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S U M M A R Y
Numerous observations indicate that fluids circulate in the crust after an earthquake, with
time constants comparable to those of the aftershocks. This paper provides new viewpoints
concerning the relationship between the fluid flow and aftershocks. The fault on which the
main quake occurs is modelled using a rectangular dislocation surface that is embedded in
a 3-D poroelastic half-space. The main event is modelled by prescribing a given amount
of displacement over the dislocation surface which results in deformation throughout the
surrounding crust. The fluid redistribution that then ensues is modelled using the equations of
poroelasticity. We show that this process can lead to time-dependent weakening effects. The
results are analysed in terms of how changes in a Coulomb failure function (�CFF) evolve
through time. The spatial and temporal distributions of aftershocks triggered by �CFF are
modelled on a statistical basis. We test our model in various situations. The spatial distribution
of aftershocks is depicted in various tectonic environments and we show that the fluid flow
seemingly provides a convincing mechanism for the triggering of aftershocks. Both off-fault
aftershocks and aftershocks close to the surface rupture have been modelled. We have also
investigated the condition under which the Omori decay law (and its associated time exponent
p) is expected and we show that the permeability should vary within a window of less than two
orders of magnitude in order to match the observed value of p ≈ 1. With seismic data from
the Northridge event (1994), we show that a crustal permeability of 7.5 × 10−15 m2 allows
us to describe quite well the time dependence of the aftershock. However, the permeability
should vary proportionally to L2, where L is the scale length over which the fluid-pressure
equilibration occurs that is dependent on the size of the main event, in order to obtain a similar
decay law (p ≈ 1) at every scale (main-event magnitude). Finally, the link with the post-seismic
hydrological observations is established and we show that the fluid flow predicted in the model
of the Northridge event is consistent within an order of magnitude with field observations
reported by Muir-Wood & King.

Key words: aftershocks, fluid flow, hydrological anomalies, poroelastic coupling, stress
transfer.

1 I N T RO D U C T I O N

Many physical measurements are made during a series of seismic
events in order to monitor physical anomalies due to precursory
and/or post-seismic effects. Detection of precursory effects is one of
these measurements that remains elusive. However, numerous post-
seismic effects have been observed. By studying the post-seismic
response of the crust, one hopes to gain a better understanding of the
physical processes responsible for seismicity in general and after-
shocks in particular. Concerning the effects of the fluids, the condi-
tions under which the fluids circulate in the fault zone remain poorly
known as does the exact role that the fluids may play both before
and after the main event. Although fluids may be involved in many

physical and chemical processes, we will focus here on the mechan-
ical and hydrological consequences of fluid-pressure equilibration
following a main event.

1.1 Fluid flow and mechanical processes following
earthquakes

Fluid-assisted mechanical processes have been studied for a long
time. In the 1970s, dilatancy as a possible precursor process gained
much attention (Nur 1972; Scholz et al. 1973). However, despite
a few notable successes (e.g. Aggarwal et al. 1973), observa-
tions in the field have not confirmed the predictions. The post-
seismic response of principal interest is the spatial and temporal
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distribution of aftershocks. Aftershock sequences have been
recorded for many years. Even though a high level of confidence
can now be attached to the precision of the data, the physical mech-
anisms governing aftershocks remain uncertain. Models have gen-
erally been unsuccessful in explaining the entire range of spatial and
temporal features exhibited by aftershocks.

Usually, the rate of aftershock occurrence after an earthquake is
well described using the Omori law Utsu et al. (1995):

n(t) = K0

/
[c + (t − t0)]p (1)

where n(t) represents the number of aftershocks per unit time interval
at time t, K 0 and c are two constants, t0 is the time of the main event
and p is the Omori exponent which is usually found to be around
1. Let us note that the unit time interval for calculating the rate of
aftershock occurrence is usually 1 day. However, it may be lowered
to a few hours depending on the quality of the aftershock catalogue.

In some cases the actual sequence of aftershocks deviates from
the Omori law. The so-called epidemic-type aftershock sequence
(ETAS) is a noticeable example of this deviation (Ogata 1988). In
this case, at least some aftershocks yield new sequences of after-
shocks and the deviation from the Omori law can be directly related
to the occurrence of some large aftershocks. However Correig et al.
(1997) reported observations of aftershock sequences not correlat-
ing with any particular large event. Moreno et al. (2001) showed
that the pattern of aftershocks can fall into two categories: (1) some
leading events which match the Omori law with the exponent p =
0.94 and (2) a cascade of events which follow the leading events
and exhibits p ≈ 0.7. The main point is that the so-called ‘lead-
ing’ events do not display any remarkable features. As suggested by
Moreno et al. (2001), the Omori law appears to be a type of first
approximation to the decay of aftershock activity.

Various models have been proposed to explain the appearance
of aftershocks. The first class of model involves a physical process
including a time-dependent behaviour which matches the Omori
law. Dieterich (1994) analysed the aftershock process by consider-
ing time-dependent nucleation models. Starting from the constitu-
tive equations of time-dependent friction, he showed that the stress
changes associated with a major event induce a series of earth-
quakes that follow the Omori law with p = 1. However, deviations
from this behaviour are expected, since Dieterich (1994) considered
a uniform spatial stress change. Assuming a more complex (non-
uniform) stress change, p reduces to 0.8. More complex behaviour
associated with, for example, creep effects and history-dependent
stress changes could lead to various Omori exponents different from
1. As noticed by Dieterich (1994), time-dependent nucleation pro-
cesses may not be required to explain the temporal decay of after-
shocks if other effects such as viscoelastic or poroelastic processes
are taken into account.

The spring-block models, initially developed by Burridge &
Knopoff (1967) to describe the Gutenberg–Richter power-law dis-
tribution, have received a great deal of interest as a means of re-
producing the complexity of seismological observations. Within
this framework, many researchers have attempted to derive after-
shock sequences from spring-block models. Dieterich (1972) con-
cluded that it was possible to generate aftershock sequences by con-
sidering a viscoelastic rheology within the fault zone, as well as
time-dependent friction. These aftershocks were found to follow the
Omori law. Nakanishi (1992) came to a similar conclusion by con-
sidering a viscoelastic relaxation under the fault. Hainzl et al. (1999)
have further investigated the viscoelastic coupling between the slid-
ing blocks and blocks situated in the immediate neighbourhood.
They found that such spring-block models allow a simulation of both

foreshock and aftershock sequences with the appropriate power-law
distributions. In addition, they found that the Omori exponent should
depend on the relaxation time constant of the viscoelastic process.
Moreover, the distribution of magnitude of the aftershocks matches
the Gutenberg–Richter law well. However, the aftershocks in these
models of spring blocks are located on or near the fault plane. An
alternative to the models of viscoelastic relaxation/time-dependent
friction has been proposed by Scholz (1968) with an extrapolation
of the laboratory results to the crustal scale. Taking the static fatigue
resulting from the stress corrosion into account, Scholz showed that
the Omori law can be derived using simple assumptions. However,
the question is to find how these mechanisms may be extrapolated
to the field scale.

Nur & Booker (1971) have suggested another weakening mech-
anism. The weakening effect is assumed to result from the redis-
tribution of fluid associated with the strain field which takes place
when the fault slides. The fluid diffuses from compressed regions
to dilated ones with a time constant depending on the fluid-pressure
diffusivity of the porous medium. Assuming that slip is controlled
by a Coulomb criterion, Nur & Booker (1971) express the change
in fault strength S as:

�S = −µ(�σkk/3 + �P) (2)

where σ kk /3 is the mean normal stress, P is the pore pressure and µ

is the friction coefficient of faults (note that throughout this paper we
define compressive stress as being negative). According to eq. (2),
we find the well-known result that an increase in the compressive
stress (�σ kk/3 < 0) leads to consolidation (�S > 0) whereas an
increase in fluid pressure (�P > 0) weakens the fault (�S < 0).

In order to clarify the underlying physics, it is worth decomposing
�P into two terms:

�P = �Pu + δP(t). (3)

The first term �Pu corresponds to the pressure change in the
undrained fluid as a result of the change in σ kk/3 at the time of oc-
currence of the earthquake t = t 0. By definition, this term does not
change with time. This term can be easily calculated using the fol-
lowing relation: �P u = −B �σ kk/3, where B is called the Skemp-
ton coefficient. The second term δP(t) is time dependent and is
related to the diffusion process. At t = t 0,δP(t) = 0.

