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1Géosciences Azur (CNRS/INSU UMR 6526), 250 Avenue Albert Einstein, 06560 Valbonne, France. E-mail: stephanie.gautier@geoazur.unice.fr
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S U M M A R Y
We propose an inverse method to recover the roughness parameters (altitude range �h0, and
Hurst exponent H) of self-affine surfaces from the energy spectrum of backscattered waves. A
stochastic forward modelling of the spectrum of the backscattered wavefield averaged along
a profile of finite length is proposed in the near-nadir and far-field configuration. A Bayesian
formulation of the inverse problem is used to account for the random nature of both the data
and the forward problem. An acoustic backscattering experiment is performed with a natural
rough self-affine surface for which �h0 and H are determined through direct measurements
of the topography. The inversion of the experimental spectrum of the backscattered acoustic
waves shows that a good determination of H is possible, while �h0 is an unresolved parameter.

Key words: Bayesian inversion, fractal, Hurst exponent, surface characterization, wave
scattering.

1 I N T RO D U C T I O N

The determination of the roughness of natural interfaces is an im-
portant issue in many areas of Earth sciences. Roughness prop-
erties such as amplitude, correlation length, Fourier spectra, coda
waves, etc. are known to give important information on the origin
of these interfaces and on the alteration processes acting on them.
Many rough interfaces have been shown to possess self-affine, or
fractal, roughness properties, i.e. a roughness appearance indepen-
dent of the scale of observation and having a long-range correlation
(Mandelbrot 1975; Turcotte 1989; Gouyet 1992). The roughness of
fractal interfaces is controlled by the fractal dimension D or, equiva-
lently, by the Hurst exponent H = d − D, where d is the dimension
of the space embedding the interface. The Hurst exponent, H , con-
trols the roughness amplitude 〈�hL〉 statistically observed at a given
scale L by means of the statistical homogeneity relationship

〈�hL〉 = 〈�h0〉
(

L

L0

)H

, (1)

where 〈�h0〉 is the average amplitude range for the observation
scale L0 taken as a reference length. In this paper, L0 is arbitrarily
taken as the maximum size of the observation profile or area of the
rough surface. In practice, 〈�hL〉 may be any geometrical quantity
uniquely defined at a given observation scale L such as, for instance,
the average range spanned by the vertical axis when plotting a region
of width L in the rough surface (Feder 1988). Fig. 1(a) shows three
synthetic self-affine profiles corresponding to different values of H .

∗Formerly with Géosciences Rennes.

These profiles have been generated using the Fourier method (Fox
1987) and with the same random phase spectrum in order to give
them a common appearance. It can be seen that profiles with larger
H values look like low-pass-filtered versions of profiles with smaller
H .
The determination of either the fractal dimension, D, or the Hurst
exponent, H , of topography data constitutes a way to perform land-
form classification and may give insight into the evolution processes,
build-up and/or erosion, at work (Burrough 1981; Milne 1988). Sim-
ilar results are obtained from the analysis of seafloor roughness (Fox
& Hayes 1985; Smith & Shaw 1989). Fractures also display a fractal
roughness (Okubo & Aki 1987), and geochemical processes occur-
ring during fluid circulation in fractures strongly depend on the edge
roughness, which controls both the hydraulic conductivity and the
exchange area between the fluid and the rock matrix (Brown 1989;
Thompson & Brown 1991; Meheust & Schmittbuhl 2000).

