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A GAUSS-BONNET FORMULA FOR CLOSED

SEMI-ALGEBRAIC SETS

NICOLAS DUTERTRE

Abstract. We prove a Gauss-Bonnet formula for closed semi-algebraic
sets.

1. Introduction

Let S be a smooth compact surface embedded in R
3. We know from

Jordan-Brouwer Separation Theorem that S is orientable as the boundary
of a smooth compact oriented manifold of dimension 3. This means that on
S there exists a smooth unitary normal vector field ~n. The map g : S → S2

defined by g(x) = ~n(x) is called the Gauss map of S and its Jacobian
Jg(x) := k(x) is called the (Gaussian) curvature of S at x. The curvature
k(x) describes the local aspect of S at the point x : its absolute value
measures how S is curved at x and its sign serves to distinguish between
local convex appearance and local saddlelike appearance. Although it is
defined using an embedding and the choice of an unitary normal vector
field, the curvature is an intrinsic concept of the surface and is invariant by
local isometries (this is the Gauss Theorema Egregium). It is not preserved
by homeomorphisms because of its obvious geometric nature.

However the famous Gauss-Bonnet theorem asserts that the global inte-
gral of the curvature on the surface is a topological invariant, namely 2π
times the Euler-Poincaré characteristic of S. This result is one of the most
important theorem in differential geometry. Its first generalization was ob-
tained by Hopf [Ho1] for an even-dimensional hypersurface M ⊂ R

n. As
in the case of a surface embedded in R

3, the curvature k is defined as the
Jacobian of the Gauss map g : M → Sn. If we denote by dx the volume
element of M , then one has :

∫

M

k(x)dx =
1

2
Vol(Sn−1) · χ(M).

Hopf’s proof is essentially topological and makes use of very few differential
geometric arguments. Indeed, if dv denotes the volume element of the sphere
Sn−1, then, by a classical change of variables, one has :

∫

M

k(x)dx =

∫

M

g∗(dv) = Vol(Sn−1) · deg(g).
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Using the Poincaré-Hopf Theorem, one can prove that deg(g) = 1
2χ(M).

In [Ho2], Hopf asked for generalizations of his result and also for intrinsic
proofs, since the curvature of a surface is intrinsic. The first question was
answered by Allendoerfer [Al] and Fenchel [Fe] for a compact n-dimensional
manifold M embedded in R

N . Let us present briefly Fenchel’s results. First
he defined the Lipschitz-Killing curvature at a point x in M in the following
way. If v is a unit normal vector to M at x and if πv denotes the orthogonal
projection from M to the (n+1)-dimensional vector space spanned by TxM
and v, then the image of this projection is a hypersurface non-singular at x
and oriented by v. Let us denote by k(x, πv(M)) its Gaussian curvature at
x. The Lipschitz-Killing curvature at x is :

LK(x) = C(N,n)

∫

NUxM

k(x, πv(M))dv,

where NUxM is the unitary normal space of M at x and where C(N,n)
depends only on N and n. Fenchel proved that :

∫

M

LK(x)dx =
1

2
Vol(SN−1) · χ(M).

The second question was answered partially by Allendoerfer and Weil [AW]
and then completely by Chern [Ch].

Let us focus now on the extrinsic version of the Gauss-Bonnet formula.
We have seen above that if M is a hypersurface embedded in R

n then :
∫

M

k(x)dx = Vol(Sn−1) · deg(g).

This formula is actually a special case of the following result. Let U be an
open subset of M . For almost all L ∈ G(n, 1), the Grassmann manifold of
lines in R

n, the orthogonal projection pL : U → L is a Morse function, which
admits a finite number of critical points pL

1 , . . . , pL
rL

. Let µ(U,L) be defined

by µ(U,L) =
∑rL

j=1 deg(g, pL
j ), where deg(g, pL

j ) is the local topological de-

gree of the Gauss map at pL
j . The exchange principle (see [La], [LS]) states

that :
∫

U

k(x)dx =

∫

G(n,1)
µ(U,L)dL.

When U = M , using the fact that µ(M,L) = 2deg(g) generically, we recover
Hopf’s formula. Similar formulas for

∫

|k| were proved and used by Milnor
[Miln1], Chern and Lashof [CL] and Kuiper [Ku1]. Langevin [La] also estab-
lished such formulas for

∫

U
LK and

∫

U
|LK| where U is an open subset of

a n-dimensional manifold M embedded in R
N , which enabled him to give a

new proof of Fenchel’s theorem. Exchange principles are interesting because
they provide us with a link between the differential geometry and the differ-
ential topology. They also offer a new approach in the study of differential
geometric properties of smooth manifolds, which can be adopted in order to
obtain Gauss-Bonnet formulas for non-smooth objects.
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This is exactly the point of view of Banchoff ([Ba1], [Ba2]) in his study
of embedded polyhedra. Let us describe briefly this work. Let M be an
embedded polyhedron of dimension k in R

n. A linear map ξ : R
n → R is

general for M if ξ(a) 6= ξ(b) whenever a and b are the vertices of a one-
dimensional cell in M . If ξ is general for M and Dr is a r-dimensional cell
of M , we may define an indicator function :

A(Dr, a, ξ) =

{

1 if a ∈ Dr and ξ(a) ≥ ξ(x) for all x ∈ Dr,
0 otherwise,

and then, the index of a with respect to ξ :

α(a, ξ) =

k
∑

r=1

(−1)r
∑

Dr⊂M

A(Dr, a, ξ).

If Ω is an open set of M , the index of Ω with respect to ξ is α(Ω, ξ) =
∑

a∈Ω α(a, ξ). It is defined and finite for almost all ξ. The curvature of Ω is

K(Ω) =
1

Vol(Sn−1)

∫

Sn−1

α(Ω, v∗)dv,

where for v ∈ Sn−1, v∗ is the linear form v∗(x) = −〈v, x〉. Banchoff proved
that K(Ω) is an intrinsic metric invariant and that K(M) = χ(M). This
last equality is the Gauss-Bonnet theorem for embedded polyhedra. This
method was generalized by Kuiper to topological manifolds in [Ku2].

In [BK], Bröcker and Küppe developped integral geometry for tame sets.
These sets are closed Whitney-stratified sets that satisfy two extra conditions
(see Definition 2.9). They include piecewise linear sets, semi-algebraic sets,
subanalytic sets, sets in an o-minimal structure, X sets [Sh], manifolds with
boundary, Riemannian polyhedra. Their main tool is Morse stratified theory
introduced by Goresky and Mac-Pherson [G.M-P]. Their results contain of
course a Gauss-Bonnet theorem. If v is a vector in Sn−1, let us denote by
v∗ the linear form v∗(x) = −〈v, x〉. Let X be a tame set. For almost all
v in Sn−1, the function v∗|X : X → R is a Morse function (in the sense

of Goresky and Mac-Pherson). To each point x in X, one can assign an
index α(X, v∗, x) in the following way : if x is a critical point of v∗|X then

α(X, v∗, x) is the Morse index of v∗|X at x (see Definition 2.1), if x is not a

critical point of v∗|X then α(X, v∗, x) = 0. Then one can define a curvature

measure on Borel sets U of X by :

λ0(U) =
1

Vol(Sn−1)

∫

Sn−1

∑

x∈U

α(X, v∗, x)dv.

If X is a compact tame set, then one has [BK, Proposition 4.1] :

λ0(X) = χ(X).

Bröcker and Küppe also showed that, if we restrict ourselves to an o-minimal
structure (resp. an X -system), λ(U) is invariant by definable isometries
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(resp. X -isometries). One should mention that Fu [Fu1] also developped in-
tegral geometry for subanalytic sets using the construction of normal cycles.

In [Dut3], we established a Gauss-Bonnet formula for a smooth fiber of a
nonproper real polynomial of R

n. Our aim here is to give such a formula for a
closed semi-algebraic set. Let X ⊂ R

n be a closed (not necessarly compact)
semi-algebraic set. Let (KR)R>0 be an exhaustive sequence of compact
borelian sets of X ; this means that ∪R>0KR = X and that KR ⊆ KR′ if
R ≤ R′. The limit limR→+∞ λ0(X ∩ KR) is finite and independent on the
choice of the exhaustive sequence. We define λ0(X) to be this limit and we
prove (Theorem 4.5) :

λ0(X) = χ(W ) −
1

2
χ(Lk∞(X))

−
1

2Vol(Sn−1)

∫

Sn−1

χ(Lk∞(X ∩ {v∗ = 0}))dv,

where Lk∞(X) = X ∩ Sn−1
R , R ≫ 1, is the link at infinity of X. Let us

explain shortly the different steps of our proof. First observe that λ0(X) =

limR→+∞ λ0(X ∩ B̊n
R) where B̊n

R is the interior of the the euclidian ball of
radius R. For each R, let fR : R

n → R be an approximating function
from outside for the semi-algebraic set X ∩ Bn

2R (see Definition 2.12). In

particular, fR is non-negative and X∩Bn
2R = f−1

R (0). Furthermore, we have
([BR], Theorem 6.2) :

λ0(X ∩ B̊n
R) = lim

t→0
λ0({fR ≤ t} ∩ B̊n

R).