Assuming for simplicity a Skempton coefficient B = 1 (i.e.
�P u = −�σ kk/3), the mechanical resistance is �S = 0 every-
where just after the event. Then fluid pressure relaxes through the
diffusion process and the mechanical resistance is given by �S =
−µδP(t). In a compressed region, δP(t) decreases with time from
0 to −�P u(< 0). As a consequence �S increases in the compressed
region which leads to consolidation. In the dilated area, δP(t) in-
creases from 0 to −�P u (>0, since �P u < 0 in the dilated area) and
thus �S decreases with time indicating that the medium weakens.

Nur & Booker (1971) considered the stress field resulting from an
edge dislocation. Assuming that the number of aftershocks between
t and t + dt is proportional to the increment of the fluid pressure
δP(t+dt) −δP(t), they found an Omori type law with an exponent
p = 0.5. Although those authors recognized that the model predicts
a cluster of aftershocks near the end of the fault, they pointed out that
a volumetric change around the fault plane can generate aftershocks
along that fault. Even though the physical mechanism responsible
for the aftershocks is clearly explained, the effect of shear stress
is not accounted for. This model provides information on how the
Mohr circle moves with regard to the failure envelope, but puts aside
the possible consolidation of the medium in response to the drop in
the shear stress.
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The influence of the static stress field on the spatial distribution of
aftershocks has been thoroughly investigated by Stein & Lisowski
(1983). A relevant concept for the study of the relationship between
the static stress change and the failure is the concept of the change
in the Coulomb failure function (denoted �CFF). Various authors
attempted to map the change in Coulomb failure function associated
with earthquakes which is defined as �CFF = �τ + µ′�σ n where
τ and σ n are, respectively, the shear and the normal stress acting on
the fault and µ′ = µ(1 − B) is an apparent friction coefficient ac-
counting for the presence of fluid through the Skempton coefficient
B. When �CFF > 0, a fault is brought closer to failure, while when
�CFF < 0 the fault is stabilized. Stein & Lisowski (1983) found
that aftershocks occur preferentially where the Coulomb stresses
increase and correlate well in places when the increase is more than
0.3 MPa. Further, a Coulomb stress drop of a few tenths of a mega-
pascal generally prevents the occurrence of aftershocks. According
to the same authors, the aftershocks occur at such a distance that the
increase in Coulomb stress is in the range 0.05–0.1 MPa. Another
important feature is that the Coulomb stress increases most in dilated
regions; this is confirmed by the observation of aftershock distribu-
tion. King et al. (1994) have developed similar ideas and found
the same type of correlation between increase in Coulomb stress
and aftershocks. This has led various authors to superimpose the
spatial distribution of aftershocks on the zones where the Coulomb
stresses increase. Wang & Chen (2001) found that the coincidence
between both spatial distribution is about 67 per cent for the Chi-
Chi earthquake (which occurred in Taiwan in 1999). Although they
conclude that such a percentage may not be random, we may won-
der why aftershocks also occurred in zones where the Coulomb
stresses decreased. Finally, the following is a questionable aspect of
this approach: taking the Skempton coefficient into account means
that the authors have considered a change in pressure of undrained
fluid which results from the static stress variation. Thus, they have
not taken fluid flow into account. Thus, everything happens as if
the time constant for fluid flow was much larger than the time con-
stant for the relaxation of aftershocks; i.e. as if diffusivity was low
enough to preclude the fluid flow at these time constants. Moreover,
the authors who deal with static stress change do not provide any
time-dependent mechanism to allow for a delayed rupture.

Li et al. (1987) deal with the problem of aftershocks within
the same framework as Nur & Booker (1971) by considering the
fluid flow effect and the associated spatial and time variation of the
Coulomb stress. Although it is not necessarily conclusive, the paper
by Li et al. (1987) provides some keys to a better understanding
of the mechanics of aftershocks in relation to the redistribution of
stresses. They make a strike-slip model by considering a sudden
introduction of a distribution of edge dislocations embedded into a
2-D medium. Then, they consider the result of variation of Coulomb
stress with time. The fact that the aftershock zone is likely to ex-
tend as the fluid flows from the compressed area into the dilated
one is an improved result. The questionable point concerns a pos-
sible correlation between the distance where aftershocks occur and
the variation in Coulomb stress with time. Li et al. (1987) obtained
seismic data on various time windows indicating that the number of
aftershocks away from the main shock seems to increase with time.
Although this trend must be taken cautiously due to the inaccuracy
in aftershock determination, at least it is consistent with the fluid
flow model.

The poroelastic analysis has been proposed again recently by
Bosl & Nur (2002) in the case of the 1992 Landers earthquake.
It provides convincing evidence that accounting for the poroelastic
response of the porous medium may significantly improve the re-

lationship between the positive Coulomb stress and the occurrence
of aftershocks. Bosl & Nur (2002) found that 87 per cent of the af-
tershock events correspond to a positive Coulomb stress at the time
of the event. The average Coulomb stress was 0.155 MPa and the
permeability of the crust was set to k = 1 mD = 10−15 m2.

1.2 Hydrological change following earthquakes

Changes in water level have been recognized for a long time as
anomalies reflecting stress variations in the crust. As far as co-
seismic changes are concerned, there are many occasions where the
changes in water level in wells are consistent with the tectonic de-
formation. Grecksch et al. (1999) showed a good example where
the sign in the co-seismic change in water level matches quite well
the pattern of crustal deformation. However, there are many cases
where the amplitude of observed water level changes is strongly
different from what is expected from the strain sensitivity of the
water level in wells. For instance, Galloway et al. (1994) found a
discrepancy of about two orders of magnitude between the observed
response in a well situated at a distance of 400 km and the expected
one. This discrepancy has not yet received a good explanation but
it clearly questions the capacity for change in water level to reflect
tectonic processes. Kuempel (1992) raises a similar question about
the precursor effect. Indeed it appears in most cases that precursory
changes in water level cannot be attributed to fluid flow from the
focal area. A major challenge is to properly allow for the hetero-
geneity of the crustal response. Thus, according to Kuempel (1992),
the changes in water level induced by fluid mobilization following
an earthquake should be observed only in the focal area.

Considering post-seismic fluid flow, Muir-Wood & King (1987)
reported a number of observations of anomalous fluid regimes in the
rivers and springs in the focal area. According to their observations,
the anomalies correlated well with the deformation patterns asso-
ciated with the earthquakes. Moreover the time constant of these
anomalies was around 6 to 12 months, involving fluid volumes as
large as 0.5 km3. A crude model was used by Muir-Wood & King
(1987) to interpret these observations. They found that the fluids
down to at least the first 5 km depth should be mobilized to ex-
plain the large volumes of expelled fluid. In an interesting study,
Rojstaczer et al. (1995) focused on a particular well in the same
area to give quite a different explanation for the observed anoma-
lies and to favour to a local permeability increase. We shall notice
that local modification of the fluid flow paths has often been used
to explain the anomalous behaviour of water levels (e.g. Leonardi
et al. 1997; Roeloffs 1998; Gavrilenko et al. 2000). Even though the
correlation between the fluid flow anomalies and the deformation
is not perfect, it nonetheless provides a strong argument in favour
of a tectonically driven fluid flow in the focal area. The compilation
of Muir-Wood & King (1987) offers much more direct evidence of
this process.

A more recent analysis of synthetic aperture radar (SAR) data
by Peltzer et al. (1998) provides complementary evidence, even
though indirect, of this phenomenon. Using SAR measurements over
a period of 4 yr, they showed that post-seismic slip cannot account
for the vertical displacement evidenced by SAR. They analysed the
deformation field by considering a poroelastic rebound, in which the
Poisson coefficient varies from the undrained value ν u = 0.35 down
to the drained one ν = 0.27 with a time constant equal to 0.75 yr.
According to the paper by Peltzer et al. (1998), this time constant is
consistent with the mechanical changes that are associated with the
occurrence of aftershocks, as well as the hydrological observations
of Muir-Wood & King (1987).

C© 2005 RAS, GJI, 161, 113–129



116 P. Gavrilenko

Figure 1. Summary of the problem. Sketch diagram showing the physical processes at three time steps. The model parameters are indicated on the left-hand
side and the observable variables on the right-hand side. The arrows indicate both the direct and the inverse problem to be solved.

1.3 Position of the problem

The aim of this paper is to provide a new viewpoint on the rela-
tionship between fluid flow and the hydromechanical observations
following earthquakes. We will examine in more detail the possible
effect of fluid flow. Considering the time constants which are derived
by Muir-Wood & King (1987) and by Peltzer et al. (1998) fluid flow
is expected to generate significant post-seismic hydromechanical
changes. We investigate how fluid flow may account for the spatial
and temporal distribution of the aftershocks and determine what the
crustal hydrodynamic requirements are. The approach is mainly nu-
merical and is summarized in Fig. 1. Details of the modelling are
provided in the next section.