A straightforward approach to describing and analysing the
roughness of a surface is to measure its topography directly and anal-
yse the data thus obtained (Schmittbuhl et al. 1993). However, many
surfaces, among which those cited above, are either too large or too
remote to allow such a direct analysis. Consequently their roughness
properties must be determined indirectly by using remote sensing
methods such as radars to describe terrestrial soil roughness (Zribi
et al. 2000) and geomorphological characterization of the surface
of other planets (Shepard et al. 2001; Campbell & Shepard 1996).
Acoustic waves may also be used to probe the seafloor (Mourad &
Jackson 1993; Lyons et al. 1994; Jackson et al. 1996; Lurton 2002).
In these cases, the roughness parameters must be extracted from
information carried by the waves backscattered by the surface of
interest (Goff & Jordan 1989).
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Figure 1. (a) Three synthetic self-affine profiles showing the roughness
dependence with respect to the Hurst exponent H . These profiles have a
similar appearance because they have been generated by the Fourier trans-
form method with the same random phase spectrum and �h0 = 10.5 mm.
The main influence of the Hurst exponent is to change the amplitude of the
short wavelengths relative to that of the long wavelengths. (b) Example of
a profile (in the y direction) extracted from the experimental rough surface
used in this study. The roughness appearance of this profile is more similar
to that of the synthetic profile with H = 0.70.

Wave scattering from rough surfaces has been extensively studied
for a long time (Beckmann & Spizzichino 1963), and there is con-
siderable literature on the subject (see e.g. Ogilvy 1991; Voronovich
1994; Ishimaru 1997 for detailed reviews). Most of these studies,
however, consider surfaces with a moderate roughness often as-
sumed to be stationary and random Gaussian. These nice statistical
properties are generally introduced for mathematical convenience
but they are not satisfied by rough interfaces with a fractal-like
roughness (Sayles & Thomas 1978).

Since the pioneering study of Berry (1979) (see also Berry &
Blackwell 1981) numerous papers have dealt with the particular
problem of wave scattering by fractal interfaces, with applications
to many scientific domains such as oceanography (Chen et al. 1994)
and optics (Jaggar & Sun 1990). However, wave scattering by fractal
surfaces remains challenging because of the long-range correlation
of the relief observed along profiles (Simonsen et al. 2000). Indeed,
as eq. (1) indicates, the longer the walk along the surface the larger
the height variations observed (Fig. 1). In practice, this means that,
as one moves along a profile above the surface with a source and an
antenna recording the waves reflected by the rough topography, the
backscattered waves arrive at the receiver with random phase lags
whose maximum amplitude increases as the length of the path in-
creases. Consequently, classically used quantities such as the mean
backscattered wavefield cannot be given the same sense as for ran-
dom stationary rough surfaces because, as the size of the averaging
profile (or surface) increases, the average of the backscattered sig-
nals rapidly converges to zero. This occurs because as the length of
the path along the profile increases, the individual signals stacked to
form the average signals are more and more (in a statistical sense)
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Figure 2. Average records of acoustic waves reflected by a self-affine rough
surface and corresponding to a source signal with central frequencies f c =
487 kHz (bottom) and f c = 739 kHz (top). The averaged signals have
been computed for various numbers n of individual signals recorded along
a straight profile. The larger the value of n, the smaller the amplitude of the
average signal.

out of phase. The stack is then gradually annihilated to give an
asymptotically vanishing sum (Papoulis 1984).
Fig. 2 shows the average wavefields reflected by the self-affine sur-
face used in the remainder of this study and corresponding to a
source signal given by eq. (2) for central frequencies f c = 487 kHz
and f c = 739 kHz. The average signals have been computed using
a number n of individual adjacent signals recorded along a straight
profile above the surface. It can be seen that the amplitude of the
average signal dramatically decreases as n increases, and, because
of the self-affine nature of the rough surface, this phenomenon oc-
curs at all frequencies (i.e. wavelengths λ). In contrast, in the case of
stationary rough surfaces, there exists a corner wavelength beyond
which such a decrease is not observed because the phase lags are too
small to produce significant destructive interferences in the stacking
procedure. The self-affine property of the rough surface implies that
the rms amplitude of the average signals decreases by an amount
proportional to n/λ, a rule roughly satisfied by the signals shown
in Fig. 2. This behaviour is a direct consequence of the long-range
correlation of self-affine surfaces and leads to two major difficul-
ties for the probing of fractal rough surfaces with backscattered
waves: (1) there is no critical averaging size (either surface area or
profile length) beyond which the averaged backscattered waves can
be considered arbitrarily close to a non-null asymptotic mean field
corresponding to an infinite averaging size; (2) the averaged quan-
tities obtained display strong variations from one averaging profile
to another. This last point indicates that a large part of the wave
scattering produced by a fractal topography must be considered to
occur in the mesoscopic-scale range, where the classical statistics
of large numbers is useless. Instead, it is necessary to explicitly
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account for the fact that the data obtained for a single averaging
profile are a single drawing from a set of strongly fluctuating real-
izations. These difficulties make the characterization of fractal sur-
faces from backscattered waves very different from the approach
used for non-fractal and stationary rough surfaces (Berry 1972).

