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[1] Cloud parameter retrieval of inhomogeneous and
fractional clouds is performed for a stratocumulus scene
observed by MODIS at a solar zenith angle near 60�. The
method is based on the use of neural network technique
with multispectral and multiscale information. It allows to
retrieve six cloud parameters, i.e. pixel means and standard
deviations of optical thickness and effective radius,
fractional cloud cover, and cloud top temperature.
Retrieved cloud optical thickness and effective radius are
compared to those retrieved with a classical method based on
the homogeneous cloud assumption. Subpixel fractional
cloud cover and optical thickness inhomogeneity are
compared with their estimates obtained from 250m pixel
observations; this comparison shows a fairly good agreement.
The cloud top temperature appears also retrieved quite
suitably.Citation: Cornet, C., J.-C. Buriez, J. Riédi, H. Isaka, and

B. Guillemet (2005), Case study of inhomogeneous cloud

parameter retrieval from MODIS data, Geophys. Res. Lett., 32,

L13807, doi:10.1029/2005GL022791.

1. Introduction

[2] Satellite observation is the only possible way to
obtain the main properties of clouds and their variability
at the global scale. Current satellite retrieval of cloud
properties is based on the plane-parallel homogeneous
cloud assumption [Nakajima and Nakajima, 1995]; two
cloud parameters, usually optical thickness and effective
radius, are retrieved from visible and near-infrared measure-
ments. However, the validity of the homogeneous cloud
assumption has been frequently questioned [Loeb et al.,
1997; Buriez et al., 2001]. This simplifying assumption may
induce significant errors in the retrieved cloud parameters.
A part of the errors is related to the plane-parallel bias
which is due to the subpixel variability and varies signifi-
cantly with the pixel size [Cahalan et al., 1994; Davis et al.,
1997; Szczap et al., 2000]. Some studies [Davis et al., 1997;
Marshak et al., 1998; Oreopoulos et al., 2000] also showed
that the cloud inhomogeneity tends to smooth as well as to
rough the radiation fields. In the context of cloud parameter
retrieval, such effects may lead to either overestimate or
underestimate the cloud properties.
[3] Different attempts have been made to retrieve optical

thickness or effective radius accounted for cloud inhomo-
geneity effects [Marshak et al., 1998; Oreopoulos et al.,

2000; Faure et al., 2002; Iwabuchi and Hayasaka, 2003] or
to estimate errors in retrieved cloud optical thickness due to
the homogeneous cloud assumption [Varnai and Marshak,
2001, 2002; Iwabuchi and Hayasaka, 2002]. Recently,
Faure et al. [2001] and Cornet et al. [2004] have developed
a method to retrieve cloud parameters characterizing frac-
tional and inhomogeneous clouds. The method is based on
the use of mapping neural network (MNN) to perform
inversion of multispectral and multiscale observations pro-
vided by radiometers such as Global Imager (GLI) and
Moderate Resolution Imaging Spectroradiometer (MODIS).
In this paper, we adapt the method to MODIS data and
present first results obtained from real measurements.

2. MODIS Data

[4] We selected a marine stratocumulus scene of 200 �
200 km2 off the west coast of the USA (Figure 1). The
satellite overpass time is 19H45 UTC on 9 February 2003.
The solar zenith angle is around 60�, the viewing zenith
angle varies from 15� to 35� and the relative azimuth angle
is around 120� corresponding rather to the backward direc-
tion. We used the MODIS radiances in the bands 2, 6, 7 and
30 (0.865, 1.64, 2.13 and 11.03 mm) for the cloud parameter
retrieval, while the band 19 (0.940 mm) is used to remove
water vapor absorption from the bands 2, 6 and 7. This
removal is done by using regression coefficients between
the ratio R0.865/R0.940 and the water vapor transmission
obtained from line-by-line calculations. The solar bands
are corrected for the absorption due to O3, CO2, CH4, and
N2O assuming a mid-latitude winter profile and using the
MODIS cloud top pressure product [Platnick et al., 2003].
For the thermal band, the atmospheric correction is not
necessary if we replace the surface temperature by the
observed clear-sky brightness temperature and the cloud
top temperature by an equivalent cloud brightness temper-
ature. In an operational algorithm, the right cloud top
temperature can be calculated from this brightness temper-
ature if the atmospheric profile above the cloud is known.