We consider a fault which slides at a given time t 0. As a conse-
quence of the seismic event, the fluid will flow from compressed

regions to dilated ones, as shown in Fig. 1, for three values of time.
The direct problem consists of choosing the fault parameters and the
hydrodynamic properties and then studying the possible effect of the
resulting fluid flow in terms of both the hydrological changes and
the mechanical changes. The hydrological changes mainly deal with
the variation of the water level in wells as well as the variations in
river discharges. The mechanical changes are due to stress transfer
and the possible triggering of the aftershocks. Results of the mod-
elling may be then compared with field observations. In this paper
we will present mainly the direct problem. We will investigate the
hydrological conditions under which aftershocks may be expected
to occur, and what we can predict about their spatial and temporal
distribution.

The inverse problem is to start with the observations of hy-
drological and mechanical changes and extract the pertinent
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hydrodynamic parameters for the fault area. First, we are going to
present a very crude approach based on the seismological data of the
1994 Northridge earthquake. The hydrological consequences using
the extracted hydrodynamic parameters are then drawn in order to
fix the order of magnitude for the expected effects.

2 B A S I C M O D E L

We present here a model to describe fluid flow as a response to a
seismic event. We assume a crust composed of a permeable top layer
saturated with fluids and behaving like a poroelastic medium. It lies
over a lower crustal layer which is considered as an elastic imperme-
able medium. The fact that the lower layer is impermeable is rather
intuitive, since the paths for fluid flow are progressively destroyed
by the combined effects of pressure and temperature. However, the
depth of the interface between the upper permeable layer and the
lower impermeable layer is unknown.

In the following, we will consider that fluids are free to circulate
down to 15 km. The lower elastic crust in this model is probably over-
simplified and does not take into account the possible recovery of
stress by viscoelastic relaxation. However, the role of viscoelastic
relaxation is not the focus of the present study. Assuming that a
seismic event occurs at a given time t 0, how do we account for
this event as far as fluid flow is concerned? First, we are going to
present the equations governing the fluid flow associated with the
seismic disturbance. Then we are going to display the fault model
used to describe the seismic event and the crustal parameters. This
basic model is supplemented later by a description of the mechanical
strength of the medium. Once all the parameters of the model are
introduced, the later evolution of the model, and in particular the
possible triggering of aftershocks by fluid flow, can be studied.

2.1 Governing equations, boundary conditions and
numerical aspects

2.1.1 Poroelastic equations

We use here the formalism and notations of Rice & Cleary (1976)
which are generally valid for coupled mechanical processes in fluid-
saturated porous media. Since stress and fluid flow are fully coupled,
we need to describe both the fluid pressure and the variation of stress
with time. This is done by using the coupled poroelastic equations
which govern the behaviour of the medium as expressed by Rice &
Cleary (1976). The constitutive equations are:

2Gεi j = σi, j − ν

1 + ν
σkkδi j + 3(νu − ν)

B(1 + ν)(1 + νu)
pδi j (4)

and

m − m0 = 3
ρ0(νu − ν)

2G B(1 + ν)(1 + νu)
(σkk + 3P/B) (5)

where ε i j and σ i j are respectively the strain and the stress tensor,
P is the pore pressure, m is the fluid mass content per unit volume
of porous material, m 0 refers to a reference state, G is the (fluid-
independent) shear modulus, ν and ν u are respectively the Poisson’s
coefficient of the drained and undrained rock and B is the Skemp-
ton coefficient (fluid pressure divided by confining pressure under
undrained conditions).

Using the compatibility equations of elasticity, along with the
conservation of fluid mass:

∂qi/∂xi + ∂m/∂t = 0, (6)

and Darcy’s law:

qi = −ρ0(k/η)∂p/∂xi (7)

where qi is the fluid mass flow rate, k is the permeability and η is
the fluid viscosity, Rice & Cleary (1976) derive the equation for the
diffusion of fluid mass:

cm∇2m = ∂m/∂t. (8)

The diffusivity cm is given by:

cm = k

η

2G B2

9

(1 + νu)2(1 − ν)

(1 − νu)(νu − ν)
. (9)

At this stage we deviate slightly from the approach of Rice &
Cleary (1976) and note that our analysis is occurring, effectively, in
a uniform poroelastic half-space. In this case of a uniform material
having an infinite lateral extent, Pride et al. (2004) have shown that
an exact result exists between the fluid-pressure induced changes in
the confining pressure δσ kk/3 and the diffusive contribution of fluid
pressure change �P (see eq. 3); namely, δσ kk/(3 ×δP) = 2 (ν u −
ν)/[B(1 + ν u)(1 − ν)]. Thus, the diffusion equation for the fluid
mass can be written as a diffusion equation for the fluid pressure:

cm∇2 P = ∂ P/∂t. (10)

The initial data and boundary conditions required for determining
P are discussed in the next subsection.

Given a solution for P (and therefore δσ kk), Pride et al. (2004)
have shown how to determine the remaining deviatoric response of
the material as the solution of a Poisson equation for the material
displacements. However, the changes in the deviatoric stress tensor
caused by the fluid-pressure diffusion are quite small, and in a first
analysis we elect to neglect the variation in time of the deviatoric
stress.

2.1.2 Boundary and initial conditions

At t = t 0, the changes in fluid pressure �P and in mean normal
stress �σ kk are related through the Skempton coefficient using the
relation:

�P(t=t0) = −B�σkk/3. (11)

The mean normal stress change is calculated using the stress field
derived from a dislocation model as we will see in the next section.
The spatial conditions at the boundaries of the discretized volume
are as follows:

(i) Impermeable conditions are imposed at the basement of the
upper fluid connected layer and thus we have

∂ P/∂z = 0. (12)

(ii) The free surface boundary at z = 0 imposes the condition

P(z=0) = 0. (13)

(iii) Finally the vertical boundaries are chosen far enough away
to be undisturbed when the earthquake occurs, so that

�P ≈ 0. (14)

2.1.3 Numerical procedure

The crust is discretized using a 3-D rectangular mesh. The mesh size
is usually chosen to be around 1 km which is thought to be a good
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Table 1. Table of the poroelastic and hydrodynamic parameters used
in numerical models.

Model parameters Numerical value

Input νu 0.25
G 3.0 × 1010 Pa
K 5.0 × 1010 Pa
K f 3.33 × 109 Pa

 0.01

(1/
) (d
/d P) 1.9 × 10−9 Pa−1

k 5.0 × 10−15 m2

Calculated B 0.85
νu 0.34
K u 8.4 × 1010 Pa
cm 2 m2 s−1

compromise between the need to catch the variations in fluid pres-
sure and the requirement to deal with tractable numerical problems.
Eq. (10) is solved using a finite-difference scheme and applying
the boundary conditions (11), (12), (13) and (14). We used here
the alternating direction implicit algorithm of Douglas & Rachford
(1956) which is unconditionally stable.

2.2 Physical modelling

2.2.1 Crustal model

In the simulations displayed in the next section, in order to simplify,
we further neglect the pressure dependence of permeability. The per-
meability k is considered as uniform throughout the upper crustal
layer. Nevertheless, we need to consider a pressure dependence of
porosity in order to calculate the undrained Poisson coefficient ν u,
the Skempton coefficient B and finally the diffusion coefficient cm.
Using the pore compressibility (1/
) (d
/d P) and the elastic coef-
ficients we were able to calculate the poroelastic coefficients starting
from the relations given by Rice & Cleary (1976):

B = 1/K − 1/Ks

1/K − 1/Ks + 
(1/Kf − 1/Ks)
(15)

and

νu = 3νu + B(1 − 2νu)(1 − K/Ks)

3 − B(1 − 2νu)(1 − K/Ks)
(16)

where K is the drained bulk modulus, K s is the bulk modulus of the
solid phase and K f is the bulk modulus of the fluid. An example
of the poroelastic parameters that we will use in our simulations is
given in Table 1.

With regard to the geometrical fault characteristics and the tec-
tonic setting we will explore simple but contrasting situations. Many
parameters influencing the aftershock pattern could (and should) be
considered. One of the main goals of our paper is not to investigate
complex situations close to geological reality but to make some
preliminary remarks on the influence of various parameters of the
model. We will mainly consider focal mechanisms (pure strike-slip
and reverse faults), the orientation of faults and the distribution of
slip along the faults.