Hence we are lead to compute :

lim
R→+∞

lim
t→0

λ0({fR ≤ t} ∩ B̊n
R) =

lim
R→+∞

lim
t→0

1

Vol(Sn−1)

∫

Sn−1

∑

x∈{fR≤t}∩B̊n
R

α({fR ≤ t}, v∗, x)dv.

But, for R sufficiently big and t sufficiently small, {fR ≤ t} ∩ Bn
R is a

manifold with corners. Applying Morse theory for manifolds with corners,
we find that for v ∈ Sn−1 :

χ({fR ≤ t} ∩ Bn
R) =

∑

x∈{fR≤t}∩B̊n
R

α({fR ≤ t}, v∗, x) + Λt,R,v ,

where Λt,R,v is the contribution of the critical points of v∗
|{fr≤t}∩Sn−1

R

. A

careful analysis of the behaviour of these last critical points as R tends to
infinity and t tends to 0, based on a study of some polar varieties, enables
us to show that :

lim
R→+∞

lim
t→0

Λt,R,v + Λt,R,−v = χ(Lk∞(X)) + χ(Lk∞(X ∩ {v∗ = 0})).
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We conclude using the two following facts :

lim
R→+∞

lim
t→0

χ({fR ≤ t} ∩ Bn
R) = χ(X),

and
∫

Sn−1

lim
R→+∞

lim
t→0

Λt,R,vdv =
1

2

∫

Sn−1

lim
R→+∞

lim
t→0

[Λt,R,v + Λt,R,−v ]dv.

If M is a compact boundaryless manifold of dimension n in R
N , let Mε

denote the closed ε-neighborhood of M (i.e the set of all x in R
N such

that ‖x − y‖ ≤ ε for some y ∈ M). For ε small enough, Mε is a smooth
N -dimensional manifold with boundary, diffeomorphic to a tubular neigh-
borhood of M . Its boundary ∂Mε is a smooth hypersurface, let kε be its
curvature and let gε be the Gauss mapping ∂Mε → SN−1. One has :

∫

Mε

kε(x)dx = Vol(SN−1) · deg(gε).

Since deg(gε) = χ(X) if ε is sufficiently small (see [Miln2], p38), we obtain
the following equality (first observed by Fenchel [Fe] and Allendoerfer [Al]
for even dimensional manifolds) :

lim
ε→0

∫

Mε

kε(x)dx = Vol(SN−1) · χ(X).

Our second main result is a semi-algebraic version of this equality. If X is
a closed semi-algebraic set in R

n, we showed in [Dut4] that there exists a
non-negative semi-algebraic function f of class C2 such that X = f−1(0)
and such that for δ > 0 sufficiently small, the inclusion X ⊂ f−1([0, δ]) is
a retraction. We called f an approaching function for X and f−1([0, δ]] a
semi-algebraic approaching neighborhood of X. This last set can be consid-
ered as a semi-algebraic analogue of the tubular neighborhood of differential
geometry. Its boundary f−1(δ) is a C2 semi-algebraic hypersurface. If kδ

denotes its curvature and if (Kδ
R)R>0 is an exhaustive sequence of compact

sets in f−1(δ), then the limit limR→+∞

∫

f−1(δ)∩Kδ
R

kδdx is finite and does not

depend on the sequence chosen. Using the results of [Dut3] and [Dut4], we
prove that there exists an approaching function f for X such that (Theorem
5.5) :

lim
δ→0+

∫

f−1(δ)
kδdx = Vol(Sn−1) · χ(W ) −

1

2
Vol(Sn−1) · χ(Lk∞(X))

−
1

2

∫

Sn−1

χ(Lk∞(X ∩ {v∗ = 0}))dv.

As a direct corollary, we get (Corollary 5.6) :

Vol(Sn−1) · λ0(X) = lim
δ→0+

∫

f−1(δ)
kδdx.

The paper is organized as follows. Section 2 is a summary of the results
about Morse stratified theory and tame stratified sets that we will use in
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the sequel. In Section 3, we study the critical points of v∗
|{fR≤t}∩Sn−1

R

for v

generic. In Section 4, we prove the first version of the Gauss-Bonnet theorem
for closed semi-algebraic sets. Section 5 is independent on the two previous
ones and deals with the proof of the second version of the Gauss-Bonnet
theorem, i.e the Gauss-Bonnet theorem “by approximation”.

The author is grateful to A. Bernig for valuable discussions on this topic.

2. Morse stratified theory and tame stratified sets

This section is essentially a presentation of results contained in [BK]. Let
M be a C3 riemannian manifold of dimension n. Let X be a Whitney-
stratified set of M . Let x be a point in X and let S(x) be the stratum
that contains x. A generalized tangent space at x is a limit of a sequence of
tangent spaces (Tyk

S1)k∈N, where S1 is a stratum distinct from S(x) such

that x ∈ S1 and (yk)k∈N is a sequence of points in S1 tending to x. The
point x is a critical point of a function f : X → R if it is a critical point of
f|S(x).

A Morse function f : X → R is the restriction of a smooth function
f̃ : M → R such that the following conditions hold :

(1) f is proper and the critical values of f are distinct, i.e if x and y are
two distinct critical points of f then f(x) 6= f(y),

(2) for each stratum S of X, the critical points of f|S are nondegenerate,

(3) at each critical point x, the differential df̃(x) does not annihilate
any generalized tangent space at x.

Let f : X → R be a Morse function, S a stratum of X and x a critical
point of f|S. Let us write ν = f(x). For sufficiently small δ > 0, let B(x, δ)
be the n-dimensional ball centered at x and of radius δ. The local Morse
data for f at x is the pair :

(

B(x, δ) ∩ f−1([ν − ǫ, ν + ǫ]), B(x, δ) ∩ f−1(ν − ǫ)
)

,

where 0 < ǫ ≪ δ ≪ 1. This definition is justified by the following property
(see [G.M-P] or [Ham]). There exists an open subset A in R

+ × R
+ such

that

(1) the closure A of A in R
2 contains an interval ]0, δ[, δ > 0, such that

for all a ∈]0, δ[, the set {b ∈ R
+ | (a, b) ∈ A} contains an open

interval ]0, ǫ(a)[ with ǫ(a) > 0,
(2) for all (δ, ǫ) ∈ A, the above pairs of spaces are homeomorphic.

The local Morse data are Morse data in the sense that f−1(] −∞, ν + ǫ[ is
homeomorphic to the space one gets by attaching B(x, δ)∩f−1([ν−ǫ, ν+ǫ])
at f−1(]−∞, ν−ǫ[ along B(x, δ)∩f−1(ν−ǫ) (see [G.M-P, I 3.5]). If x belongs
to a stratum S(x) such that dim(S(x)) = dim(X) = d, the local Morse data
at x are homeomorphic to the classical Morse data (Bλ×Bd−λ, ∂Bλ×Bd−λ)
where Bp denotes the p-dimensional unit ball and λ is the Morse index of f
at x.
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If x belongs to a zero-dimensional stratum then B(x, δ)∩f−1([ν−ǫ, ν+ǫ])
has the structure of a cone (see [G.M-P], 3.11). If x lies in a stratum S(x)
with 0 < dim(S(x)) < dim(X), then one can consider the classical Morse
data of f|S(x) at x. We will call them tangential Morse data and denote
them by (Ptg , Qtg). One may choose a normal slice of V at x, that is a
closed submanifold of M of dimension n− dim(S(x)), which intersects S(x)
in x orthogonally. One defines the normal Morse data (Pnor, Qnor) at x to
be the local Morse data of f|X∩V at x. Goresky and Mac-Pherson proved
that :

• the normal Morse data are well defined, that is to say they are
independent of the Riemannian metric and the choice of the normal
slice ([G.M-P, I 3.6]),

• the local Morse data (P,Q) of f at x are the product of the tangential
and the normal Morse data ([G.M-P, I 3.7) :

(P,Q) ≅ (Ptg × Pnor, Ptg × Qnor ∪ Pnor × Qtg).

This implies that P = B(x, δ) ∩ f−1([ν − ǫ, ν + ǫ]) has the structure of a
cone.

Definition 2.1. Let x ∈ X be a critical point of the Morse function f :
X → R. Let (P,Q) be the local Morse data of f at x. The Euler-Poincaré
characteristic χ(P,Q) = 1−χ(Q) is called the index of f at x and is denoted
by α(X, f, x). If x ∈ X is not a critical point of f , we set α(X, f, x) = 0.

If (Ptg, Qtg) and (Pnor, Qnor) are the tangential and normal Morse data,
then one has :

χ(P,Q) = χ(Ptg, Qtg) · χ(Pnor, Qnor).

We will write α(X, f, x) = αtg(X, f, x) · αnor(X, f, x), where αtg(X, f, x) is
the tangential Morse index and αnor(X, f, x) is the normal Morse index. We
will use the following theorem.

Theorem 2.2. Let X ⊂ M be a compact Whitney-stratified set and let
f : X → R be a Morse function. One has

χ(X) =
∑

x∈X

α(X, f, x).

Let us explain how this theory is applied to the case of manifolds with
corners. Before we recall some basic facts about manifolds with corners.
Our reference is [Ce]. A manifold with corners N is defined by an atlas
of charts modelled on open subsets of R

n
+. We write ∂N for its boundary.