In the present study we show how the strong fluctuations occurring
at mesoscopic scales may be accounted for in an inversion procedure
to recover the roughness characteristics of a self-affine rough surface
from backscattered waves averaged along a single profile with a
finite length. In order to make the paper self-consistent, we first
present the main aspects of the data obtained through an acoustic
experiment performed in a water tank with a fractal rough surface.
Next, we discuss the numerical modelling (i.e. the direct problem)
of the measured backscattered waves. In the last section, a Bayesian
inversion is performed by considering the direct problem as a fuzzy
stochastic physical model.

2 E X P E R I M E N TA L WAV E L E T
R E S P O N S E O F RO U G H S U R FA C E S

In this section we present the experimental data which are inverted
in the last section of this paper. The rough surface used in the present
study is a synthetic resin print of a natural surface obtained by frac-
turing a granite block. By using a homogeneous resin print instead
of the natural surface itself we limit the diffraction effects to those
created by the rough surface and eliminate the diffracted waves that
could be produced by the mineral grains inside the granite block. The
topography of the resin surface has been digitized with a laser pro-
filer, and a profile extracted from the digitized topography is shown
in Fig. 1(b). An analysis of the digitized topography confirms its
self-affine nature with a Hurst exponent of H � 0.72, typical of
long-range correlated height variations (Gautier & Gibert 2004).
The backscattering experiment is performed in a large water-tank
(5 m3) with the experimental setup shown in Fig. 3. An arbitrary
waveform generator triggers a power amplifier which fires a piezo-
electric source located above the rough surface and directed in a
near-nadir direction. The waves backscattered by the rough topog-
raphy are recorded with another piezo-electric transducer placed
near the source. This second transducer is necessary because the
source transducer controlled by the arbitrary waveform generator
cannot be switched sufficiently rapidly to be used as a receiver. The
rough surface can be rolled-along in order to record the backscat-
tered wavefield along a straight profile.

The numerical signals sent to the source by the arbitrary wave-
form generator are obtained through a non-linear inversion algo-
rithm (Conil et al. 2004) in such a way that the waves reflected by
a flat reference surface are pure self-similar wavelets � a(t) defined
by

�a(t) = 1

a

d4

d(t/a)4
exp

(
− t2

a2

)
. (2)

The dilation a >0 controls the duration of the wavelets whose energy
spectrum is bandpass-like with a central frequency f c ∝ a−1. The
temporal localization of the wavelet allows the waves reflected by
the surface to be separated from those coming from other parts of the
apparatus such as the flat bottom face of the resin print. Seven pairs
of transducers with central frequencies varying from 250 kHz to
2.5 MHz are used, and the frequency range covered by the wavelet
family goes from 172 kHz to 2.572 MHz, corresponding to wave-
lengths ranging from 8.7 to 0.6 mm in water. All transducers have
identical active surface areas with a diameter D = 25 mm. The focal
distance d f = D2/4λ (Angelsen 2000) which separates the near-field

Figure 3. View of the experimental setup used in this study. The rough sur-
face is placed on a moving plate which can be rolled under the piezoelectric
transducers (source and receiver) located above.