3. Retrieval of an Inhomogeneous and Fractional
Cloud: MNN Method

3.1. Database Building

[5] We prepared the synthetic database for the neural
network training as by Cornet et al. [2004]. The bounded
cascade cloud model was used to generate different cloud
fields of 128 � 128 elementary pixels of 50 � 50 m2. The
corresponding radiance fields (angular steps of 2.5� and 5�
for zenithal and relative azimuthal angles) were computed
with the Spherical Harmonics Discrete Ordinate Method
[Evans, 1998]. We selected the same cloud scenes as by
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Cornet et al. [2004], but the cloud fields were assumed to be
non-flat top clouds instead of flat top clouds. The cloud
geometric depth was assumed to vary as the square root of
the cloud optical thickness with a mean value of 300 m
[Minnis et al., 1992]. For the solar wavelengths, radiative
transfer was simulated for the clouds with a fixed cloud base
height of 1.20 km; the sea surface directional reflectance
was computed for a wind speed of 5 m.s�1and the aerosol
contribution was simulated following Smirnov et al. [2002].
For the thermal band, radiative transfer simulations were
done for three different cloud base heights (0.90, 1.20 and
1.50 km) and for three different surface temperatures (276,
280 and 284 K).
[6] The inverse cloud model is defined at 1 km scale

(20 � 20 elementary pixels) with six cloud parameters: the
fractional cloud cover f, the mean optical thickness on the
pixel t, the mean effective radius over cloudy part within a
pixel Re, the standard deviation of optical thickness st, the
standard deviation of effective radius sRe and the mean
cloud top temperature Tc. The two inhomogeneity parame-
ters (st, sRe) are useful to characterize and parameterize
inhomogeneous clouds radiative effects [Cahalan et al.,
1994; Szczap et al., 2000; Lafont and Guillemet, 2004].
[7] To retrieve these parameters, we define an input

vector with nine components: the four area-averaged radi-
ances (R0.865, R1.64, R2.13 and R10.8), the standard deviation
of R0.865 estimated over 1 � 1 km2 pixels from 0.25 �
0.25 km2 pixel radiance, the equivalent clear-sky surface
temperature and three angular distances between a viewing
geometry and the corresponding neural network one.
[8] The input vector has fewer components than the one

used by Cornet et al. [2004]. Firstly, standard deviations for
R1.64 and R2.13 are not available for MODIS; we tested that
adding standard deviations estimated from 0.5 � 0.5 km2

pixel radiance as input component did not improve the
dispersion of retrieved cloud parameters. Secondly, we did
not use the 3.75 mm radiance, since R3.75 and R2.13 contain
redundant information and the correction of the thermal
contribution in R3.75 may also introduce some additional
errors. However these tests were done only for a solar
incidence at 60�; these conclusions could thus be different
for other solar incidences, given the fact that thermal
correction is more accurate for higher solar elevations
[Cornet et al., 2004].

3.2. Tests of the MNN Retrieval

[9] Before applying our retrieval procedure to real mea-
surements, we tested it under different conditions. The first
test is relative to the use of neural network for the cloud
parameter retrieval. For this purpose, we trained especially
MNNs to retrieve optical thickness and effective radius
under the homogeneous cloud assumption from (R0.865,
R2.13) radiance pairs. MNN retrieved values were compared
with those of MODIS products [Platnick et al., 2003]. The
correlation between them are good with correlation coef-
ficients of 0.999 for t and 0.965 for Re respectively.
However, the regression slopes are not exactly equal to
unity, but close to 1.05 for t and 1.10 for Re. These
differences are probably due to some differences in radiative
transfer modeling; in particular we assume a sea-surface
directional reflectance instead of Lambertian one used for
MODIS products. When a slight corrective factor to the
MODIS products is applied to remove these biases, we
obtain root mean square deviations (RMS) between modi-
fied MODIS and MNN, less than 5% of their corresponding
means.
[10] For the second test, we retrieved the cloud parame-

ters of a non-flat-top Gaussian cloud by using the MNNs
trained with the non-flat-top bounded cascade clouds. The
Gaussian process generates a synthetic cloud smoother than
the bounded cascade leading to a cloud top variability less
important. This two very different clouds allow us to test
that neural networks are not too dependent on the cloud
model used for their training. Table 1 shows that RMSEs
and biases for each cloud parameter excepted for sRe are
quite similar for both the types of clouds, which implies that
the MNN retrieval is not too dependent on the cloud model
assumption and therefore applicable to real data.