We will make the additional assumption that the boundary is partitioned
into pieces ∂iN , themselves manifolds with corners, such that in each chart,
the intersections with the coordinate hyperplanes xj = 0 correspond to
distinct pieces ∂iN of the boundary. For any set I of suffices, we write
∂IN = ∩i∈I∂iN and we make the convention that ∂∅N = N \ ∂N .

Any n-manifold N with corners can be embedded in a n-manifold N+

without boundary so that the pieces ∂iN extend to submanifolds ∂iN
+ of
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codimension 1 in N+. We will assume that N+ is provided with a Riemann-
ian metric.

Let N be a manifold with corners and ω : N+ → R a smooth map. We
consider the points P which are critical points of ω|∂IN+ .

Definition 2.3. A critical point P is correct (respectively Morse correct)
if, taking I(P ) := {i |P ∈ ∂iN}, P is a critical (respectively Morse critical)
point of ω|∂I(P )N

+ , and is not a critical point of ω|∂JN+ for any proper subset

J of I(P ).

Note that a 0-dimensional corner point P is always a critical point because
in that case ∂I(P )N

+ = {P}, which is a 0-dimensional manifold.

Definition 2.4. The maps ω with all critical points Morse correct are called
Morse correct.

Proposition 2.5. The set of Morse correct functions is dense and open in
the space of all maps N+ → R.

Proof. It is clear from classical Morse theory, because there is a finite
number of pieces ∂IN

+. �
The index λ(P ) of ω at a Morse correct point P is defined to be that of

ω|∂I(P )N
+ . If P is a correct critical point of ω, i ∈ I(P ), and J is formed

from I(P ) by deleting i, then in a chart at P with ∂JN mapping to R
p
+ and

∂I(P )N to the subset x1 = 0, the function ω is non-critical, but its restriction
to x1 = 0 is. Hence ∂ω/∂x1 6= 0.

Definition 2.6. We say that ω is inward at P if, for each i ∈ I(P ), we
have ∂ω/∂x1 > 0.

Remark 2.7. By our convention, if I(P ) = ∅, then ω is inward at P .

Theorem 2.8. If N is compact and ω is Morse correct,

χ(N) =
∑

{

(−1)λ(P ) | P inward Morse critical point
}

.

Proof. This is a consequence of Theorem 2.2. See [Dut3], Theorem 2.6.
�

In [BK], Bröcker and Kuppe considered a class of stratified sets that they
called tame stratified sets. Before giving the precise definition of these sets,
we need some notations. For every v in Sn−1, v∗ is the function defined by
v∗(x) = −〈v, x〉. For every y in R

n, gy is the function defined by gy(x) =
‖y − x‖2.

Definition 2.9. A closed Whitney-stratified set X ⊂ R
n is called tame, if

the following conditions hold :

(i) if S is a stratum of X, then the set {limTqk
S | (qk) → p ∈ ∂S} of all

generalized tangent spaces coming from S has Hausdorff dimension
less than the dimension of S in the affine grassmannian,
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(ii) there exists ρ > 0 such that for almost all y ∈ R
n, one has :

∫

Rn

∑

x∈X,‖y−x‖≤ρ

|α(X, gy , x)|dy < +∞.

Lemma 2.10. If X satisfies condition (i), the following statements hold :

(1) the set of couples (v, x) such that x ∈ X, ‖v‖ = 1 and such that there
exists a generalized tangent space T at x with v ⊥ T , has Haussdorff
dimension less than n − 1 in the tangent bundle TR

n,
(2) for almost all v, the function v∗|X : X → R, x 7→ −〈v, x〉 is a Morse

function,
(3) for almost all y, the function gy |X : X → R, x 7→ ‖y−x‖2 is a Morse

function.

The following classes of sets admit tame stratifications (see [BK], p298) :
piecewise linear sets, semi-algebraic sets, subanalytic sets, sets which belong
to an o-minimal structure, X -sets (see [Sh]), manifolds with boundary, and
Riemannian polyhedra.

Bröcker and Kuppe gave a Gauss-Bonnet formula for any compact tame
Whitney stratified set X ⊂ R

n. They defined a curvature measure λ0(U)
on Borel sets U of X by :

λ0(U) =
1

Vol(Sn−1)

∫

Sn−1

∑

x∈U

α(X, v∗, x)dv,

and proved the following proposition.

Proposition 2.11. Let X be a compact tame Whitney-stratified set in R
n.

Then

λ0(X) = χ(X).

Then they explained how the measure λ0(X) can be obtained by approx-
imation. For this, they introduced the notion of approximating functions
from outside.

Definition 2.12. Let X ⊂ R
n be a compact tame Whitney stratified set. A

continuous function f : R
n → R is an approximating function for X from

outside if the following conditions hold :

(i) The function f is nonnegative and f−1{0} = X.
(ii) For every open subset U such that X ⊂ U , there exists ǫ > 0 such

that f−1([0, ǫ]) ⊂ U ,
(iii) The function f is of class C3 on R

n \ X.
(iv) There exists δ > 0 such that all t ∈]0, δ] are regular values of f .
(v) If (yk)k∈N is a sequence of points in R

n tending to a point x in X

such that f(yk) ∈]0, δ] and ∇f
‖∇f‖ (yk) tends to v, then v is normal to

TxS(x).
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(vi) For t ∈ [0, δ], let Xt denote f−1([0, t]). There exist ρ > 0 and a
function M : R

n → [0,+∞[ with
∫

Rn M(x)dx < +∞ such that for
all t with 0 < t < δ and for almost all y ∈ R

n, one has :
∑

x∈Xt,‖y−x‖≤ρ

|α(Xt, gy, x)| ≤ M(x).

They proved the two following results that will be very useful for us.

Proposition 2.13. Let X ⊂ R
n be a compact tame Whitney-stratified set

which belongs to an o-minimal system (resp. an X -system). Then X admits
an approximating function from outside which belongs to the same o-minimal
system (resp. X -system).

Proof. See [BK], Proposition 7.1. �

Theorem 2.14. Let f be an approximating function for X from outside.
Let U ⊂ R

n be an open set such that the bad set

B(U) = {v ∈ R
n | ∃x ∈ Bd(U) ∩ X with v ⊥ TxS(x)}

has measure 0 in R
n. Then for t → 0, one has

λ0(Xt ∩ U) → λ0(X ∩ U).

Proof. See [BK], Theorem 6.2. �
This theorem can be applied for example if U is an euclidian ball whose

boundary intersects the strata of X tranversally.

3. Study of critical points

Let X be a closed semi-algebraic set in R
n. It admits a finite Whitney

stratification, each stratum being semi-algebraic.
For every R > 0, let fR : R

n → R be a semi-algebraic approximating
function from outside for X ∩ Bn

2R.

Lemma 3.1. For every R > 0, there exists δR with 0 < δR ≪ 1 such that
Sn−1

R intersects f−1
R (t) transversally for every t ∈]0, δR].

Proof. The function f̃R : Sn−1
R \ X → R, x 7→ fR(x) is semi-algebraic of

class C3, hence it admits a finite number of critical values. We choose δR

smaller than any critical value of f̃R. �
Let R > 0 be sufficiently big so that Sn−1

R intersects each stratum transver-

sally. We are going to study the critical points of the functions v∗ on X∩Sn−1
R

and on f−1
R (t) ∩ Sn−1

R for t ∈]0, δR].
For every v ∈ Sn−1, let ΓR,v be the following polar set :

ΓR,v =
{

x ∈ Sn−1
R \ X | rank(v,∇fR(x), x) < 3

}

.

Lemma 3.2. For almost all v ∈ Sn−1, ΓR,v∩f−1
R (]0, δR]) is a semi-algebraic

curve of class C3.
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Proof. Let

Y =
{

(x, y) ∈ R
n × R

n | ∀(i, j, k) ∈ {1, . . . , n}3 mijk(x, y) = 0
}

,

where

mijk(x, y) =

∣

∣

∣

∣

∣

∣

xi xj xk
∂fR

∂xi
(x) ∂fR

∂xj
(x) ∂fR

∂xk
(x)

yi yj yk

∣

∣

∣

∣

∣

∣

.

The set

Y ′ = Y ∩
(

f−1
R (]0, δR]) × (Rn \ {(0, . . . , 0)})

)

is a semi-algebraic manifold of dimension C3 of dimension n+1. To see this,
take a point (x, y) in Y ′. We can assume that

∣

∣

∣

∣

x1 x2
∂fR

∂x1
(x) ∂fR

∂x2
(x)

∣

∣

∣

∣

6= 0.

This implies that in a neighborhood of (x, y), Y ′ is defined by the vanishing
of the functions m123, . . . ,m12n and x2

1 + · · · + x2
n − R because for every

(i, j, k) ∈ {1, . . . , n}3, we have :

∣

∣

∣

∣

x1 x2
∂fR

∂x1
(x) ∂fR

∂x2
(x)

∣

∣

∣

∣

· mijk(x, y) =

∣

∣

∣

∣

∣

xj xk
∂fR

∂xj
(x) ∂fR

∂xk
(x)

∣

∣

∣

∣

∣

· m12i(x, y)−

∣

∣

∣

∣

xi xk
∂fR

∂xi
(x) ∂fR

∂xk
(x)

∣

∣

∣

∣

· m12j(x, y) +

∣

∣

∣

∣

∣

xi xj
∂fR

∂xi
(x) ∂fR

∂xj
(x)

∣

∣

∣

∣

∣

· m12k(x, y).