Fresnel zone from the far-field Fraunhofer zone varies from 18 mm
at the lowest frequencies to 260 mm at the highest frequencies. The
distance l e = 600 mm between the transducers and the rough surface
was kept constant to satisfy the far-field conditions at all frequen-
cies. Each pair of transducers is used to span a wavelength range to
construct the entire wavelet family, i.e. several wavelets with nearby
wavelengths are produced with the same transducers.

The use of optimized source signals gives reflected signals with
a high signal-to-noise ratio and enables an accurate study of the
frequency-dependent response of the target. A great advantage of
this experimental procedure is that no post-deconvolution of the
output signals is necessary, and the reflected waves for each opti-
mized source signal can be directly recorded to constitute what will
hereafter be called the wavelet response of the target surface.

For each wavelet source, a total of 75 wavelet responses like
those shown in Fig. 2 for n = 1 were recorded along a 18.5-cm
long profile with a constant sampling interval. These individual
wavelet responses were stacked to obtain the average wavelet re-
sponse, as shown in Fig. 2 for n = 75. The total energy of the
average wavelet responses is computed to obtain the energy spec-
trum of the backscattered waves, and this constitutes the data used
in the inversion presented below (Fig. 5).

3 S T O C H A S T I C M O D E L L I N G

The mean backscattered field, 〈ψ f〉, is computed with a modified ver-
sion of the model proposed by Shepard & Campbell (1999) (Gautier
& Gibert 2004). The model is based on the Helmholtz–Kirchhoff
diffraction formula (Elmore & Heald 1985; Ishimaru 1997), and
the backscattered field is computed by representing the rough

C© 2005 RAS, GJI, 160, 797–803



800 S. Gautier and D. Gibert

topography as an ensemble of point scatterers excited by a plane
wave with normal incidence and amplitude ψ 0. Multiple scattering
among the point scatterers is neglected, and the individual contribu-
tions of the scatterers can then be summed in any order to obtain the
total field 〈ψ f〉. A far-field and near-nadir geometry is assumed so
that the obliquity factor can be omitted. In a cylindrical coordinate
system (r, ϕ) with the r = 0 axis oriented in the incident normal
direction and passing through the observation point P, the backscat-
tered wavefield ψ f can be approximated as (Gautier & Gibert
2004)

ψf(P) � − iψ0

λ

eikle

le

∫ R

0
rdr

∫ 2π

0
e−2ikh(r,ϕ) dϕ, (3)

where k = 2π f /c is the wavenumber, f is the frequency, c is the
wave velocity, and le is the distance between the observation point
P and its normal projection Ps on the surface. The surface topog-
raphy h(r, ϕ) is measured with respect to the altitude of Ps [i.e.
h(P s) = 0].

The mean field 〈ψ f〉 is obtained by averaging the backscattered
field measured along a y profile of length L:

〈ψf〉L = − iψ0

Lλ

∫ L

0

eikle (y)

le(y)
dy

∫ R

0
rdr

∫ 2π

0
e−2ikh(r,ϕ) dϕ, (4)

and the energy spectrum is given by

E( f ) = |〈ψf〉L |2 = ∣∣〈ψf〉L〈ψf〉∗
L

∣∣, (5)

where ∗ indicates the complex conjugate of the mean field.
The mean backscattered wavefield given by eq. (4) is computed

through three integrals. The rightmost one is over a circle of ra-
dius r, and the middle one sums the contributions of all circles for
0 ≤ r ≤ R to give the total field backscattered by a circular disc
of radius R (see also eq. 3). The leftmost integral sums the contri-
butions of all discs along a path of length L. If L � R, the mean
backscattered field results from a large number of discs, and it is
possible to replace the integration over ϕ by a stochastic integral
using the statistical distribution of h(r, ϕ). Because of the self-affine
nature of the rough surface, the topography h(r, ϕ) measured along
circles of radius r has Gaussian statistics with a standard deviation
σ c(r ) = σ c(r 0)(r/r 0)H , where r 0 is an arbitrary reference radius
(Gautier & Gibert 2004). This means that an analytical evaluation
of the rightmost integral in eq. (4) can be performed by replac-
ing the ϕ integral by one over the h distribution at a given r. We
obtain

