, including cleavage
from the polymer, are presented in Table 2. The yields
are rather modest, but the purity is high without further
purification.

In summary, we have developed a new sulfonyl linker
and presented the first examples of the N-supported aza-
Baylis-Hillman reaction for the parallel synthesis ofâ-
aminoesters. It is worth noting that the absence of solvent
accelerates the reaction. Further transformation (hydrogena-
tion) has been efficiently performed, and preliminary results
with regard to the cleavage/deprotection step have been
presented. Extension of this chemistry is currently underway
in our laboratory.
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