A simple computation of determinants shows that the gradient vectors of
these functions are linearly independent. Let us consider the projection πy

defined as follows :
πy : Y ′ → R

n

(x, y) 7→ y.

Let Σπy be the set of critical values of πy. We take v in Sn−1 \ Σπy . �

Lemma 3.3. For almost all v ∈ Sn−1, there exists δv > 0 such that for
every t with 0 < t ≤ δv, v∗

|f−1
R (t)∩Sn−1

R

is a Morse function.

Proof. Let v be in Sn−1 \Σπy where Σπy is defined in the previous lemma.
Let L be a connected component of ΓR,v which contains a point x of X in its
closure. In a neighborhood of x, L can be parametrized by an analytic arc
γ : [0, ν] → R

n such that γ(0) = x and γ(]0, ν]) ⊂ L. We have fR(γ(0)) = 0
and fR(γ(s)) > 0 for all s ∈]0, ν[. There exists ν ′ such that (fR◦γ)′ does not
vanish on ]0, ν ′[. In fact (fR ◦γ)′ is a C2 semi-algebraic function on ]0, ν[. If
(f ◦γ)′ ≡ 0 on ]0, ν[ then f ◦γ is constant on ]0, ν[ and, since it is continuous
on [0, ν[, it must be equal to 0, which is impossible. Hence (fR ◦ γ)′ admits
a finite number of zeroes in ]0, ν[. We take ν ′ to be the smallest of these
zeroes.
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Furthermore one can assume that

∣

∣

∣

∣

x1 x2
∂fR

∂x1

∂fR

∂x2

∣

∣

∣

∣

does not vanish on ]0, ν ′[,

changing ν ′ by a smaller positive number if necessary. In that case, γ(]0, ν ′[)
is defined by the vanishing of the functions mv

123, . . . ,m
v
12n and ωR = x2

1 +
· · · + x2

n − R, where mv
12i(x) = m12i(x, v). One has that for all s ∈]0, ν ′[

〈∇fR(γ(s)), γ′(s)〉 = (fR◦γ)′(s) 6= 0. Hence the gradient vectors ∇fR(γ(s)),
∇wR(γ(s)), ∇mv

123(γ(s)), . . . ,∇mv
12n(γ(s)) are linearly independent. By

Lemma 3.2 in [Sz], this implies that the function

v∗ : f−1
R (fR(γ(s))) ∩ Sn−1

R → R

has a Morse critical point at γ(s). One takes for δv the minimum, taken
over all the arcs of ΓR,v containing a point of X in their closure, of the ν ′’s.
�

Let v be a vector in Sn−1 which satisfies the properties of the two pre-
vious lemmas. Let us write the decomposition of ΓR,v into the union of its
connected components :

ΓR,v = L1 ⊔ . . . ⊔ LmR,v
⊔ M1 ⊔ . . . ⊔ MpR,v

,

where for i ∈ {1, . . . ,mR,v}, Li∩X 6= ∅ and for i ∈ {1, . . . , pR,v}, Mi∩X = ∅.

For t ∈]0, δv [ and for i ∈ {1, . . . ,mR,v}, let qt,R,v
i be the intersection point

of Li and f−1
R (t). This point is a Morse critical point of v∗|Sn−1

R ∩f−1
R (t). For

i ∈ {1, . . . ,mR,v}, let qR,v
i be the intersection point of Li and X.

Lemma 3.4. The points qR,v
i are critical points of v∗

|X∩Sn−1
R

.

Proof. Let us fix i ∈ {1, . . . ,mR,v}. For t ∈]0, δv [, there exist two real
numbers λt and µt such that

v = λt ·
∇fR

‖∇fR‖
(qt,R,v

i ) + µt ·
qt,R,v
i

‖qt,R,v
i ‖

.

Applying this equality to t = 1
k
, we obtain a sequence of points pk := q

1
k
,R,v

i

in Sn−1
R and two sequences of real numbers αk := λ 1

k
and βk := µ 1

k
such

that :

v = αk ·
∇fR

‖∇fR‖
(pk) + βk ·

pk

‖pk‖
. (1)

Taking a subsequence if necessary, one can assume that ∇fR

‖∇fR‖(pk) tends to a

vector w in Sn−1. By condition (v) in Definition 2.12, w is perpendicular to

T
q

R,v
i

S(qR,v
i ). Moreover, since Sn−1

R intersects the strata of X transversally,

w and
q

R,v
i

‖qR,v
i ‖

are not colinear and |〈w,
q

R,v
i

‖qR,v
i ‖

〉| < 1. Hence there exist C with

0 ≤ C < 1 and k0 such that for every k ≥ k0, one has
∣

∣

∣

∣

〈
∇fR

‖∇fR‖
(pk),

pk

‖pk‖
〉

∣

∣

∣

∣

≤ C.
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Since 〈v, v〉 = 1, this implies that for k ≥ k0, α2
k + β2

k + 2Cαkβk ≤ 1 or
α2

k + β2
k − 2Cαkβk ≤ 1. Then it is not difficult to see that (αk)k≥k0 and

(βk)k≥k0 are bounded. Taking subsequences if necessary, one can assume
that αk tends to a real number α and that βk tends to a real β. Taking the
limit in equality (1), we obtain :

v = α · w + β ·
qR,v
i

‖qR,v
i ‖

.

This means exactly that qR,v
i is a critical point of v∗

|X∩Sn−1
R

. �

We are going to study the critical points of v∗
|X∩Sn−1

R

for v generic and R

sufficiently big. Let Σ(X) be the subset of Sn−1 defined as follows. A vector
v belongs to Σ(X) if there exists a sequence (xk)k∈N such that ‖xk‖ → +∞
and a sequence (vk)k∈N of vectors in Sn−1 such that vk ⊥ Txk

S(xk) and
vk → v. We want to prove that Σ(X) is a semi-algebraic set of dimension
less than n − 1.

Lemma 3.5. Let X be a closed semi-algebraic set in R
n. The set Σ(X) is

a semi-algebraic set of Sn−1 of dimension less than n − 1.

Proof. If we write X = ∪r
i=1Si, where (Si)1≤i≤r is a finite semi-algebraic

Whitney stratification of X, then we see that Σ(X) = ∪r
i=1Σ(Si). Hence it

is enough to prove the lemma when X is a smooth semi-algebraic manifold
of dimension n − k, 0 < k < n.

Let us take x = (x1, . . . , xn) as a coordinate system for R
n and (x0, x)

for R
n+1. Let ϕ be the semi-algebraic diffeomorphism between R

n and
Sn ∩ {x0 > 0} given by

ϕ(x) =

(

1
√

1 + ‖x‖2
,

x1
√

1 + ‖x‖2
, . . . ,

xn
√

1 + ‖x‖2

)

.

Observe that (x0, x) = ϕ(z) if and only if z = x
x0

. The set ϕ(X) is a smooth
semi-algebraic set of dimension n−k. Let M be the following semi-algebraic
set :

M =
{

(x0, x, y) ∈ R
n+1 × R

n | (x0, x) ∈ ϕ(X) and y ⊥ T x
x0

X
}

.

We will show that M is a smooth manifold of dimension n. Let p = (x0, x, y)
be a point in M and let z = ϕ−1(x0, x) = x

x0
. In a neighborhood of z, X is

defined by the vanishing of smooth functions g1, . . . , gk. For i ∈ {1, . . . , k},
let Gi be the smooth function defined by

Gi(x0, x) = gi

(

x

x0

)

= gi(ϕ
−1(x0, x)).

Then in a neighborhood of (x0, x), ϕ(X) is defined by the vanishing of
G1, . . . , Gk and x2

0 + x2
1 + · · · + x2

n − 1. Note that for i, k ∈ {1, . . . , n}2,
∂Gi

∂xk
(x0, x) = 1

x0
· ∂gi

∂xk
(x). Hence in a neighborhood of p, M is defined by the
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vanishing of G1, . . . , Gk, x2
0 + x2

1 + · · · + x2
n − 1 and the following minors

mi1i2...ik+1
, (i1, . . . , ik+1) ∈ {1, . . . , n}k+1, given by :

mi1i2...ik+1
(x0, x, y) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂G1
∂xi1

(x0, x) · · · ∂G1
∂xik+1

(x0, x)

...
. . .

...
∂Gk

∂xi1
(x0, x) · · · ∂Gk

∂xik+1
(x0, x)

yi1 · · · yik+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Since rank(∇g1, . . . ,∇gk) = k at z = ϕ−1(x0, x), one can assume that
∣

∣

∣

∣

∣

∣

∣

∂G1
∂x1

(x0, x) · · · ∂G1
∂xk

(x0, x)
...

. . .
...

∂Gk

∂x1
(x0, x) · · · ∂Gk

∂xk
(x0, x)

∣

∣

∣

∣

∣

∣

∣

6= 0.