〈ψf〉L = − iψ0

Lλ

∫ L

0

eikle(y)

le(y)
dy

∫ R

0
e−2k2σ 2

c (r )rdr, (6)

where the rightmost integral can easily be evaluated numerically
using standard algorithms (Press et al. 1992).

The y integral cannot be evaluated in the same way because it
involves a single profile of finite length L and no ensemble averag-
ing can be inferred to enable use of the probability distribution of
le(y). Indeed, this integration is the one that accounts for the meso-
scopic scales that produce the strong fluctuations in the mean-field
realizations from one profile to another. It is, then, important to pre-
serve these phenomena when computing the y integral. This is done
by a numerical integration along a random synthetic le(y) profile of
length L with both a given Hurst exponent H and an amplitude range
�h0. By using this procedure, we preserve the long-range correla-
tion observed in real data (Fig. 1b). The forward problem given by
eq. (6) can be seen as a stochastic process since its output randomly
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Figure 4. Synthetic energy spectra obtained from a set of runs of the
stochastic forward problem. The distribution of the synthetic spectra is used
to derive the probability distribution ρ s to be used in the Bayesian inference
formula as shown in Fig. 5.

changes for each particular realization of the le(y) profile used in
the numerical integration.

A different energy spectrum is obtained for each realization of
a le(y) profile in eq. (6), as shown in Fig. 4, and the set of spec-
tra thus obtained is used to compute an estimate of the probability
density function, ρ s(f , E), representing the statistical distribution of
the energy spectra produced by rough surfaces with a given Hurst
exponent. In practice, the probability ρ s is computed from a set of
100 individual spectra (Fig. 5), and the probability density func-
tion ρ s(f , E) is the output of the stochastic direct problem, which
constitutes the relevant quantity to be compared with the experi-
mental spectra obtained during the acoustic experiments (Tarantola
& Valette 1982).

4 B AY E S I A N I N V E R S I O N

We now present a Bayesian inversion based on the stochastic forward
modelling presented in the previous section and given by eq. (6).
The parameters to be fixed in order to compute a single realization
of the stochastic process (6) are the length L of the averaging profile,
the wavelength λ, the integration radius R, the amplitude ψ 0 of the
incident plane wave, the standard deviation σ c(r0), the amplitude
range �h0 of the le(y) profiles, and the Hurst exponent H . Each of
these parameters may either be kept fixed during the inversion or be
considered as an unknown parameter to be determined through the
inversion.
Both L and λ are known from the experimental characteristics of the
data to be inverted and they can be given a value at the beginning
of the inversion process. The radius R is the size of the circular spot
(with centre Ps) onto the rough surface where the point scatterers
coherently reradiate to produce the measured backscattered wave-
field. R is defined as the limit beyond which the rightmost integral
in eq. (6) reaches a plateau, and it is automatically determined in
the numerical integration procedure by checking the convergence
of the integral for parameters (source/receiver distance and geome-
try) corresponding to the experimental conditions (Gautier & Gibert
2004).
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Figure 5. Solid line: energy spectrum of the experimental backscattered
wavefield averaged along a profile of length L = 185 mm. Grey contour
maps: probability distribution ρ s of the synthetic spectra produced by the
stochastic forward problem. Top: distribution obtained for the best inverted
model with �h0 = 12 mm, H = 0.74 (black star in Fig. 6). Bottom:
distribution corresponding to �h0 = 14 mm, H = 0.66 (white circle in
Fig. 6).