2.2.2 Fault model and tectonic setting

The basic fault model considers a rectangular dislocation buried in a
3-D half-space. Our aim here is to calculate the static shear and nor-
mal stress fields induced by a dislocation movement. To compute

these quantities, we started from Dunbar’s basic program DIS3D,
which was updated by Erickson (1986) and modified in 1993 fol-
lowing the recommendations of Okada (1992). This program calcu-
lates the stress and strain field everywhere in the discretized space
provided that we introduce the following input parameters for the
rectangular dislocation: fault geometry (length and width of the dis-
location) and position (coordinates of the centre of the dislocation),
fault orientation (strike and dip angles) and slip vector (strike-slip,
dip-slip and opening displacement across the dislocation). A point
to mention is that the standard program considers a uniform slip
vector everywhere on the fault surface. Since it may be a strongly
simplified slip pattern, we have modified the initial model in order
to enter more complex slip distributions. This is done by simply
subdividing the fault into a network of many rectangular cells. A
slip vector is then attributed to each cell. Since we have no limitation
on the number of these cells, we can conveniently introduce various
slip distributions. Usually, two simple slip models are considered as
alternatives:

(1) a uniform slip along the fault, or
(2) an elliptic slip distribution along the fault.

This second model requires some explanations. Let us consider a
Mode III crack on the y′ = 0 plane, extending from x ′ = −l to x ′ =
l along the X ′-axis, and of infinite size along the Z ′-axis. According
to the 2-D elastic crack theory, the displacement U s on the crack at
a point x′ along the X ′-axis is related to the tangential stress drop
�τ through the analytical expression:

Us(x
′) = 2(1 − νu)�τ

G

√
(l/2)2 − x ′2 (17)

where l is the length of the fault and x ′ = 0 corresponds to the centre
of the fault. Thus, the stress drop is uniform as soon as we consider
an elliptic slip distribution. Even though this is no longer strictly
valid for a rectangular fault (i.e. of finite size along the Z ′-axis),
the second slip model is referred to in the following as the uniform
stress-drop model.

Fig. 2(a) presents the uniform slip model (1) and a variable slip
model (2) in the case of a pure strike-slip fault. The faults and
their associated reference axes (X ′, Z ′) are represented as well as
the strike component of slip U s for the various cells. The different
shades of gray on the cells of the mesh indicate the intensities of
the slip vectors attributed to each cell. The slip vector for each
individual cell i depends on its position x ′

i along the fault. In the
case of pure strike-slip, the dip component U d is evidently zero
everywhere. Since our fault slip model is discretized, the quality of
the approximation of the analytical expression for the model with
constant stress drop will depend on the number of mesh cells along
the strike direction. More complex slip distributions U s(x ′

i , z′
j ) and

U d(x ′
i , z′

j ) can also be easily introduced at the cell location (x ′
i , z′

j ).
The stress/strain fields generated by the fault movement are then
obtained by superimposing the contribution of each individual cell.

Fig. 2(b) gives a schematic representation of the fault model in its
tectonic environment. The slip vector of one cell is represented with
its strike and dip components, while the grey levels of the various
cells correspond again to the various intensities of slip vectors for
each cell. In this diagram we also represent the horizontal regional
stress fields. These stresses must be superimposed onto the stress
disturbance due to the seismic event in order to calculate the total
stress field. In the following, the tectonic stress field is introduced
in the simplest way. The deviatoric part of the background tectonic

C© 2005 RAS, GJI, 161, 113–129



Hydromechanical coupling in response to earthquakes 119

Z’

X’

Us

Z’

X’

Us

(1) (2)

UD USX’
Z’Y’

Figure 2. Top: Pure strike-slip faults in the reference plane (X ′, Z′): (1)
uniform slip model; (2) variable slip model. The displacement on the fault
is restricted to the strike component U s, which is indicated by the white
arrows. The various grey levels correspond to various intensities of the slip
vectors for each cell. Bottom: Schematic view of the fault in its tectonic
environment. The fault surface is subdivided into a rectangular network of
cells each having its own slip vectors. The strike and dip components of slip
for one cell are represented on the figure.

stress tensor is simply assumed to have the following form:

σi j =

 σH = −σ 0 0

0 σh = σ

0 0 0




in the case of a strike-slip fault and

σi j =

 σH = −σ 0 0

0 0
0 0 σv = σ




for a reverse fault.
The background tectonic deviatoric stresses are not allowed to

vary with depth. Even though it is probably an unreasonable ap-
proximation, this simplification is made deliberately to avoid the
introduction of additional variables. We note, however, that a knowl-
edge of the regional stress field is not important as far as the stress
perturbation resulting from the dislocation movement is concerned.
Indeed, the stress disturbance as well as the stress drop associated
with the event are determined as soon as the slip model is chosen.
The relationship with the energy radiated by the earthquake is de-
termined using the moment magnitude M w, which depends directly
on the geometrical characteristics of the fault and the slip model
according to the formula M w = 2/3 × log10(M 0) − 10.7, where the
seismic moment M 0 is expressed in dyn cm−1 (Hanks & Kanamori
1979).

2.2.3 Rupture criterion and aftershock triggering

As seen previously, the proximity to failure at a given point follow-
ing an earthquake may be analysed in terms of the Coulomb failure
function (�CFF). All the results discussed below consider the op-
timal CFF criterion following the approach of Oppenheimer et al.
(1988). The Coulomb failure function is expressed as:

CFF = τn,t + µ(σn + P) (18)

where n and t refer, respectively, to the unit vector normal to the
fault plane and the tangential unit vector in the slip direction, both
oriented to yield the maximum CFF value. τ n,t and σ n are the corre-
sponding shear and normal stresses. Implicitly, the optimal Coulomb
failure function criterion assumes that faults exist in all orientations
at each location around the main fault. By knowing the regional
stress field we can define the initial CFF. Then we add the change
in stress due to the earthquake and the regional stress field, which
thus allows us to calculate the total stress field. We then look for
the optimal direction of failure by considering the rotation of the
principal stresses and calculate the CFF value for the optimally
oriented plane of failure. As seen above, the background tectonic
deviatoric stresses are not allowed to vary with depth. This probably
has some effect on the value of �CFF. However, taking account
of the depth dependence of the tectonic deviatoric stresses would
probably not substantially modify the general applicability of our
results.

As mentioned in Section 2, the CFF will increase in the dilated
zones and decrease in the compressed area. Let us examine �CFF
for the various attitudes of the fault plane, starting from the initial
time of the main event t = t 0 up to the final time t f (that is, the time
to reach a totally relaxed state). In order to describe the failure, we
need to make some assumptions about the mechanical strength of the
faults in the main fault area. First of all, the rupture criterion should
be consistent with the Coulomb stress concept. In this way, the me-
chanical resistance of a fault is fully described as soon as we know
its residual shear strength and friction. At a given location, know-
ing these parameters and the orientation of the pre-existing faults,
we should be able to predict where some failures might occur. The
friction coefficient as well as the residual strength are likely to vary
over a certain range of values. Usually, the static friction is found
to be around 0.6–0.9 in the laboratory Byerlee (1979). However,
the fault orientation in the field displays some evidence for a lower
apparent friction Zoback et al. (1988). Although the fault residual
strength is usually zero at low normal stress, it is likely to increase
with normal stress as stated by Byerlee’s law. It will also vary, for
example, through fluid-assisted lithification processes within gouge
zones. Finally, the fault orientation plays a major role, since the slip
occurs on the best oriented plane. Depending on the fault orien-
tation, the strength should cover a broad distribution. It is not our
intention here to enter the debate on fault strength; but rather to
introduce some reasonable and simple assumptions. A simple way
to introduce a strength distribution is to consider that the friction
coefficient is constant everywhere and to assign a distribution of
residual strength to the defects around the main fault. Clearly, since
the main fault slides first, its residual strength is lower than in the
surroundings. In the following, the term ‘residual strength’ must be
taken in a relative sense, referring to the residual strength of the
main fault. Thus, we consider that the residual strength of the prin-
cipal fault is zero and the phrase ‘distribution of residual strength’
incorporates all the complexity inherent in the definition of strength,
i.e. possible variations in residual strength, friction and orientations
of faults. It is important to know how many faults are present within
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one discretized cell. We consider here that a large number of faults
may exist (usually 128 within each block). Indeed, the statistics of
the events are likely to be disturbed otherwise. As far as the tem-
poral variation of aftershocks is concerned, we expect that a small
number of faults within each cell would increase the variance of the
number of events (assuming several runs). Therefore, we tested two
distributions:

(1) A discrete distribution, whose residual strength varies be-
tween a minimum value Smin, which is the minimum �CFF re-
quired for triggering aftershocks, and a maximum value, which is
larger than the maximum �CFF reached in the entire volume, what-
ever the time. Between t and t + dt , and within a given volume, the
number of aftershocks will be obtained by considering the number
of faults having a residual strength comprised between CFFt and
CFF(t+dt).