This implies that around p, M is defined by the vanishing of G1, . . . , Gk,
m1...kk+1, . . . ,m1...kn and x2

0+x2
1+· · ·+x2

n−1 (a similar argument is given and
proved in [Dut2], p316-318). It is straightforward to see that the gradient
vectors of these functions are linearly independent. Then M̄ \ M is a semi-
algebraic set of dimension less than n. If πy : R

n+1 × R
n → R

n denotes the
projection on the last n coordinates, then we have Σ(X) = Sn−1∩πy(M̄\M).
�

Corollary 3.6. If v does not belong to Σ(X), then the set of critical points
of v∗|X is compact.

Proof. If this set of critical points is not compact, then there exists a
sequence of points (xk)k∈N in X such that ‖xk‖ → +∞ and v ⊥ Txk

S(xk).
�

Lemma 3.7. There exists a semi-algebraic set Σ′(X) ⊂ Sn−1 of dimension
less than n − 1 such that if v does not belong to Σ′(X), then X ∩ {x ∈
R

n | rank(x, v) < 2} is finite.

Proof. Since the stratification of X is finite and semi-algebraic, it is
enough to prove the lemma for a smooth semi-algebraic stratum S of di-
mension s. Let NS be the following semi-algebraic set :

NS =

{

(x, y) ∈ R
n × R

n | x ∈ S and ∀(i, j) ∈ {1, . . . , n}2,

∣

∣

∣

∣

xi xj

yi yj

∣

∣

∣

∣

= 0

}

.

Using the same kind of arguments as in the previous lemmas, we see that
the NS \ {{0} × R

n} is a smooth manifold of dimension s + 1. Let

πy : NS → R
n

(x, y) 7→ y

be the projection onto the n last coordinates. The Bertini-Sard theorem (see
[BCR], Proposition 2.8.12) implies that the set Σπy of critical values of πy

is semi-algebraic of dimension less than n. One takes Σ′(X) = Sn−1 ∩ Σπy .
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Observe that X ∩ {x ∈ R
n | rank(x, v) < 2} = π−1

y {v} if 0 /∈ X and

X ∩ {x ∈ R
n | rank(x, v) < 2} = π−1

y {v} ∪ {0} if 0 ∈ X. �

Corollary 3.8. Let v be vector in Sn−1. If there exists a sequence (xk)k∈N

of points in X such that

• ‖xk‖ → +∞,
• v ∈ Nxk

S(xk) ⊕ R · xk,
• limk→+∞ |v∗(xk)| < +∞,

then v belongs to Σ(X) (Here Nxk
S(xk) is the normal space to the stratum

S(xk)).

Proof. We can assume that v = −e1 = (−1, 0, . . . , 0). In this case,
v∗ = x1. Furthermore, since the stratification is finite, one can assume that
(xk)k∈N is a sequence of points lying in a stratum S. By the version at infinity
of the Curve Selection Lemma (See [NZ], Lemma 2), there exists an analytic
curve p(t) :]0, ε[→ S such that limt→0 ‖p(t)‖ = +∞, limt→0 p1(t) < +∞ and
such that for t ∈]0, ε[, −e1 belongs to the space Np(t)S ⊕ R · p(t). Let us
consider the expansions as Laurent series of the pi’s :

pi(t) = ait
αi + · · · , i = 1, . . . , n.

Let α be the minimum of the αi’s. Necessarily, α < 0 and α1 ≥ 0. It is
straightforward to see that ‖p(t)‖ has an expansion of the form :

‖p(t)‖ = btα + · · · , b > 0.

Let us denote by πt the orthogonal projection onto Tp(t)S. For every t ∈]0, ε[,
there exists a real number λ(t) such that :

πt(e1) = λ(t).πt(p(t)) = λ(t) · ‖πt(p(t))‖ ·
πt(p(t))

‖πt(p(t))‖
.

Observe that taking ε sufficiently small, we can assume that πt(p(t)) does
not vanish, for Sn−1

‖p(t)‖ intersects S transversally. Using the fact that p′(t) is

tangent to S at p(t), we find that :

p′1(t) = 〈p′(t), e1〉 = 〈p′(t), πt(e1)〉 = λ(t) · 〈p′(t), p(t)〉.

This implies that ord(λ) ≥ α1 − 2α. Let β be the order of ‖πt(p)‖. Since
‖p(t)‖ ≥ ‖πt(p(t))‖, β is greater or equal to α. Finally we obtain that
ord(λ‖πt(p(t))‖) is greater or equal to α1 − 2α + β, which is positive. This
proves the corollary. �

We recall that we have chosen R > 0 sufficiently big so that Sn−1
R inter-

sects every stratum of X transversally. Let us consider a function f : X → R.
Let q ∈ X ∩ Sn−1

R be a critical point of f|S(q)∩Sn−1
R

We will say that f|X∩Bn
R

is inward (resp. outward) at q of if f|S(q)∩Bn
R

is inward (resp. outward) at q.

Corollary 3.9. Let v be a vector in Sn−1 not belonging to Σ(X) ∪ Σ′(X).
There exits Rv > 0 such that for every R ≥ Rv, v∗|X∩Bn

R
is not inward
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(resp. outward) at the critical points of v∗
|X∩Sn−1

R

lying in {v∗ > 0} (resp in

{v∗ < 0}).

Proof. By Corollary 3.6, we know that if v does not belong to Σ(X) then
{v∗ = 0} intersects each stratum transversally outside a compact set. Let us
remark also that for R sufficiently big and for every stratum S of X, Sn−1

R

intersects {v∗ = 0} ∩ S transversally. Hence the critical points of v∗
|X∩Sn−1

R

do not lie on the level {v∗ = 0} if R is big enough.
Let us fix a stratum S of dimension s and a vector v in Sn−1 not belonging

to Σ(X) ∪ Σ′(X). By Corollary 3.6 and Lemma 3.7, the critical points of
v∗
|S∩Sn−1

R

are correct if R is sufficiently big. We can assume that v = −e1.

Let us suppose that there exists a sequence of points (xk)k∈N in S∩{v∗ > 0}
such that ‖xk‖ → +∞, xk is a critical point of v∗

|S∩Sn−1
‖xk‖

and v∗|S∩Bn
‖xk‖

is

inward at xk. By the Curve Selection Lemma at infinity, there exists an
analytic curve p(t) :]0, ε[→ S such that limt→0 ‖p(t)‖ = +∞ and p(t) is
a critical point of v∗

|S∩Sn−1
‖p(t)‖

and v∗|S∩Bn
‖p(t)‖

is inward at p(t). Keeping the

notations of Corollary 3.8, we have that for every t ∈]0, ε[, there exists a
real number λ(t) > 0 such that :

πt(e1) = λ(t).πt(p(t)) = λ(t) · ‖πt(p(t))‖ ·
πt(p(t))

‖πt(p(t))‖
.

But we know that p′1(t) = λ(t)〈p′(t), p(t)〉, which can be written p′1(t) =
1
2λ(t)(‖p(t)‖2)′. Hence the function p1 is increasing and thus the function
v∗ ◦ p is decreasing. Since it is bounded from above as t tends to 0, we find
that limt→0 |v

∗(p(t))| < +∞, a contradiction. �

Corollary 3.10. Let v be a vector in Sn−1 not belonging to Σ(X)∪Σ′(X).
There exits Rv > 0 such that for every R ≥ Rv, there exists τR,v such that
for every t with 0 < t ≤ τR,v, v∗

|f−1
R (t)∩Bn

R

is not inward (resp. outward) at

the critical points of v∗
|f−1

R (t)∩Sn−1
R

lying in {v∗ > 0} (resp. in {v∗ < 0}).

Proof. Let us choose v not in Σ(X)∪Σ′(X) and Rv defined in the previous
corollary. Let R be greater or equal to Rv. Since fR|{v∗=0}∩Sn−1

R
is a semi-

algebraic function of class C3 outside X, it has a finite number of critical
values. Hence for t positive and sufficiently small, the critical points of
v∗
|f−1

R (t)∩Sn−1
R

do not lie on the level {v∗ = 0}.

Let us assume that for every R′ ≥ Rv, there exists R ≥ R′ such that
for every τ > 0 there exists t ≤ τ such that v∗

|f−1
R (t)∩Bn

R

is inward at a

critical point of v∗
|f−1

R (t)∩Sn−1
R

lying in {v∗ > 0}. One can construct a se-

quence (Rl)l∈N of positive numbers such that liml→+∞ Rl = +∞ and, for
each l ∈ N, a sequence of points (yl

k)k∈N in Sn−1
Rl

such that yl
k is a critical

point of v∗
|f−1

Rl
(tk)∩Sn−1

Rl

at which v∗
|f−1

Rl
(tk)∩Bn

Rl

is inward, where tk = fRl
(yl

k)
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and limk→+∞ tk = 0, and such that v∗(yl
k) > 0. Taking a subsequence if nec-

essary, one can assume that (yl
k) tends to a point yl which lies in X ∩Sn−1

Rl
.

