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Abstract. We present a detailed analysis of the 1D expansion of a coherent

interacting matterwave (a Bose-Einstein condensate) in the presence of disorder. A 1D

random potential is created via laser speckle patterns. It is carefully calibrated and

the self-averaging properties of our experimental system are discussed. We observe

the suppression of the transport of the BEC in the random potential. We discuss the

scenario of disorder-induced trapping taking into account the radial extension in our

experimental 3D BEC and we compare our experimental results with the theoretical

predictions.
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1. Introduction

Disorder in quantum systems has been the subject of intense theoretical and

experimental activity during the past decades. Since no real system is defectless,

disordered systems are actually more general than ordered (e.g. periodic) ones. In solid

state physics, disorder can result from impurities in crystal structures, in the case of

superfluid helium from the influence of a porous substrate [1], in the case of micro-wave

from alumina dielectric spheres randomly displaced [2, 3], in the case of light from the

transmission through a powder [4] and in ultracold atomic systems from the roughness

of a magnetic trap [5]. It is now well established that even a small amount of disorder

may have dramatic effects, especially in 1D quantum systems [6, 7]. The most famous

and spectacular phenomenon is certainly the localization and the absence of diffusion of

non-interacting quantum particles [8], predicted in the seminal work of P.W. Anderson

in the context of electronic transport. The quantum phase diagrams of spin glasses [9]

and disorder-induced frustrated systems are other rich manifestations of disorder.
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In interacting systems, the situation is even richer and more complex as a result of

non-trivial interplays between kinetic energy, interactions and disorder. This problem

has attracted much attention [10, 11] but is still not fully understood. In lattice Bose

systems for example, it leads to the formation of a Mott insulator and a Bose glass phase

at zero temperature [10]. A study of coherent transport of two interacting particles also

predicts a localization length larger than the single-particle Anderson localization length

[11].

Recent progress in ultracold atomic systems has triggered a renewed interest in

quantum disordered systems where several effects such as localization [13, 14, 15, 16]

the Bose-glass phase transition [13, 17, 18] or the formation of Fermi-glass, quantum

percolating and spin glass phases [19, 20] have been predicted (for a recent review see

[20]). Ultracold atoms in optical and magnetic potentials provide an isolated, defectless

and highly controllable system and thus offer an exciting (new) laboratory in which

quantum many-body phenomena at the border between atomic physics and condensed

matter physics can be addressed [21]. Controllable random potentials can be introduced

in these systems using several techniques. These include the use of impurity atoms

located at random positions of a lattice [22], quasi-periodic potentials [13, 16, 23, 24],

optical speckle patterns [25, 26, 27] or random phase masks [28].

In this work, we experimentally investigate the transport properties of an

interacting Bose-Einstein condensate (BEC) in a 1D random potential. We use laser

speckle to create a 1D repulsive random potential along the longitudinal axis of cigar-

shaped BEC. To study the transport properties of the condensate in the random

potential, we observe the 1D expansion of the interacting matter-wave in a magnetic

waveguide, oriented along the axis of the BEC. We demonstrate the suppression of

transport [26] induced by the random potential and carefully analyze the disorder-

induced localization phenomenon [12]. In the regime that we consider (Thomas-Fermi

regime), the interactions play a crucial role for the observed localization which turns out

to be completely different from Anderson localization. Compared to the other above-

mentioned means of creating disorder in ultracold atomic systems, this turns out to have

significant advantages. First, speckle patterns form disordered potentials which are truly

random with no long-range correlation; second, they do not require two-species systems;

and third, their parameters (intensity and correlation functions) can be shaped almost

at will in 1D, 2D or 3D. Careful attention is paid to the characterization of speckle

patterns in connection to ultracold atoms in the present work.

The article is organized as follow. We present the characteristics of our random

potential: its statistical properties and their connection to experimental parameters in

Section 2, as well as methods to calibrate this potential correctly in Section 3. We

present the observation of inhibition of the expansion of an interacting matter-wave

in the random potential in Section 4. We then discuss the disorder-induced scenario

proposed in [12, 26] and present a detailed experimental analysis of this theoretical

scenario in Section 5.
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2. Laser speckle: a controllable random potential for cold atoms

Shining a speckle pattern onto the BEC creates a random potential for the atoms as they

are subjected to an optical dipole potential V (~r). This dipole potential is proportional

to the intensity I(~r) of the laser light and inversely proportional to the detuning δ from

the atomic transition:

V (~r) =
2

3

~Γ2

8Isat

I(~r)

δ
, (1)

with Isat = 16.56Wm−2 the saturation intensity of the D2 line of Rb87, Γ/2π = 6.06 MHz

the linewidth, and the factor 2/3 the transition strength for π-polarized light. In this

section, we present the main characteristics of the random potential induced by a laser

speckle.