The amplitudeψ 0 is a linear parameter that fixes the absolute level of
the synthetic spectra. This amplitude should ideally be known from
the characteristics of the experiment but, in practice, an accurate
knowledge of ψ 0 is possible only for very well controlled experi-
mental conditions, as in the experiments discussed in this study. This
is obviously not the case for most geophysical experiments, where
the aim is to invert the data with the method proposed in this paper.
Consequently, in this study, the parameter ψ 0 is supposed unknown
and is determined during the inversion. However, this parameter is
treated as an adjustable parameter whose value is chosen in order to
maximize the posterior probability ρ p at each (�h0, H) point in the
parameter space (see for instance Gibert & Virieux 1991 for such
an approach).

The remaining three parameters, σ c(r 0), �h0 and H , directly de-
pend on the roughness properties of the scattering surface and are
the parameters to be determined. However, the standard deviation
σ c(r0) is a secondary parameter whose value is totally determined
by both �h0 and H , which are the two independent primary param-
eters considered here. We emphasize that �h0 could be taken as
the secondary parameter instead of σ c(r0). During sensitivity tests,

we observed that the spectral slope is weakly affected when either
�h0 or σ c(r0) vary in reasonable bounds. This indicates that �h0

will probably be a poorly resolved parameter. On the other hand,
the same sensitivity tests showed that small changes of H produce
significant variations of the spectral slope.

According to the discussion just above, the statistical distribution
of the synthetic spectra is written as ρ s(�h0, H), where only the
inverted parameters appear explicitly. The solution of the inverse
problem is the posterior probability density ρ p(�h0, H |data), which
can be obtained using Bayes’ rule:

ρp(�h0, H |data) = ρ(�h0, H )ρ(data|�h0, H )∫ ∫
ρ(�h0, H )ρ(data|�h0, H )d�h0d H

, (7)

where ρ(�h0, H ) is the prior probability of the parameters, and
ρ(data|�h0, H ) is the conditional probability of the data for given
values of the parameters. The integral in the denominator of (7) is
over the parameter space and is a normalizing factor which can be
omitted.

The conditional probability ρ(data|�h0, H ) is computed by using
both the statistical distribution ρ s of the synthetic spectra and the
probability density ρ d(f , E) of the experimental spectrum (i.e. the
data). In practice, the conditional probability is computed through
(Tarantola & Valette 1982)

ρ(data|�h0, H ) =
∫ ∫

ρs( f, E |�h0, H )ρd( f, E)d f dE, (8)

where the dependence of ρ s with respect to the parameters �h0 and
H has been made explicit.

Depending on the experimental situation the probability ρ d can
be a more or less complicated expression. For instance, the statis-
tical distribution of several experimental spectra corresponding to
independent averaging profiles could be used to obtain ρ d. In the
present study, no such statistical analysis can be done since a single
averaging y profile is available. Consequently,

ρd( f, E) = δ
(

f, E − |〈ψf〉L |2), (9)

where δ is the 2-D Dirac distribution, and eq. (8) reduces to a
curvilinear integral along the experimental spectral curve. In prac-
tice, for the examples shown in Fig. 5, the probability ρ(data|�h0,
H ) in eq. (8) equals the integral of the probability ρ s( f , E |�h0,
H ) along the thick black lines representing the experimental
spectrum.

The prior probability density ρ(�h0, H ) in eq. (7) may take very
different forms depending on the prior information available. In the
present study, we simply use a uniform distribution in the (�h0, H )
domain.

The solution of the inverse problem is obtained by computing the
posterior probability density ρ p(�h0, H |data) given by eq. (7) with
the probability distributions in eqs (8) and (9). Both the numerical
lightness of the stochastic forward problem and the low (2) dimen-
sion of the parameter space allow the posterior probability to be
mapped by performing a systematic scan of a limited domain of the
parameter space.