(2) An alternative approach would be to use a continuous dis-
tribution. In that case, the number of aftershocks would be di-
rectly proportional to CFF(t+dt) − CFFt (assuming this value to
be >0) and the distribution of residual strength does not need
to be limited upwards. Thus, the residual strength is distributed
between [Smin, ∞].

Both approaches provide similar results. The only difference is that
the continuous distribution of residual strength provides an average
value for the distribution of aftershocks, whereas in the discrete
case the distribution of aftershocks will be dispersed around this
average. To simplify, we consider here a constant distribution of
residual strength over the interval of definition.

Finally, it is noteworthy that we do not consider the stress dis-
turbance associated with the triggering of aftershocks. This is
done deliberately to avoid time-consuming calculations. Taking into
account the disturbance associated with large aftershocks would
probably have a second-order effect on both the spatial and tempo-
ral distribution of aftershocks. Depending on the stress field gen-
erated by the aftershocks, the disturbance may either enhance or
inhibit the number of aftershocks. This will be the object of a later
study.

3 N U M E R I C A L S I M U L AT I O N S

In the following, we consider several situations corresponding to
various tectonic settings and fault geometries. The main parameters
used in the models are summarized in Table 2.

Table 2. Table of the parameters used for fault geometry and tectonic setting in the various models.

Model parameters Strike-slip Reverse fault Northridge eventa

Model 1 Model 2 Model 3

Magnitude 7.5 7.5 7.5 7.5 6.7
Friction coefficient 0.84 0.268 0.84 0.84 0.4 Stein et al. (1994)
|σ 1 − σ 3| (MPa) 100 10 100 100 10 Stein et al. (1994)
Length (km) 80 80 80 80 20
Width (km) 20 20 20 20 26
Fault strike 25◦ 37.5◦ 25◦ 90◦ 93◦Stein et al. (1994)
Fault dip 90◦ 90◦ 90◦ 25◦ 41◦
Slip pattern Elliptic Linear var. Elliptic+ heter. Elliptic Variable slip
Strike-slip (m) 4.15 4.15 4.15 0 0.77 (positive rake 90◦)
Dip slip (m) 0 0 0 4.15 −0.04 (positive rake 180◦)

aFrom Hudnut et al. (1996).

3.1 Spatial distribution of aftershocks

3.1.1 The strike-slip case

Model 1: In the following we consider a fault making an angle of 25◦

with the maximum far-field principal stress σ H , which is assumed to
be in the X direction (see Fig. 3). The minimum principal stress σ h

lies in the Y direction. The fault is optimally oriented for a friction
coefficient equal to 0.84. The fault length and width are set at 80 km
and 20 km, respectively, i.e. representative of a major earthquake.
Accordingly, the magnitude of the event is M w = 7.5. This yields an
average strike-slip vector U S equal to 4.15 m. The fault movement
is dextral and we assume |σ 1 − σ 3| = 100 MPa.

In Fig. 3(a), we show the change in pore pressure as a result of
an earthquake event. In this case we assume an elliptic displace-
ment and, consequently, a constant stress drop along the fault. The
resulting pore pressure is shown in Fig. 3(a). We observe zones of
increasing and decreasing pore pressure consistent with the focal
mechanism of the earthquake. Fig. 3(b) displays the �CFF pattern
respectively at t = t 0 on the left-hand side and at t f on the right-hand
side. At t = t 0 the zones where �CFF increases are located both
in the areas of depressed pore pressure and in lobes situated in the
continuity of the fault. The solid curves correspond to the contour
curves for �CFF = 0.1 MPa and 0.5 MPa at t = t 0. However, since
this pattern corresponds to an undrained situation, it has no meaning
when the timescale is considered. At best, the possible fracturing
associated with this positive Coulomb stress change may lead to
co-seismic fracturing. Since it is triggered by the main fault it could
be tempting to confuse this effect with aftershocks. However, since
this fracturing is a co-seismic effect, we merely see the secondary
fractures as a part of the complexity of the fault. Since these fea-
tures are located at both edges of the fault, it is quite acceptable to
assign them to some geometrical complexity at the edges. The situ-
ation is more complicated when the co-seismic fracturing occurs at
a greater distance away from the immediate vicinity of the principal
fault, in which case it cannot be considered as belonging to some
fault complexity. Since �CFF is usually higher close to the fault,
this situation is not very common (even though it depends on the
value of �CFF considered as necessary for fracturing). As far as the
distribution of residual strength is concerned, we consider here that
Smin = 0.5 MPa, with a uniform distribution of residual strength
above this value. The value of Smin = 0.5 MPa chosen prevents
co-seismic fracturing away from the main fault.

Here, we are mainly interested in the spatial variation of the
Coulomb stress with time. The �CFF curves on the right-hand side
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Figure 3. (a) Change in pore pressure due to a dextral strike-slip fault movement (in MPa). (b) �CFF resulting from the strike-slip movement. The grey curve
and the black curve correspond, respectively, to the contour curves with �CFF = 0.5 MPa and �CFF = 0.1 MPa at t 0 (i.e. for undrained conditions) on the
left-hand side and at t f (i.e. when fluid pressure is completely relaxed) on the right-hand side. The zones delimited by the iso-�CFF values expand with time
at locations recording a pore pressure decrease at t = t 0 and a consecutive increase of fluid pressure with time.

of Fig. 3(b) correspond to the same contour curves as previously
(�CFF = 0.1 MPa and 0.5 MPa), but for t = t f (i.e. at the time of
complete pore- pressure relaxation). Let us consider, for instance,
the isovalues �CFF = 0.1 MPa. We observe that the zone expands
with time in the dilated area. This is due to the increase of post-
seismic pore pressure in this area following the main shock. The
co-seismic lobe on the side of the fault tip with �CFF = 0.5 MPa
has a very limited extent (see Fig. 3b). Thus, in order to explain
the occurrence of aftershocks on the side of the fault tip a smaller
Smin would be required if we only consider the co-seismic effect. In
other words, co-seismic analysis would lead to an underestimation
of the �CFF value required for aftershocks to be triggered. As a
consequence, the poroelastic approach is likely to provide results
that differ widely from an analysis based on an undrained �CFF
approach. Introducing a distribution of residual strength makes it
possible to analyse the distribution of aftershocks.

Considering the distribution of strength around the main fault, we
are able to simulate the occurrence of aftershocks. This is illustrated
in Fig. 4. The various dots correspond to the aftershocks in the 3-D
volume (the various symbols indicate different event times), pro-
jected onto the plane at a depth of 5 km. Only a few events occur in
continuity with the main fault, whereas the analyses based on static
Coulomb stress would consider the zones of co-seismic increase
at the tip of the fault as potential sites for aftershocks. In Fig. 4 ,
we report the aftershocks after t 2 = 2�t (blacks dots), t 5 = 5�t
(grey dots) and t 100 = 100�t (open square), where �t is a reference
time step. At short time values 2�t and t = 5�t , we observe after-

Figure 4. Spatial distribution of aftershocks derived from the strike-slip
model 1 (elliptic slip model, µ = 0.84, strike angle = 25◦, |σ 1 − σ 3| =
100 MPa) at various time steps. The black dots, grey dots and white squares
correspond, respectively, to t = 2 days, t = 5 days and t = 100 days.

shocks at the same time located close to the tip as well as off the
fault. This kind of aftershock pattern can be observed, in particular
for the Landers earthquake, and, as noticed by Li et al. (1987), it
appears that aftershocks may occur both close to the fault and off
the fault. At longer timescales, aftershocks diffuse between both of
these locations. This means that although the driving mechanism is
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Figure 5. Spatial distribution of aftershocks for the strike-slip model 2,
when changing the friction coefficient and the associated fault direction as
well as the slip distribution (linearly variable slip model, µ = 0.268, strike
angle = 37.5◦, |σ 1 − σ 3| = 10 MPa).

controlled by fluid diffusion the shape of the diffusion front is com-
plex and requires a perfect knowledge of the co-seismic Coulomb
stress pattern. Since it depends on the slip geometry as well as the
fault geometry and the tectonic stress field, we need to have good
control of all of these parameters.