2.1. What is a speckle field ?

Laser speckle is the random intensity pattern produced when coherent laser light is

scattered from a rough surface resulting in spatially modulated phase and amplitude of

the electric field (see Figure 1a) [29, 30]. The randomly-phased partial waves originating

from different scattering sites of the rough surface sum up at any spatial position

r leading to constructive or destructive interferences. This produces a high-contrast

pattern of randomly distributed grains of light (see Figure 1b). A fully developed

speckle pattern is created when the rough surface contains enough scatterers to diffuse

all the incident light so that there is no directly transmitted light. This requires the

phases acquired at each scatterer to be uncorrelated and uniformly distributed between

0 and 2π. This is achieved by using a rough surface whose profile has a variance which

is large compared with the wavelength of the light.

The real and imaginary parts of the electric field of the speckle pattern are

independent Gaussian random variables – a consequence of the central limit theorem

[31]. Simple statistics can be used to derive the properties of the resulting intensity

pattern which are related to that of the electric field: (i) the first order one-

point statistical properties which correspond to the speckle intensity distribution, (ii)

the second-order two-point statistical properties which correspond to the intensity

correlation function and to the typical size of the speckle grains. We show that all

parameters of the speckle random potential can be controlled accurately experimentally.

2.2. Speckle Amplitude

In a fully-developed speckle pattern, the sum of the scattered partial waves results in

random real and imaginary components of the electric field whose distributions are

independent and Gaussian. Consequently the speckle intensity I follows an exponential

law:

P (I) =
1

〈I〉e
− I

〈I〉 . (2)
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Figure 1. a) Experimental realization of the speckle pattern. A laser beam of diameter

D′ and wavelength λ is first focussed by a convex lens. The converging beam of width D

is then scattered by a ground glass diffuser. The transverse speckle pattern is observed

at the focal plane of the lens. The scattered beam diverges to an rms radius w at the

focal plane. b) Image of an anisotropic speckle pattern created using cylindrical optics

to induce a 1D random potential for the BEC along Oz. c) Zoom of the speckle pattern

(the boxed region of a). d) The intensity autocorrelation function CI(δz) (defined in

the text). Its width gives the typical speckle grain size ∆z.

The amplitude of the speckle intensity modulation is defined by its standard deviation

σI =
√

〈I2〉 − 〈I〉2. From the intensity distribution (2) it is easy to show that σI = 〈I〉.
The probability of a speckle peak having an intensity equal to or greater than five times

the average intensity is less than 1%. This will provide a reasonable estimate of the

highest speckle peaks (see Figure 1c).

The average speckle intensity 〈I〉 is directly related to the intensity of the incident

laser beam and to the diffusion angle of light scattered by the diffuser. This angle

increases as the minimum size of the scatterers on the diffuser decreases, causing the

divergence of the scattered beam to increase, thereby reducing the average intensity.

Reducing the distance l of the diffuser from the focal plane (see Figure 1a) changes the

average intensity of the speckle as the laser beam diverges over a shorter distance, but

without changing the second-order statistical properties, as we will see in the following.

2.3. Speckle grain size and intensity correlation function

Roughly speaking a speckle pattern is a spatial distribution of grains of light intensity

with random magnitudes, sizes and positions (see Figure 1b). The speckle grain size is
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characterized by the width of the intensity autocorrelation function (Figure 1d):

CI(δr) = 〈I(r)I(r + δr)〉 (3)

where I(r) is the intensity at point r and the brackets imply statistical averaging. This

function can be derived from the electric field statistics at the diffuser by Fresnel/Kirchoff

theory of diffraction [29, 30]. In the focal plane of the lens, assuming paraxial

approximation, the speckle electric field amplitude is the Fourier transform of the electric

field transmitted by the diffuser. Thus the transverse autocorrelation function depends

only on the linear phase terms of the electric field. However, in the longitudinal direction,

the quadratic terms of the phase must be taken into account, leading to a different scaling

in the longitudinal direction [29].