A contour map of ρ p is shown in Fig. 6 for a wide (�h0, H)
domain. It can be seen that the posterior probability map pos-
sesses a single high-probability domain with a limited size. The
high-probability domain is elongated in the �h0 axis direction and
narrower along the H axis. The small negative slope of the major
axis of the high-probability domain indicates a slight correlation
between the two inverted parameters: the larger the Hurst exponent
H the smaller the range �h0. The model with the maximum pos-
terior probability (black star in Fig. 6) is for �h0 = 12 mm and
H = 0.74.

C© 2005 RAS, GJI, 160, 797–803
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Figure 6. (a) Posterior probability density resulting from the inversion of the spectrum of the mean backscattered waves shown in Fig. 5. The black star
corresponds to the model with the highest posterior probability (�h0 = 12 mm, H = 0.74), and the white circle is for �h0 = 14 mm and H = 0.66 (see
also Fig. 5). (b) Marginal posterior probability for the parameter H obtained by integrating the 2-D posterior probability density shown in (a) (see eq. 10).
(c) Marginal posterior probability for the parameter �h0.

The Hurst exponent H is a well-resolved parameter as can be
observed in the marginal-probability curve

ρp(H ) ≡
∫

ρp(�h0, H ) d�h0, (10)

which shows (Fig. 6b) that the most probable values for H are in the
range 0.72–0.80. This agrees with the experimental determination
of H equal to 0.72 ± 0.08 (Gautier & Gibert 2004).

The marginal probability curve

ρp(�h0) ≡
∫

ρp(�h0, H ) d H (11)

shown in Fig. 6(c) does not display a clear maximum and confirms
that the amplitude range �h0 is a poorly resolved parameter despite
the fact that the experimental values for �h0 fall in a rather narrow
Gaussian range as shown in Fig. 7. This agrees with the prelimi-
nary sensitivity tests, in which variations of �h0 do not produce
significant changes in the slope of the synthetic spectra which con-
stitutes the main information used in the inversion. We found that
the amplitude ψ 0 (eq. 6) is the observable quantity that is the most
affected by changes in the amplitude range �h0. Unfortunately, as
stated above, ψ 0 is rarely measured in real field conditions because
of absolute calibration problems, and this is why we do not use this
information in the inversion.

5 C O N C L U S I O N

The determination of the roughness parameters, the Hurst exponent
H and the amplitude range �h0, of fractal surfaces from backscat-
tered waves is difficult because of the long-range correlation of
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Figure 7. Histogram of the �h0 values experimentally determined from a
set of topography profiles (e.g. Fig. 1) measured on the resin print used in
the experiments. The histogram is reasonably fitted (χ2 = 2 × 10−4) with a
Gaussian distribution (dashed curve) with a mean 〈δh0〉 = 10.5 mm and a
standard deviation ξ = 2.56 mm.

the self-affine topography. The energy spectra of the backscattered
waves averaged along profiles of finite length display strong fluc-
tuations corresponding to the mesoscopic scales of the particular
averaging profiles chosen. In order to account for these mesoscopic
phenomena, it is necessary to consider the backscattering forward
problem as a stochastic process whose output differs at each run in
order to restitute the random variability observed in the data. This
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approach is used in a single-scattering modelling assuming a near-
nadir and far-field geometry. A Bayesian inversion is used to account
for the stochastic nature of both the data and the forward problem.
A map of the posterior probability ρ p(�h0, H |data) is drawn by
scanning a region of the (�h0, H) domain. This map constitutes
the general solution of the inverse problem from which the most
probable models can easily be inferred. The inversion of a spec-
trum obtained along a single averaging profile shows that the Hurst
exponent H is a well-resolved parameter, as can be inferred from
the marginal probability curve. On the other hand, the amplitude
range �h0 is a very poorly resolved parameter for which it is only
possible to obtain an order-of-magnitude estimate. Sensitivity tests
show that a more accurate determination of �h0 could probably be
obtained if an absolute calibration of the source amplitude ψ 0 were
available.
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