While there are many examples of aftershock concentrations at
the fault edge, another noticeable feature of this simulation is that it
does not predict aftershocks along the fault, as usually observed in
seismological data for strike-slip faults. However, many researchers
indicate zones of high �CFF along the fault. The question here is
whether fluid weakening can lead to triggering of aftershocks along
the fault or whether another mechanism should be invoked.

Model 2: In order to allow the appearance of aftershocks along
the fault, we consider here another situation described in Table 2.
|σ 1 − σ 3| is set at 10 MPa and we assume a fault strike of 37.5◦.
Since once again we consider the best oriented fault, the friction
coefficient is chosen accordingly as µ = 0.268. The fault length and
width are similar to the values chosen in model 1 (see Table 2). We
consider that the magnitude of the slip increases linearly from zero
at the edge of the fault to a maximum value at the middle of the fault.
Using these parameters, we simulate the aftershock distribution in
a similar manner to the previous case. Results are shown in Fig. 5.
According to this figure, aftershocks may indeed be triggered along
the fault. The main point here is that the stress induced by the slip
close to the fault should be comparable to the tectonic stress. Large
positive �CFF values along the main fault may be found, by using
the maximum CFF criterion. Indeed, lowering |σ 1 − σ 3| is likely to
induce a rotation of the principal stress axes, consequently changing
the orientation of the planes that are optimally oriented for sliding.
The positive �CFF along the fault is a direct consequence of this
modification. Lowering the friction coefficient has a minor effect,
and aftershocks still occur along the fault even if the friction coef-
ficient in the surroundings of the fault (for instance µ = 0.84, as
previously) differs from the apparent friction µ = 0.268 responsible
for the orientation of the main fault. In addition, using |σ 1 − σ 3| =
10 MPa in model 1 would yield aftershocks along the fault, but,
in this case, they are less numerous. In the present case we notice
that although aftershocks are distributed along the fault, the distri-
bution is slightly asymmetric in agreement with the distribution of
volumetric change. We should mention, however, that this mecha-

nism occurs under particular (although not unrealistic) conditions.
Nevertheless, increasing |σ 1 − σ 3| would prevent the appearance
of aftershocks along the fault.

Model 3: We start from the same configuration as used for the
simulation of Fig. 4. The only parameter that is allowed to change is
the distribution of slip. The fault is discretized with a mesh size of
4000 m × 4000 m. The distribution of slip deviates randomly from
that of model 1, in regard to both the strike and the dip directions.
Within each cell, the amplitude of the deviation at its maximum
amounts to 20 per cent of the initial slip amplitude. The slip vectors
are displayed in Fig. 5(b). Comparing the aftershock distribution
with Fig. 4, we indeed observe that the aftershocks are allowed to
occur along the fault plane (see Fig. 5a). They are not uniformly
distributed and may be lacking in some places. We attempt to show
here that the fluid flow may provide a mechanism for triggering the
aftershocks along the fault plane in relation to the slip distribution.
As noticed by Bakun et al. (1986), the aftershocks seem to occur
at the periphery of the slip. However, a thorough analysis of the
aftershock pattern in relation to the slip distribution would lie outside
the scope of this paper.

3.1.2 The reverse fault case

The main objective here is to compare the predictions for strike-
slip and reverse faults. The difference in fault movement geometry
is likely to yield a distinctly different compression/dilation pattern,
and thus modify the distribution of aftershocks. We simulate a re-
verse fault using a friction coefficient equal to the value used in
model 1. The fault dip is chosen accordingly as equal to 25◦. The
down-dip distance to the upper fault edge is 5 km and the fault
width is 20 km. In Fig. 7(a), we report the change in pore pressure
resulting from the movement of the fault. We observe a relatively
large zone of co-seismic decrease in pore pressure. In Fig. 7(b),
we plot the �CFF = 0.5 MPa contour curves at t 0 and t f. Using
this model, we simulate the occurrence of aftershocks in Fig. 8,
again assuming Smin = 0.5 MPa. The main feature apparent on the
cross-section is that the aftershock distribution is more diffuse than
in the case of strike-slip. Therefore, aftershocks cannot be used to
define the fault plane, which is consistent with most of the observa-
tions. In addition, we note that the volume affected by the presence
of aftershocks increases with time away from the fault area. How-
ever, it may appear paradoxical to predict this result in view of the
�CFF stress distribution at the undrained and the relaxed states in
Fig. 7(b) together with the change in pore pressure (Fig. 7a). Indeed,
we sometimes observe �CFF values higher than 0.5 MPa just after
the earthquake at some localities, whereas late aftershocks occur
in such zones. Since the change in fluid pressure is negative, we
might expect early aftershocks in these areas due to the relaxation
of fluid pressure. However, according to Fig. 7(a), there is a strong
fluid pressure gradient toward the tips of the fault. In areas where
late aftershocks occur, the fluid pressure starts to decrease due to
this pressure gradient and then increases up to the relaxed state.
This particular behaviour explains why the aftershocks are delayed
in these zones. The complexity of the geometry of the change in
fluid pressure, which depends on the geometry of the fault and on
the slip pattern, may lead to a wide variety of behaviours.

3.2 Time distribution of aftershocks

3.2.1 Predicted decay laws using the model

As seen above, the time dependence of the aftershock distribution is
well known and has received much attention for a long time. In this
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Figure 6. Top: Plan view of the spatial distribution of aftershocks for the strike-slip model 3 (elliptic slip model + randomly variable slip component, µ =
0.84, strike angle = 25◦, |σ 1 − σ 3| = 100 MPa). Bottom: Spatial distribution of aftershocks (3-D view). The discrepancy with the slip model 1 is represented
by the arrows on the discretized mesh cells of the fault.

section, we aim to investigate the temporal response derived from
the model. As pointed out by Nur & Booker (1971), a 2-D fluid flow
leads to an Omori coefficient equal to 0.5. The time dependence
of aftershocks can be calculated by assuming that aftershocks may
occur everywhere in the dilated area. This has led Nur & Booker
(1971) to calculate the rate of aftershock occurrence as:

n(t) = ∂ N (t)/∂t ∝
∫

V
(∂ P/∂t)dV (19)

where N(t) is the cumulative number of aftershocks and V is the
integration volume, i.e. the volume within which pore pressure P is
increasing. However, contrary to the suggestion of Nur & Booker
(1971), the integration volume is finite and varies with time, so the
integration in eq. (19) must be performed numerically. Starting from

a dimensional analysis, the time dependence of the aftershocks can
be written as:

n(t) ∝ Nf l3
c

1

τ
F(t/τ ) (20)

where N f is the density of defects per unit volume and τ is the time
constant of relaxation associated with the diffusion process. It can
be expressed by τ = l2

c/cm, where cm is the diffusion coefficient and
lc is the characteristic distance of diffusion. lc scales proportionally
to the fault slip d and is related to the size of the static lobes. For
convenience, we consider here that lc = d (1 × 104) (implicitly, this
assumes that, for a ratio d/l = 2.5 × 10−5, lc should be around l/4.

In order to calculate the time dependence of aftershock decay, we
start from the strike-slip model 1 and use the continuous distribution
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Figure 7. (a) Cross-section showing the change in co-seismic fluid pressure for the reverse fault model of Table 1 (elliptic slip model, µ = 0.84, dip angle =
25 ◦, |σ 1 − σ 3| = 100 MPa). (b) �CFF in the undrained state t = t 0 (dashed curve) and in the relaxed state t = t f (solid curve).

Figure 8. Spatial distribution of aftershocks at t = 0 days, t = 50 days, t = 200 days for the reverse fault model of Table 1.

of residual strength to calculate the number of aftershocks per time
unit. F(t∗ = t/τ ) accounts for the time dependence of aftershocks.
In Fig. 9, we use a log–log plot to show the shape of the normalized
function for the strike-slip case. This function can be conveniently
fitted using a function of the form

F(t∗) = K0/(c∗ + t∗)r e−αt∗ . (21)

Using a least-squares non-linear fit we calculate the param-
eters c∗, α and r for both the reverse fault and the strike-slip
cases. Both functions have similar shapes. The results are given

in Table 3. The shape of this function allows us to discuss the
time dependence of the aftershock distributions in the following
terms:

(i) For t∗ 	 t∗
a = 1/α, the function F displays a behaviour that

is close to the Omori law (see eq. 1). The value of c is given by c∗τ .
But are these values comparable with seismological data? Using
the parameters of model 1 (see Table 2), we find that c ≈1 for a
permeability k ≈ 2 × 10−15 m2. This means that c should be around
0.1 for a value of ≈ 2 × 10−14 m2, and around 10 for k ≈ 2 ×
10−16 m2. This may be compared, for example, with the values given
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Figure 9. Normalized function F(t∗) of decay in number of aftershocks for
a strike-slip model. c∗ is the normalized value of c in eq. (21) and t∗a = 1/α

is the time to attain the exponential regime.