For the simple case where the diffuser is illuminated by a uniform rectangular light

beam of width DY and length DZ (as in our experiment), the intensity correlation

functions in the transverse and longitudinal directions are respectively [29]:

C⊥
I (δy, δz) = 〈I〉2

[

1 + f

(

DY

λl
δy

)

f

(

DZ

λl
δz

)]

, (4)

C
‖
I (δx) = 〈I〉2

[

1 + g

(

D2
Y

λl2
δx

)

g

(

D2
Z

λl2
δx

)]

. (5)

Here f(u) = [sin(πu)/πu]2 is the Fourier transform of the aperture, g(u) =
2
u

[

C2
(
√

u
2

)

+ S2
(
√

u
2

)]

where C(s) and S(s) are the Fresnel cosine and sine integrals

respectively. Equation (4) is valid in the far-field regime, i.e. for (δx2 + δy2)/l2 << 1.

We define the typical size of the speckle grains as the distance to the first zero of the

functions CI(δr)
CI(0)

− 1 in each coordinate direction. We find the following grain sizes for

each of the three directions:

∆y = λ
l

DY
, ∆z = λ

l

DZ
, ∆x ≃ 7.6λ

l2

DY DZ
=

7.6∆y∆z

λ
. (6)

An important point here is that aberrations of the optical setup have no effect

on the properties of the speckle observed in the image plane [29]. It is interesting

to note the transverse speckle grain size corresponds to the diffraction limit, i.e. it is

controlled by the half-angle α = D′/2f subtended by the illuminated area of the diffuser

at the observation point (see Figure 1a). As a consequence, changing the distance of

the diffuser relative to the lens does not change the speckle grain size along Oz since

the angle α remains constant. We also point out that the speckle grain size in the focal

plane of the lens is independent of the size of the scatterers on the diffuser. We note that

the longitudinal grain size ∆x is related to the transverse area ∆y∆z as the Rayleigh

length of a gaussian beam is related to the beam waist area (within a numerical factor).

Finally, we point out that when the half-angles in the transverse planes xOz and xOy

which determine the value ∆z, ∆y respectively are different, as in the experiment [see

Figure 1b], an anisotropic speckle pattern is created. As we will explain in Section 3,

using an anisotropic speckle pattern allows us to work with a 1D random potential for

the atoms.
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2.4. Self-averaging properties of a speckle pattern

A 1D random potential v(z), such as a speckle pattern, can be defined by its statistical

moments, ensemble averaged over the disorder. Within this statistical definition, one

can generate many different realizations of the random potential. Experimentally,

this can be achieved by using different ground glass diffusers or by shining different

(uncorrelated) regions of the speckle pattern onto the atom cloud. In principle,

experimental observations of cold atoms in a random potential will depend on the

microscopic details of each particular realization of the random potential. Therefore,

macroscopic transport properties, which depend only on the statistics of the random

potential, should be extracted by ensemble averaging over many different realizations.

It is well known however that a spatially homogeneous (i.e. infinite) disorder,

without infinite range correlations, ensures that all extensive physical quantities are

“self-averaged” [32]. If a random potential is self-averaging, we can obtain the statistical

moments mi by integrating a single realization of the random potential over an infinite

range: mi = lim[D→∞]
1
D

∫

D
dz vi(z) for i = 1...∞. There is then no need to average

over many different realizations as each gives exactly the same result. The fact that

the spatial average coincides with the statistical average is equivalent to the well-known

ergodic hypothesis in statistical mechanics, which assumes that temporal mean is equal

to the statistical average. In experiments, studies are obviously carried out in finite

systems, in which the self-averaging property is no longer strictly valid. However, if

the length d of a 1D system is sufficiently large (typically d >> ∆z), the system will

be approximately self-averaging. More precisely, this approximation will be valid if the

statistical moments, evaluated over a finite length d: mi(d) = 1
d

∫ d/2

−d/2
dz vi(z), yield

values sufficiently close to the ensemble averaged mi.