4. Inhomogeneous Cloud Parameters Retrieved
From MODIS Data

[11] Our inhomogeneous cloud parameter retrieval algo-
rithm was applied to the scene presented above; the ‘‘3D’’
denotes the cloud parameters retrieved with this method.
The mean optical thickness t3D and mean effective radius
Re3D are compared to the modified MODIS products (part
3.2) t1D and Re1D (Figure 2 and Table 2). Figure 2a shows
that t1D is larger than t3D for most of the pixels, which
implies a phenomenon of ‘overbrightness’, i.e. radiance
larger than the plane-parallel one for a given optical
thickness. This feature agrees with previous results showing
that, when 1D theory is used, optical thickness is predom-

Figure 1. MODIS area used in this study. The MNN
retrieval is applied to the highlighted part.

Table 1. RMSE Errors and Biases Obtained Between Retrieved

and Initial Cloud Parameters for Two Types of Cloud Model: the

Bounded Cascade Cloud and the Gaussian Cloud Models (q0 =

57.5� and 58�; qv = 15�; jv = 125�)

t Re, mm st sRe, mm f Tc, K

Bounded Cascade Cloud
Range 0–41 0–28 0–22 0–13 0–1 267–279
RMSE 1.81 1.23 1.41 1.15 0.07 0.52
Bias 0.00 0.18 0.02 0.00 0.00 �0.01

Gaussian Cloud
Range 2–15 1–9 1–7 0–5 0.2–1 276–277
RMSE 0.80 1.04 0.95 1.74 0.08 0.41
Bias 0.47 �0.74 �0.32 �1.11 �0.04 0.12
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inantly overestimated for oblique solar incidence [Varnai
and Marshak, 2002; Iwabuchi and Hayasaka, 2002]. More-
over, the difference between t3D and t1D seems to increase
with the optical thickness, which is consistent with illumi-
nating effects that are higher for brighter radiances [Loeb et
al., 1997; Varnai and Marshak, 2001]. On the contrary, in
the case of fractional cloud cover (f < 0.9), t1D is slightly
smaller than t3D (bias � �1.05) possibly because of
shadowing effects and/or plane-parallel bias.
[12] For effective radius (Figure 2b), the results are

presented by separating them into three groups: the first
group is composed of pixels with f < 0.9; the two other
groups corresponding to f � 0.9 are separated following the
sign of t1D–t3D. If we assume that optical thickness and
effective radius are affected in the same manner by shad-
owing and illuminating effects, we can use this difference to
characterize the difference between MNN and MODIS
effective radius.
[13] According to Platnick et al. [2003], Re1D appears

often larger than Re3D for fractional cloud cases. Figure 2b
shows that for f < 0.9 the retrieved Re1D is effectively larger
than Re3D and exhibits larger dispersion; it seems thus that
MNN method deals better subpixel fractional cloud cover.
For the second group (t3D � t1D), which should correspond
to shadowing effect or plane-parallel bias, Re1D is effectively
larger than Re3D for almost pixels. Since shadowing effects
or plane-parallel bias relative to optical thickness make near
infrared radiances apparently smaller, Re1D appears larger
than Re3D as if there were larger absorption [Szczap et al.,
2000]. For the third group (t3D < t1D) corresponding rather
to illuminating area, Re1D is smaller than Re3D for most of
the pixels. This behavior can be explained by illuminating
effects which make near-infrared radiances brighter.
[14] We analyzed the correlation between t3D and Re3D

(not shown). The correlation is positive for t3D < 15 and

negative for t3D > 15. This behavior agrees with earlier
observations [Nakajima and Nakajima, 1995]. Lohmann et
al. [2000] also suggested that such change of sign in t-Re
correlation can correspond to the transition from non-
precipitating to precipitating clouds. These two types of
correlations also correspond to two different types of cloud
appearance in Figure 1, i.e. the area with fractional cloud
cover and the upper and lower right corners where clouds
appear more compact and developed. However, it has to be
considered carefully because for the group t3D > 15, some
MODIS input components, in particular the standard devi-
ation of visible radiances, are slightly outside of the data
range covered by the training database.
[15] With regard to the optical thickness inhomogeneity