Table 3. Parameters derived from the decay law (eq. 21).

Parameters Strike slip Reverse fault

c∗ (8.82 ± 0.08) × 10−4 (1.03 ± 0.008) × 10−3

α 1.29 ± 0.05 1.69 ± 0.04
r (0.72 ± 2.0) × 10−3 (0.62 ± 1.6) × 10−3

by Ogata (1989) and Ogata (1992), which are usually less than 1 (a
few hours), but which have been found to vary between 0.001 and
11.6. We also note that the c∗ value derived in our simulations is
expected to depend on the discretized mesh size. Smaller blocks lead
to a smaller c∗ value. Since it is influenced by the exponential term,
the function F on a log–log plot displays a behaviour that remains
relatively close to the Omori law, with an ‘apparent’ p coefficient
higher than r. Starting from the function F, we derive the value
p ≈ 0.75 in the ‘power-law’ domain, using a non-linear fit. We
notice, however, that the decay law deviates slightly from the pure
Omori behaviour for t∗ values close to t∗

a = 1/α.
(ii) For t∗ > t∗

a = 1/α, the function F is dominated by the expo-
nential term and no longer matches the Omori law. Considering a
permeability k ≈ 2 × 10−15 m2 (i.e. the value of k required to obtain
a value of c ≈ 1) and using the parameters of model 1, we expect to
reach the exponential regime for t ≈ 900 days. This value would be
reduced to 90 days when c ≈ 0.1 (i.e. for k ≈ 2 × 10−14 m2).

Let us compare these results with the parameters derived from
the seismological data. The modified Omori law is routinely used in
seismology and, in spite of some deviations, has been found to de-
scribe the data satisfactorily. However, Kisslinger (1993) and Gross
& Kisslinger (1994) present an alternative decay function called the
stretched exponential function, which can be expressed as:

N (t) = K0tq−1e−qt/t0 . (22)

Even though the exponential term has some influence, this is strongly
limited by the q exponent in the exponential term. Indeed, Kisslinger
(1993) found that q varies between 0.3 and 0.5. As a consequence,
the exponential decay for t∗ > 1/α cannot be accounted for using a
stretched exponential function, unless we consider t 0 is much lower
than the values derived by Kisslinger (1993). We suggest that, at
least for a certain range of permeability values, τ/α can be taken
as equivalent at characteristic time ta, as introduced by Dieterich
(1994), describing the return of seismicity to a steady state. Thus, for
10−14 m2 < k < 10−15 m2, we expect the decay to follow an Omori-
type law with an Omori coefficient p ≈ 0.75 and a characteristic
time ta of between 100 and 1000 days.

Figure 10. Number of aftershocks with time for various values of K. The
various solid curves correspond to the fit of the Omori law (eq. 1) using the
derived Omori parameters.

For higher permeabilities, for instance at k ≈ 10−13 m2, the decay
occurs mostly in the exponential regime. Even though it does not
follow the Omori law, the variation can be expressed as a power
law over a limited range of time for which an apparent Omori co-
efficient can be derived. In order to provide a more concrete view
of these ideas, starting from the reverse fault case, we simulate the
aftershock time dependence for various values of hydraulic diffu-
sivity (i.e. various values of τ ). We performed simulations using
the reverse fault model (see Table 2) for various values of perme-
ability, taking the discretized distribution for modelling the residual
strength. We allowed permeability to vary over two orders of mag-
nitude from 10−16 m2 to 10−14 m2. For each simulation, we report
the values of parameters for the Omori decay law. These values are
reported in Fig. 10, for the three values of permeability chosen. The
time step for counting aftershocks is 6 hr, and we report 6 months of
aftershock decay. The results so obtained are consistent with those
derived from Fig. 9 and allow a more direct comparison with the
seismological data. As we pointed out previously, the Omori expo-
nent increases with permeability, varying from 0.65 to 1.2 in the
investigated domain of permeability. Notice that, since the Omori
law does not include an exponent term, the variation of the c coef-
ficient does not exactly follow the relationship c = c∗τ . However,
c increases with decreasing k. For values of k around 10−14 m2, we
observe that the temporal dependence deviates from the Omori law
when the time is more than 1 or 2 months.

Finally, we need to stress that the decay law will be strongly
dependent on the value of permeability. Spatial variations of per-
meability are likely to change the parameters of the derived Omori
law. Moreover, we do not take into account the perturbations of the
stress field associated with each aftershock and the resulting sec-
ondary aftershock sequences. This may have an effect on both the
spatial and the temporal dependence of the aftershocks.

3.2.2 Application to the 1994 Northridge earthquake

To make further tests on this model, we attempted to model the
time dependence of the 1994 Northridge earthquake. We used the
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Figure 11. (a) Spatial distribution of aftershocks (cross-section) resulting
from our modelling of the 1994 Northridge event using the slip model of
Hudnut et al. (1996) (see parameters in Table 1). (b) Spatial distribution of
aftershocks (after Hudnut et al. 1996).

model of Hudnut et al. (1996), which provides discrete values of
the slip on a discretized mesh network of the fault and which has
been inverted from GPS measurements. The lower threshold for af-
tershock triggering Smin is set at 0.5 MPa. As suggested by Stein
et al. (1994), |σ 1 − σ 3| is set at 10 MPa. The pressure dependence
of the porosity is such that the Skempton coefficient is 0.4. Since the
tectonic information is rather limited, we expect only a rough esti-
mation of the spatial distribution of aftershocks. But it is sufficient
as far as our present purpose is concerned. We attempted to calcu-
late the time dependence of the aftershock distributions by using
various initial guesses for the permeability. The final value chosen
in this way matches reasonably well with the data provided by the
National Earthquake Information Center of the USGS. The resulting
spatial distribution of aftershocks is given in Fig. 11(a). This shows
that our model provides a spatial distribution roughly in agreement
with reality (Fig. 11b). We do not focus on the details here since
the important point to discuss is the required value of permeability.
Note, however, that the model does not satisfactorily predict the dis-
tribution of aftershocks in the lower part of the hangingwall. Even
though this could merely be the result of the over-simplifications of
the model, it may also be due to the disappearance of permeability
at deep depths. Evidently, the problem requires more detailed infor-
mation on the local geological features, but we do not think that this
would significantly influence the time dependence of aftershocks.
The value best fitting the aftershock data is k = 7.5 × 10−15 m2.
The results are shown in Fig. 12, and we observe that the temporal
behaviour is relatively well modelled using these values. Finally, a
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Figure 12. Comparison between decay in number of aftershocks for the
1994 Northridge event and present model using k = 7.5 × 10−15 m2.

permeability of K = 7.5 × 10−15 m2 may be considered as a fair
over-estimate, being of the same order of magnitude as the value
used in the modelling of Bosl & Nur (2002). We discuss this matter
further below.

4 D I S C U S S I O N

As mentioned above, we can see that the fluid flow may provide
a mechanism for the triggering of aftershocks. Fluid flow repre-
sents an attractive mechanism, even though its effects should still
be compared with the field data. Indirect studies of fluid relaxation
processes Peltzer et al. (1998) as well as direct observations Muir-
Wood & King (1987) provide some convincing evidence of fluid
flow at crustal scales, yielding time constants that may be compa-
rable with those of aftershocks. As already pointed out, if fluid is
likely to flow with such a time constant, its mechanical effect should
be taken into account. On the other hand, to improve our understand-
ing of this phenomenon it is important to determine the implications
on the structure of crustal permeability around the faults. Accord-
ing to the previous section, the permeability that matches best with
the Northridge aftershock time decay is found to be around 7.5 ×
10−15 m2.