By condition (v) in Definition 2.12, we know that there exists a vector ul in
Sn−1 normal to S(yl) such that

lim
k→+∞

∇fRl
(yl

k)

‖∇fRl
(yl

k)‖
= ul.

At each point yl
k, we have the following decomposition of v :

v = µk ·
∇fRl

(yl
k)

‖∇fRl
(yl

k)‖
+ λk ·

yl
k

‖yl
k‖

,

where λk > 0. As in Lemma 3.4, it is not difficult to prove that λk and µk

are bounded. Taking subsequences if necessary and taking the limit in the
above equality, we find that there exist λ ≥ 0 and µ such that

v = µ.ul + λ.yl.

If λ = 0 then v and ul are colinear and yl is a critical point of v∗|X which

is excluded if Rl is big enough. Hence λ > 0. Furthermore v∗(yl) > 0 for
Sn−1

Rl
intersects X ∩ {v∗ = 0} transversally if Rl is big enough. So we have

constructed a sequence of points (yl)l∈N such that yl is a critical point of
v∗
|X∩Sn−1

Rl

at which v∗|X∩Bn
Rl

is inward, and such that v∗(yl) > 0. This is

impossible by Corollary 3.9. �

4. The Gauss-Bonnet formula

In this section, we state and prove a Gauss-Bonnet formula for closed
semi-algebraic sets. So let X ⊂ R

n be a closed semi-algebraic set. Let
(KR)R>0 be an exhaustive sequence of compact borelian sets of X, that is
a sequence (KR)R>0 of compact borelian sets of X such that ∪R>0KR = X
and KR j KR′ if R ≤ R′. For every R > 0, one has :

λ0(X ∩ KR) =
1

Vol(Sn−1)

∫

Sn−1

∑

x∈X∩KR

α(X, v∗, x)dv.

Moreover the following limit

lim
R→+∞

∑

x∈X∩KR

α(X, v∗, x)

is equal to
∑

x∈X α(X, v∗, x) which is uniformly bounded by Hardt’s theorem
([Har]). Applying Lebesgue’s theorem, we obtain :

lim
R→+∞

λ0(X ∩ KR) =
1

Vol(Sn−1)

∫

Sn−1

lim
R→+∞

∑

x∈X∩KR

α(X, v∗, x)dv =

1

Vol(Sn−1)

∫

Sn−1

∑

x∈X

α(X, v∗, x).



18 NICOLAS DUTERTRE

Definition 4.1. One sets

λ0(X) = lim
R→+∞

λ0(X ∩ KR),

where (KR)R>0 is an exhaustive sequence of compact borelian sets of X.

Since this definition does not depend on the choice of the exhaustive
sequence, we will study limR→+∞ λ0(X∩Bn

R). Let R ≫ 1 be such that Sn−1
R

intersects all the strata of X transversally. Using the technics of Section 3,
it is not difficult to see that the set

{v ∈ Sn−1 | ∃x ∈ X ∩ Sn−1
R with v ⊥ TxS(x)}

is a semi-algebraic set of dimension less than n − 1. This implies that :

λ0(X ∩ Bn
R) = λ0(X ∩ B̊n

R),

where B̊n
R is the interior of Bn

R. From now on, we will study λ0(X ∩ B̊n
R)

with R > 0 sufficiently big.
Let fR be a semi-algebraic approximating function from outside for X ∩

Bn
2R. By Theorem 2.14, one has :

λ0(X ∩ B̊n
R) = lim

t→0
λ0({fR ≤ t} ∩ B̊n

R).

and

λ0({fR ≤ t} ∩ B̊n
R) =

1

Vol(Sn−1)

∫

Sn−1

∑

x∈{fR≤t}∩B̊R

α({fR ≤ t}, v∗, x)dv.

Let us evaluate first
∑

x∈{fR≤t}∩B̊R
α({fR ≤ t}, v∗, x). The set {fR ≤ t} is a

C3 manifold with boundary. Applying stratified Morse Theory to the case of
manifolds with boundary, we find that the points x of {fR ≤ t} for which the
index α({fR ≤ t}, v∗, x) does not vanish are exactly the critical points x of
v∗|{fR=t} such that ∇v∗(x) is a negative multiple of ∇fR(x), or equivalently

v is a positive multiple of ∇fR(x). By the results of Section 3, we known
that for R sufficiently big and t sufficiently small, the set {fR ≤ t} ∩ Bn

R is
a manifold with corners. Furthermore, for almost all v ∈ Sn−1, the function
v∗
|{fR=t}∩Sn−1

R

is a Morse function (see Lemma 3.3). The function v∗|{fR≤t}∩Bn
R

is inward at a critical point p of v∗
|f−1

R (t)∩Sn−1
R

if v, which is also −∇v∗(p),

admits the following decomposition :

v = λ · p + µ · ∇fR(p),

where λ > 0 and µ > 0. Let {pt,R,v
j , j = 1, . . . , lt,Rv } be the set of these

critical points and let {σt,R,v
j , i = 1, . . . , lt,Rv } be the set of their respective
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Morse indices. We have :

χ({fR ≤ t} ∩ Bn
R) =

∑

x∈{fR≤t}∩B̊n
R

α({fR ≤ t}, v∗, x) +

l
t,R
v
∑

j=1

(−1)σ
t,R,v
j + It,R

v ,

where It,R
v belongs to {−1, 0, 1} and represents the contribution of the pos-

sible critical point of v∗
|{fR<t}∩Sn−1

R

at which v∗|{fR≤t}∩Bn
R

is inward, or equiv-

alently, at which v∗ is negative. This gives :

Vol(Sn−1) · λ0({fR ≤ t} ∩ Bn
R) =

∫

Sn−1

χ({fR ≤ t} ∩ Bn
R)dv−

∫

Sn−1





l
t,R
v
∑

j=1

(−1)σ
t,R,v
j + It,R

v



 dv.

Taking the limits as t tends to 0 and R tends to ∞, we obtain :

Vol(Sn−1) · λ0(X) = lim
R→+∞

lim
t→0

Vol(Sn−1) · χ({fR ≤ t} ∩ Bn
R)−

lim
R→+∞

lim
t→0

∫

Sn−1





l
t,R
v
∑

j=1

(−1)σ
t,R,v
j + It,R

v



 dv.

We need to compute the two double limits in the above equality.

Lemma 4.2. Let R > 0 be such that Sn−1
R intersects the strata of X

transversally. Let fR be a semi-algebraic approximating from outside for
X∩Bn

2R. There exists a neighborhood U of X∩Sn−1
R such that for x ∈ U \X,

∇fR(x) and x are not colinear.

Proof. If it is not the case, one can find a sequence of points (xk)k∈N

such that fR(xk) tends to 0, ‖xk‖ tends to R and ∇fR(xk) is colinear to xk.
Taking a subsequence if necessary, one can assume that (xk) tends to a point

x ∈ X∩Sn−1
R . This implies that the sequence ( ∇fR(xk)

‖∇fR(xk)‖ ) tends to ± x
‖x‖ . By

condition (v) in Definition 2.12, one can conclude that x ⊥ TxS(x), which
contradicts the fact that Sn−1

R intersects S(x) transversally at x. �

Proposition 4.3. We have :

lim
R→+∞

lim
t→0

χ({fR ≤ t} ∩ Bn
R) = χ(X).

Proof. Let R be sufficiently big so that Sn−1
R intersects the strata of X

transversally. There exits a neighborhood U of X ∩ Sn−1
R such that for

x ∈ U \ X, ∇fR(x) and x are not colinear. In this situation, one can apply
the remark after Theorem 3.2 in [Dut4,p10] to prove that for t sufficiently
small X ∩ Bn

R is a strong deformation retract of {fR ≤ t} ∩ Bn
R. Hence we

find that

lim
t→0

χ({fR ≤ t} ∩ Bn
R) = χ(X ∩ Bn

R)
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and thus
lim

R→+∞
lim
t→0

χ({fR ≤ t} ∩ Bn
R) = χ(X).

�
Let us now focus on the second double limit.

Lemma 4.4. We have :

lim
R→+∞

lim
t→0

∫

Sn−1





l
t,R
v
∑

j=1

(−1)σ
t,R,v
j + It,R

v



 dv =

∫

Sn−1

lim
R→+∞

lim
t→0





l
t,R
v
∑

j=1

(−1)σ
t,R,v
j + It,R

v



 dv.

Proof. Using the study of the critical points of v∗
|f−1

R (t)∩Sn−1
R

that we have

done in Section 3, we see that for almost all v ∈ Sn−1

∣

∣

∣

∣

∣

∣

lim
t→0

l
t,R
v
∑

j=1

(−1)σ
t,R,v
j

∣

∣

∣

∣

∣

∣

≤ J(v,R),

where J(v,R) is the number of points q in X ∩ Sn−1
R such that q is a crit-

ical point of v∗
|S(q)∩Sn−1

R

. By Hardt’s theorem [Har], this number J(v,R) is

uniformly bounded. Since |It,R
v | ≤ 1, it is easy to get the result. �

For almost all v ∈ Sn−1, the function v∗
|{fR=t}∩Sn−1

R

is a Morse function.