st and fractional cloud cover f, we compared our results
with two equivalent parameters computed from the 250 m-
visible radiance field. For st, we compared the relative
standard deviation st/t3D to the relative standard deviation
of radiances. To estimate an equivalent fractional cloud
cover, we used a threshold, [Rmin + (Rmax � Rmin)/5],
derived from extreme reflectance values of the scene, to
classify pixels as cloudy or clear. These estimations are
relevant only if we have enough pixels to compute
it. Accordingly, we retrieved these cloud parameters at
4 km scale. The input vector components are the (4 km)2

averaged radiances and the standard deviation of R0.865

estimated from 1 km2 pixels. Figure 3 shows that the two
correlation coefficients are high and the RMS difference for
f is only 0.06. These two parameters appear thus well
retrieved at 4 km scale and we can expect that it is also
correct at 1 km scale.
[16] Figure 4 presents two probability distributions of the

cloud top temperature. The first distribution obtained under
the homogeneous assumption exhibits two marked modes at
273.5K and 277K. The homogeneous retrieval is based on
the assumption of opaque cloud. However, for fractional
cloud cover or thin cloud, there is a positive bias due to the
surface temperature (here, Ts = 286K) [Platnick et al.,
2003]. For inhomogeneous clouds with fractional cloud
cover, cloud top height should not vary from one cloud to
the others and the equivalent cloud top temperature appears
more uniform over the cloud scene. The temperature for
inhomogeneous clouds is slightly lower than the MODIS
one because, for this case study, we did not remove the
atmospheric constituent effects whereas it is done for the
MODIS temperature.
[17] We do not have any way to verify the consistency of

the effective radius inhomogeneity. We analyzed the corre-

Figure 2. Comparison of cloud parameter retrieval at 1 km
with the inhomogeneous cloud model (MNN method) and
with the homogeneous cloud model (MODIS product).
(a) Optical thickness; (b) effective radius.

Table 2. Root Mean Square Differences and Biases (1D Minus 3D

Retrieval)a

RMSE (t) �t1D � �t3D RMSE (re) re1D � re3D

All 3.49 (28%) +1.66 3.27 (28%) �0.43
F < 0.9 1.42 (54%) �1.05 4.14 (38%) +2.78
F � 0.9 3.73 (27%) +2.13 3.09 (25%) �0.98
& t3D < t1D 3.43 (28%) �1.66
& t3D � t1D 1.76 (16%) +1.01

aThe relative RMS differences are reported in parentheses. The results are
separated following the different groups of Figure 2.

Figure 3. (a) st and (b) f retrieved at 4 km scale compared
to an estimation of these two parameters calculated from the
250 m-visible radiances.
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lation between Re3D and sRe, which shows that sRe
increases with Re3D, but exhibits a rather large dispersion.
However, we have to consider cautiously the retrieval of
this parameter, because the present input vector does not
include the standard deviation of 2.15 mm radiance; conse-
quently it is provided only with little information on this
parameter.

5. Discussions and Perspectives

[18] The aim of this paper is to apply to real data a
method of neural network cloud parameter retrieval previ-
ously developed for fractional and inhomogeneous cloud
[Faure et al., 2001; Cornet et al., 2004]. The retrieval
algorithm was adapted to MODIS data for this case study
and the results were presented for 6 cloud parameters.
[19] We compared retrieved optical thickness and effec-

tive radius with MODIS products. The deviations between
the two agree with previous studies about differences
between inhomogeneous and homogeneous cloud effects.
Retrieved fractional cloud cover and optical thickness
heterogeneity are quite consistent with an estimation of this
two parameters and cloud top temperature appears less
biased by the surface temperature than the MODIS cloud
top temperature.
[20] Looking at the liquid water path of this scene that can

be easily derived from t and Re, we obtain 97 g.m�2 from
MODIS retrieval and 85 g.m�2 from MNN retrieval, which
corresponds to a difference of about 15% for this scene.
[21] Even if some of the results have to be considered

carefully, retrievals obtained with the MNN method appear
quite satisfactory and significantly different from those
obtained under the homogeneous assumption. In order to
apply this retrieval more generally on MODIS data, we have
to be very careful during the database building. The training
set used has to cover with a sufficient sampling all the
possible range of real data, that implies several difficulties
already discussed by Cornet et al. [2004]. For example, still
more tests should be done to be quite sure that the results
are not biased by the cloud model used for the training.
Further improvements can also be planned, in particular by
using the neighboring pixel information [Faure et al., 2002;
Iwabuchi and Hayasaka, 2003] and by estimating output
neural network uncertainties [Aires et al., 2004].
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Figure 4. Comparison of cloud top temperature
distribution.
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