The first question related to the above discussion is: can this value
be seen as representative of the permeability in a fault zone? Un-
fortunately, very little is known about permeability in fault zones.
According to Davison & Kozak (1988), the values should range be-
tween 1 × 10−11 and 1 × 10−17 m2. As a consequence, even though
the required value for the Northridge event is within this range, the
range is too large to allow us to draw a conclusion. A second point
concerning the hydraulic properties in such areas is that of scale.
Up to now we have only considered strong earthquakes and, con-
sequently, this involves decametre- to kilometre-scale faults. The
question that arises is: how does the model behave with varying
scale length? Let us first consider a fault of length l and width W ∝
l, with a slip of d. Let us apply a tenfold reduction in the fault dimen-
sions (l ′ = l/10), as well as the slip vector (d ′ = d/10). In that case,
the magnitude M w decreases by two units: M ′

w = M w − 2. Since the
ratio l ′/d ′ is kept constant, the stress drop is constant and thus the
Coulomb stress pattern can be obtained from the initial distribution
by applying a scale reduction of 1/10. As far as the characteristic
time is considered, we can write τ c

′ = l ′2
c/c′

m = l2/100/c′
m . In order
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to keep a constant time dependence of aftershocks, we need to im-
pose the condition c′

m = cm/100. In other words, the permeability
should scale in the same way as L2 (where L is the scale length) and
M w in order to maintain the same decay law at every scale. In the
Omori law given by eq. (1), neither the exponent p nor the coeffi-
cient c have been found to vary with the size of the earthquake, so
thus we require a spatial dependence of permeability. For a length
scale of 60 km typical of a magnitude 7 earthquake, the permeability
should be four orders of magnitude higher than for a length scale of
600 m, which may be representative of a magnitude 3 seismic event.
The question is to know if such a type of scale dependence can
be observed in nature. Scale-dependent effects are known to occur
in the Earth’s crust. Although measurements are still very sparse,
Clauser (1992) provided a compilation of data for crystalline rocks
showing that the permeability increases on average by around three
orders of magnitude from laboratory scale (cm) to borehole scale
(∝100 m). At larger scales, the permeability seems to converge
toward a homogenized value. Nevertheless, these data should be
compared with the data compiled by Neuman (1994) based on dis-
persivity. According to these data, the variance of the permeability
distribution increases with scale and follows a power law of the
form L0.5. According to Neuman (1994), the permeability in a 3-
D model should vary as k ∝ exp(L0.5/6). Although Gavrilenko &
Guéguen (1998) attempted to reconcile the points of view of Clauser
(1992) and Neuman (1994), both sets of data remain rather contra-
dictory according to their multiscale modelling. Finally we note that
the permeability scaling behaviour in the neighbourhood of active
faults remains mostly unknown. Although it is a speculative point
of view, the L2 scaling dependence cannot be ruled out by the data.
Another viewpoint is to consider that indeed the representative ele-
mentary volume for fluid flow in the crust is reached at scale around
100 m. Brace (1980) provided values around (10–100)× 10−15 m2

using processes involving fluid diffusion in the crust. These values
are comparable to those given by Clauser (1992). If we accept that
these values are representative of the crustal permeability above
around 100 m, it is interesting to consider the consequences for the
aftershocks. Such permeability values would provide a decay law for
the time dependence of aftershocks consistent with values expected
for an earthquake of magnitude around 7. In other words, according
to our calculations the mechanical effect of fluids in the crust needs
to be taken into account for this type of event. Even though this
effect may not be the only mechanism, the order of magnitude of
the fluid relaxation effect on the Coulomb stress indicates that it is
a relevant mechanism for producing aftershocks. It is then an open
question to know which mechanism takes over for seismic events
of larger or smaller magnitude, while maintaining a similar Omori
law. Even though they do not discuss the scale effect, Bosl & Nur
(2002) provide convincing evidence that fluids may explain the spa-
tiotemporal distribution of aftershocks for the Landers earthquake
using a permeability around 1 × 10−15 m2. However, from a more
general point of view, since fluids involve a diffusive process, we
need to know whether the expansion of the aftershock zone observed
in real sequences is comparable with the model. Independently of
the complexity of the shape of the diffusion front, the aftershocks
generated by fluid-assisted processes follow a Brownian diffusion
law. This has led Noir et al. (1997) to consider the possible effect
of fluids in triggering the earthquake migration in the 1989 Afar
seismic crisis. However, the inferred diffusivity is so large (i.e. 1 ×
1010 m2 s−1) that unrealistic values of permeability would be re-
quired. As far as the 1992 Landers earthquake is concerned, Marsan
et al. (2000) proposed a diffusion law of the form R ∝ tH with H
around 0.2. Marsan et al. (2000) indicate that this low exponent

could be due to a subcritical fluid diffusion related to the heteroge-
neous fluid flow network. Nevertheless, the value of the diffusion
exponent is strongly questioned in Chapter 9 of Helmstetter (2002),
who found that the H value given by Marsan et al. (2000) is biased
by the background seismicity. Helmstetter (2002) derived H ≈ 0,
which would indicate that there is no diffusion of aftershock activ-
ity. This measurement seems to contradict the results of Bosl & Nur
(2002) as well as our present modelling.

Another aspect that deserves discussion concerns the hydrologi-
cal signature of earthquakes. Peltzer et al. (1998) strongly suggested
there is a link between the time constant for post-seismic fluid flow
and the mechanical post-seismic effect. The question is whether
these fluid flows can be observed through hydrological measure-
ments. Muir-Wood & King (1987) provide a preliminary answer
to this point. Indeed, the observed anomalies seem to be directly
related to the focal mechanism. The interesting point here is to
check whether these observations can be linked to the aftershocks.
In Fig. 13, we plot the excess fluid flow expected following the
Northridge event, using the parameters used in the previous section.
In the central figure we map the peak excess flow that should re-
sult from these parameters. Since we are considering the peak flow,
the corresponding time may change from one discretization node to
another. Furthermore, it is noteworthy that the peak flow is positive
in some places but, after a while, the fluid flow becomes negative.
As a consequence, mapping the cumulative excess flow would give
quite a different image of the spatial distribution of the excess fluid
flow. Lastly, the excess fluid flow is expressed in mm day−1, so the
order of magnitude could be compared with the infiltrated rainfall
per unit area. As we can see in Fig. 13, the order of magnitude of
the excess peak flow close to the fault is around 0.1 mm day−1,
which is comparable to the observations reported by Muir-Wood &
King (1987) in many cases. Assuming a volumetric discharge in the
rivers of the area in question of around 10 l s−1 km−2 of hydrological
catchment (this is the order of magnitude provided by Muir-Wood
& King (1987)), a excess fluid flow of 0.1 mm day−1 would be eas-
ily detectable. Thus, the observations made by Muir-Wood & King
(1987) seem to agree rather well with a hydrodynamic control of
the temporal distribution of aftershocks. However, it is clear that the
temporal variations of excess fluid flow should be convoluted with
the transfer functions between the rainfall infiltration and the volu-
metric discharge within the rivers (or the water level change in wells)
in order to compare the models with hydrological observations.

5 C O N C L U S I O N

The main results of this paper are:

(1) Fluid flow following earthquakes provides an efficient time-
dependent mechanism for triggering aftershocks. We model the af-
tershocks, both on the fault plane and off-fault, in terms of the atti-
tude of the fault plane and its tectonic relations. The time dependence
of the Coulomb stress may explain the limited success of predicting
the spatial distribution of aftershocks using the co-seismic Coulomb
stress pattern.

(2) We find that the Omori law can be derived from our model.
However, the temporal dependence of aftershocks is strongly de-
pendent on the permeability. This has important consequences for
the permeability in the fault area. In particular, to ensure scale in-
dependence of the Omori law, the permeability should be scaled as
L2. Thus, even though fluid diffusion is a significant mechanism for
aftershocks, we can still ask whether this mechanism is relevant at
all scales.
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Figure 13. Map of the excess fluid flow following the Northridge event (assuming k = 7.5 × 10−15 m2). The central image displays the peak of fluid flow (in
mm day−1), whereas the surrounding figures show the variations of excess fluid flow with the time for various locations around the fault.

(3) The Northridge post-seismic effect is modelled here, allow-
ing us to derive a crustal permeability of around 7.5 × 10−15 m2.
The fluid flow associated with the occurrence of earthquakes should
provide an observable hydrological signal.
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Hainzl, S., Zöller, G. & Kurths, J., 1999. Similar power laws for foreshocks
and aftershock sequences in a spring block model for earthquakes, J.
geophys. Res., 104, 7243–7253.

Hanks, T.C. & Kanamori, H., 1979. A moment magnitude scale, J. geophys.
Res., 84, 2348–2350.

Helmstetter, A., 2002. Rupture et instabilités: sismicité et mouvements grav-
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