Let {qt,R,v
i , i = 1, . . . ,mt,R

v } be the set of its critical points. With each point

qt,R,v
i , one can associate two integers : the Morse index of v∗

|{fR=t}∩Sn−1
R

that

we will denote by νt,R,v
i and the Morse index of −v∗

|{fR=t}∩Sn−1
R

that we will

denote by νt,R,−v
i . Observe that the sets {pt,R,v

j } and {pt,R,−v
j } are subsets

of {qt,R,v
i }, that the set {σt,R,v

j } is a subset of {νt,R,v
i } and that {σt,R,−v

j } is a

subset of {νt,R,−v
i }. At each point qt,R,v

i , we have the following decomposition
of v :

v = µ(qt,R,v
i ) · ∇f(qt,R,v

i ) + λ(qt,R,v
i ) · qt,R,v

j .

Applying Morse Theory to {fR ≤ t} ∩ Sn−1
R and to v∗, we find :

χ({fR ≤ t} ∩ Sn−1
R ∩ {v∗ ≥ 0}) − χ({fR ≤ t} ∩ Sn−1

R ∩ {v∗ = 0}) =
∑

i|v∗>0
µ>0

(−1)ν
t,R,v
i + Kt,R

v ,

where Kt,R
v belongs to {−1, 0, 1} and represents the contribution of the pos-

sible critical point of v∗
|{fR<t}∩Sn−1

R

lying in {v∗ > 0}. Similarly, we have

:

χ({fR ≤ t} ∩ Sn−1
R ∩ {v∗ ≤ 0}) − χ({fR ≤ t} ∩ Sn−1

R ∩ {v∗ = 0}) =
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∑

i|v∗<0
µ<0

(−1)ν
t,R,−v
i + Kt,R

−v .

Summing these two equalities, we get

χ({fR ≤ t} ∩ Sn−1
R ) − χ({fR ≤ t} ∩ Sn−1

R ∩ {v∗ = 0}) =
∑

i|v∗>0
µ>0

(−1)ν
t,R,v
i +

∑

i|v∗<0
µ<0

(−1)ν
t,R,−v
i + Kt,R

v + Kt,R
−v . (1)

Furthermore, we have

χ({fR ≤ t} ∩ SR) =
∑

i|µ>0

(−1)ν
t,R,v
i + Lt,R

v , (2)

where Lt,R
v belongs to {−1, 0, 1} and represents the contribution of the pos-

sible critical points of v∗
|{fR<t}∩Sn−1

R

. Similarly, we have :

χ({fR ≤ t} ∩ SR) =
∑

i|µ<0

(−1)ν
t,R,−v
i + Lt,R

−v . (3)

Now the combination −(1) + (2) + (3) leads to :

χ({fR ≤ t} ∩ SR) + χ({fR ≤ t} ∩ SR ∩ {v∗ = 0}) =
∑

i|v∗<0
µ>0

(−1)ν
t,R,v
i +

∑

i|v∗>0
µ<0

(−1)ν
t,R,−v
i + It,R

v + It,R
−v .

By Corollary 3.10, we know that if v does not belong to Σ(X) ∪ Σ′(X),

the points pt,R,v
j are exactly the points qt,R,v

i at which v∗ < 0 and µ > 0,
if R is big enough and t is small enough. In the same way, the points

pt,R,−v
j are exactly the points qt,R,v

i at which v∗ > 0 and µ < 0, if R is
big enough and t is small enough. Furthermore, if t is sufficiently small
X ∩ Sn−1

R is a strong deformation retract of {fR ≤ t} ∩ Sn−1
R (see [Dur]),

hence limt→0 χ({fR ≤ t} ∩ Sn−1
R ) = χ(X ∩ Sn−1

R ). For R > sufficiently big,

X ∩ Sn−1
R is the link at infinity of X, that we denote by Lk∞(X). Finally

we get that

lim
R→+∞

lim
t→0

χ({fR ≤ t} ∩ Sn−1
R ) = χ(Lk∞(X)).

Similarly we have :

lim
R→+∞

lim
t→0

χ({fR ≤ t} ∩ Sn−1
R ∩ {v∗ = 0}) = χ(Lk∞(X ∩ {v∗ = 0})).

Collecting all these informations, we find :

lim
R→+∞

lim
t→0





l
t,R
v
∑

j=1

(−1)σ
t,R,v
j + It,R

v



+ lim
R→+∞

lim
t→0







l
t,R
−v
∑

j=1

(−1)σ
t,R,−v
j + It,R

−v







= χ(Lk∞(X)) + χ(Lk∞(X ∩ {v∗ = 0})).
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Let us denote limR→+∞ limt→0
∑l

t,R
v

j=1(−1)σ
t,R,v
j + It,R

v by α(v). We have

α(v) + α(−v) = χ(Lk∞(X)) + χ(Lk∞(X ∩ {v∗ = 0})). But it is easy to see
that

∫

Sn−1 α(v)dv =
∫

Sn−1 α(−v)dv, which gives that :
∫

Sn−1

α(v)dv =
1

2

∫

Sn−1

[α(v) + α(−v)] dv =

1

2
Vol(Sn−1) · χ(Lk∞(X)) +

1

2

∫

Sn−1

χ(Lk∞(X ∩ {v∗ = 0}))dv.

Combining all these results, we can state the Gauss-Bonnet formula for
closed semi-algebraic sets.

Theorem 4.5. Let X ⊂ R
n be a closed semi-algebraic set. We have :

λ0(X) = χ(W ) −
1

2
χ(Lk∞(X))

−
1

2Vol(Sn−1)

∫

Sn−1

χ(Lk∞(X ∩ {v∗ = 0}))dv.

�

5. Gauss-Bonnet formula by approximation

In this section, we prove a Gauss-Bonnet theorem for a closed semi-
algebraic set by approximation. Our strategy is to approach the semi-
algebraic set by a family of closed semi-algebraic sets which are also mani-
folds with boundary of class C2 and to integrate the Gauss curvature on the
boundaries of these manifolds.

Let us recall the results about semi-algebraic neighborhoods that we
obtained in [Dut4]. Let X ⊂ R

n be a closed semi-algebraic set and let
ρ : R

n → R≥0 be a proper C2 semi-algebraic function. For every C2 semi-
algebraic function g : R

n → R, let Γg,ρ be the semi-algebraic set defined
by:

Γg,ρ = {x ∈ R
n | ∇g(x) and ∇ρ(x) are colinear and g(x) 6= 0}.

Definition 5.1. Let g : R
n → R be a C2 semi-algebraic function. We say

that g is ρ-quasiregular if there does not exist any sequence (xk)k∈N in Γf,ρ

such that ‖xk‖ tends to infinity and |g(xk)| tends to 0.

In [Dut4], we proved the following proposition.

Proposition 5.2. Let X be closed semi-algebraic set in R
n. There exists a

C2 non-negative semi-algebraic function f : R
n → R such that X = f−1(0)

and f is ρ-quasiregular.

Proof. By [DM] Corollary C.12, it is possible to find a C2 semi-algebraic
non-negative function g : R

n → R such that X = g−1(0). Let r0 be the
greatest critical value of ρ. For r ≥ r0, let us denote by Σr be the non-
empty compact C2 semi-algebraic hypersurface ρ−1(r). Let β :]r0,+∞[→ R

be defined by
β(r) = inf{g(x) | x ∈ Σr ∩ Γg,ρ}.
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The function β is semi-algebraic. It is positive since for r > r0, the function
g|Σr

admits a finite number of critical values. Hence the function 1/β is
semi-algebraic as well. Proposition 2.11 in [Co] (or Proposition 2.6.1 in
[BCR]) implies that there exists r1 > r0 and an integer q0 such that for all
r ∈ [r1,+∞[,

1

β(r)
≤ rq0 < (1 + r)q0.

Therefore, for all x ∈ Γg,ρ such that ρ(x) ≥ r1 and for all q ≥ q0, one has
(1 + ρ(x))q.g(x) > 1. Since Γg,ρ is equal to Γ(1+ρ)q ·g,ρ, one can take for f a
function (1 + ρ)q.g where q is an integer greater or equal to q0. �

In order to prove the Gauss-Bonnet formula by approximation, we need
an improved version of the previous proposition. Before stating it, let us
give a notation. For every v ∈ Sn−1 and for every function f : R

n → R, fv

will denote the restriction on f to the hyperplane {v∗ = 0}.

Proposition 5.3. Let X be closed semi-algebraic set in R
n. There exists a

C2 non-negative semi-algebraic function f : R
n → R such that X = f−1(0),

f is ρ-quasiregular and for every v ∈ Sn−1, fv is ρv-quasiregular.

Proof. Let g : R
n → R be a C2 semi-algebraic non-negative function such

that X = g−1(0). For every v ∈ Sn−1, let rv be the greatest critical value
of ρv. Let A be the set defined by :

A = {(v, r) ∈ Sn−1 × R | r > rv}.

The following set B is semi-algebraic :

B = {(x, v, r) ∈ R
n × Sn−1 × R | v∗(x) = 0,∇ρ(x) and v are colinear

and r ≤ ρ(x)}.

If π : R
n×Sn−1×R → Sn−1×R is the projection on the last two components,

then the set π(B) is also semi-algebraic. Since A is the complement of π(B),
it is semi-algebraic. Let γ : A → R be defined by :

γ(v, r) = inf{g(x) | x ∈ Σr ∩ {v∗ = 0} ∩ Γgv,ρv}.

A parametric version of Proposition 2.11 in [Co] (see [Mill]) tells us that
there exists an integer q1 such that for every v ∈ Sn−1, there exists r′v > rv

such that for every r ∈ [r′v,+∞[ :

1

γ(v, r)
≤ rq1 < (1 + r)q1.

Then it is easy to conclude the proof of the proposition. �
Using Theorem 3.2 in [Dut4], we obtain the following corollary.

Corollary 5.4. Let X be closed semi-algebraic set in R
n. Let f : R

n →
R be a C2 non-negative semi-algebraic function such that X = f−1(0), f
is ρ-quasiregular and for every v ∈ Sn−1, fv is ρv-quasiregular. Then X
is a strong deformation retract of f−1([0, δ]) for δ > 0 sufficiently small
and for every v ∈ Sn−1, X ∩ {v∗ = 0} is a strong deformation retract of
f−1([0, δ]) ∩ {v∗ = 0} for δ > 0 sufficiently small.
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�
We are in position to state the main result of this section.

Theorem 5.5. Let X be closed semi-algebraic set in R
n. Let f : R

n → R

be a C2 non-negative semi-algebraic function such that X = f−1(0), f is
ρ-quasiregular and for every v ∈ Sn−1, fv is ρv-quasiregular. For every
positive regular value δ of f , let kδ be the curvature of f−1(δ). We have :

lim
δ→0+

∫

f−1(δ)
kδdx = Vol(Sn−1) · χ(X) −

1

2
Vol(Sn−1) · χ(Lk∞(X))

−
1

2

∫

Sn−1

χ(Lk∞(X ∩ {v∗ = 0}))dv.

Proof. Let us study first the case n odd. Theorem 4.5 in [Dut3] says that
∫

f−1(δ)
kδdx =

1

2
Vol(Sn−1) · χ(f−1(δ)) −

1

2

∫

Sn−1

χ(f−1(δ) ∩ {v∗ = 0}))dv.

One should mention here that in [Dut3], we proved this result only for
polynomial functions. To be able to apply it in the semi-algebraic case, we
just have to prove that Proposition 3.1 in [Dut3] still holds for a C1 semi-
algebraic function. This is the case because Proposition 3.1 in [Dut3] is a
special case of our Lemma 3.5. Since we work in the semi-algebraic setting,
Hardt’s theorem tells us that χ(f−1(δ) ∩ {v∗ = 0}) is uniformly bounded.
Applying Lebesgue’s theorem, we get :

lim
δ→0+

∫

f−1(δ)
kδdx = Vol(Sn−1) · lim

δ→0+
χ(f−1(δ))

−
1

2

∫

Sn−1

lim
δ→0+

χ(f−1(δ) ∩ {v∗ = 0}))dv.

For every R > 0, we will denote by DR the set {x ∈ R
n | ρ(x) ≤ r}. For

R sufficiently big, it is a C2 submanifold, with boundary ΣR, diffeomorphic
to a disc. Let us choose R0 > 0 such that for every R ≥ R0, X ∩ Dn

R is a
deformation retract of X. Since f is ρ-quasiregular, there exits R1 > 0 such
that for every x ∈ Γf,ρ with ρ(x) ≥ R1, one has f(x) > 1. This implies that
for δ > 0 sufficiently small and for R ≥ R1, f−1(δ)∩DR (resp. {f ≤ δ}∩DR)
is a deformation retract of f−1(δ) (resp. {f ≤ δ}). One has

χ(X) = χ(X ∩ DR) = lim
δ→0+

χ({f ≤ δ} ∩ DR),

and

χ(Lk∞(X)) = χ(X ∩ ΣR) = lim
δ→0+

χ({f ≤ δ} ∩ ΣR).

For δ small enough, {f ≤ δ} ∩DR is a manifold with corners of odd dimen-
sion. Therefore, following the method explained in [Dut1], Theorem 5.2, we
have :

χ({f ≤ δ} ∩ DR) =
1

2
χ({f = δ} ∩ DR) +

1

2
χ({f ≤ δ} ∩ ΣR).
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Combining all these equalities, we obtain :

1

2
lim

δ→0+
χ(f−1(δ)) = χ(X) −

1

2
χ(Lk∞(X)).

Now let us fix v ∈ Sn−1 and let us set H = {x ∈ R
n | v∗(x) = 0}. Since fv

is ρv-quasiregular, we can find R > 0 sufficiently big such that X ∩H ∩DR

is a deformation retract of X ∩ H and such that f−1(δ) ∩ H ∩ DR (resp.
{f ≤ δ}∩H∩DR) is a deformation retract of f−1(δ)∩H (resp. {f ≤ δ}∩H)
for δ > 0 small enough. Since f−1(δ) ∩ H is an odd-dimensional manifold
for δ small enough, we can write :

χ(f−1(δ) ∩ H) = χ(f−1(δ) ∩ H ∩ DR) =

1

2
χ(f−1(δ) ∩ H ∩ ΣR) = χ({f ≤ δ} ∩ H ∩ ΣR).

Hence, we get

lim
δ→0+

χ(f−1(δ) ∩ H) = χ(X ∩ H ∩ ΣR) = χ(Lk∞(X ∩ H)).

This ends the proof of the case n odd.
If n is even, Theorem 4.5 in [Dut3] states that
∫

f−1(δ)
kδdx = −

1

2
Vol(Sn−1) · [χ({f ≥ δ}) − χ({f ≤ δ})]

+
1

2

∫

Sn−1

[χ({f ≥ δ} ∩ {v∗ = 0}) − χ({f ≤ δ} ∩ {v∗ = 0})] dv.

Applying Lebesgue’s theorem, we get :

lim
δ→0+

∫

f−1(δ)
kδdx = −

1

2
Vol(Sn−1) · lim

δ→0+
[χ({f ≥ δ}) − χ({f ≤ δ})]

+
1

2

∫

Sn−1

lim
δ→0+

[χ({f ≥ δ} ∩ {v∗ = 0}) − χ({f ≤ δ} ∩ {v∗ = 0})] dv.

By the Mayer-Vietoris sequence, we have :

1 = χ({f ≥ δ}) + χ({f ≤ δ}) − χ(f−1(δ)),

hence,

χ({f ≥ δ}) − χ({f ≤ δ}) = 1 − 2χ({f ≤ δ}) + χ(f−1(δ)).

Choosing R > 0 as in the case n odd, we find that

χ(f−1(δ)) = χ(f−1(δ) ∩ BR) =
1

2
χ(f−1(δ) ∩ ΣR) = χ({f ≤ δ} ∩ ΣR).

Finally, we obtain :

lim
δ→0+

[χ({f ≥ δ}) − χ({f ≤ δ})] = 1 − 2χ(X) + χ(Lk∞(X)).

Now let us fix v ∈ Sn−1 and H = {x ∈ R
n | v∗(x) = 0}. We will also use

the same R as in the case n odd. As above, we have :

χ({f ≥ δ} ∩H)− χ({f ≤ δ} ∩ H) = 1− 2χ({f ≤ δ} ∩H) + χ(f−1(δ) ∩H).
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Moreover, since {f ≤ δ} ∩ H is odd-dimensional, we can write

χ({f ≤ δ} ∩ H ∩ DR) =
1

2
χ(f−1(δ) ∩ H ∩ DR) +

1

2
χ({f ≤ δ} ∩ H ∩ ΣR),

and therefore,

−2χ({f ≤ δ} ∩ H) = −χ(f−1(δ) ∩ H) − χ({f ≤ δ} ∩ H ∩ ΣR).

Finally we obtain :

lim
δ→0+

[χ({f ≥ δ} ∩ H) − χ({f ≤ δ} ∩ H)] =

1 − lim
δ→0+

χ({f ≤ δ} ∩ H ∩ ΣR) = 1 − χ(Lk∞(X ∩ H)).

This ends the proof of the case n even. �

Corollary 5.6. Let X be closed semi-algebraic set in R
n. Let f : R

n → R

be a C2 non-negative semi-algebraic function such that X = f−1(0), f is
ρ-quasiregular and for every v ∈ Sn−1, fv is ρv-quasiregular. For every
positive regular value δ of f , let kδ be the curvature of f−1(δ). We have :

Vol(Sn−1) · λ0(X) = lim
δ→0+

∫

f−1(δ)
kδdx.

References

[Al] ALLENDOERFER, C.B. : The Euler number of a Riemann manifold, Amer.
J. Math. 62 (1940), 243-248.

[AW] ALLENDOERFER, C.B., WEIL, A. : The Gauss-Bonnet theorem for Riemann-
ian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101-129.

[Ba1] BANCHOFF, T. : Critical points and curvature for embedded polyhedra, J.
Differential Geometry 1 (1967), 245-256.

[Ba2] BANCHOFF, T. : Critical points and curvature for embedded polyhedral sur-
faces, Amer. Math. Monthly 77 (1970), 475-485.

[BCR] BOCHNAK, J., COSTE, M., ROY, M.F. : Géométrie algébrique réelle, Ergeb-
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