In practice, it is useful to quantify the precision of this approximation. This will

identify under which circumstances it is necessary to average experimental results over

several realizations of disorder, and under which circumstances it is possible to as-

sume self-averaging. For infinite systems (d = ∞), the self-averaging property implies

σ2
mi

(∞) =< mi(∞)2 > − < mi(∞) >2= 0, so the calculation of the standard deviation

σmi
(d) of the moment mi(d) gives a non-zero value which can be used to test the extent

to which a finite system is self-averaging. Rather than calculating all the standard de-

viations, we will focus on just the first and second-order deviations σm1
(d) and σm2

(d).

We will see later that the second-order moment is a key parameter in our understanding

of the transport properties of the BEC.

We consider a 1D speckle potential I(z) = σIv(z) with a finite spatial correlation

length ∆z, where v(z) is a normalized speckle field: < v(z) >= 1 and < v2(z) >= 2.

For simplicity let us approximate the auto-correlation function of the speckle pattern

to unity plus a Gaussian [this happens to be a good approximation when the true auto-

correlation function is Cv(z) = 1 + sin[πz/∆z]
πz/∆z

; see Figure 2]. It is then possible to obtain

a simple analytical formula for σm2
(d) [see Appendix A and Equation (A.10)-(A.11)].
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In the asymptotic limit d ≫ ∆z, σm2
(d) reduces to [see Equation (A.12)-(A.13)]:

σm2
(d)/σm2

(0) ≃ 0.959

√

∆z

d
, (7)

where σ2
m2

(0) =< v(z)4 > − < v(z)2 >2= 20. As expected, when the length d of

the medium tends to infinity, the system becomes self-averaging and σm2
(d) tends to

zero. The asymptotical convergence towards a self-averaging disorder is however slow

and scales as
√

∆z/d where d/∆z is the typical number of peaks present within the

length d of the system. This scaling can be interpreted using discrete variables. If we

consider the amplitude v(zk) of the random potential at the points zk = k∆z, we obtain

a set of independent variables (v(zk))k=1..N with the statistics of the speckle intensity.

Then the normalized spatial average m2(d) is a normalized mean value over N = d/∆z

independent variables, which scales like 1/
√

N.

Figure 2. Normalized standard deviation σm2
(d)/σm2

(0) as a function of the length

d of the system. Lozenges ♦ correspond to the numerical calculation of m2(d) with the

true auto-correlation function Cv(z) = 1 + sin[πz/∆z]
πz/∆z . The solid black line represents

the analytical solution of Equation (A.10)-(A.11). Inset: shows plot in detail for small

values of d.

In Figure 2 we plot σm2
(d) for the numerical calculation using the true auto-

correlation function Cv(z) = 1 + sin[πz/∆z]
πz/∆z

(lozenges ♦) and the analytical solution with

the Gaussian auto-correlation function (solid black line). Both give similar values for

σm2
(d). The asymptotic approximation Equation (7) is very good even for relatively

small values of d/∆z: the deviation of Equation (7) from the exact solution of σm2
(d)

with the Gaussian approximation is less than 1% when the system is larger than six

times the size of the speckle grain. We note that the deviation from a self-averaging

system displayed by the first-order moment m1(d) is very similar to that of the second-

order moment (see Appendix A). For a typical number of peaks d/∆z larger than 100

as in our experiment, the difference between the second order moment of a finite speckle

pattern and that of an infinite, self-averaging one is less than 10%.
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3. Experimental implementation and characterization of the speckle

pattern

3.1. Shining a speckle pattern onto the atomic cloud

In our experiment the random potential is superimposed on the atoms by shining a laser

beam through a ground glass diffuser as shown in Figure 3. The atoms are located in

the focal plane of the lens (the observation plane in Figure 1), at a distance l = 6 cm

from the diffuser. The laser beam is derived from a tapered amplifier, injected by a

free-running diode laser at λ ∼ 780 nm and fibre-coupled to the experiment. The out-

coupled beam is focused onto the condensate, the fibre out-coupler and lenses being

mounted on a single small optical bench, aligned perpendicular to the long axis of the

cigar-shaped BEC.

The optical dipole potential V (z) resulting from the speckle pattern is (see Equation

(1)):

〈V (z)〉 = σV =
2

3

~Γ2

8Isat

σI

δ
. (8)

In these experiments as in that of [26], we use a blue-detuned light, (δ & 0.15 nm),

so the potential is repulsive and the speckle grains thus act as barriers for the atoms.

This is in contrast to the case of a red-detuned light (δ < 0) where the speckle grains

act as potential wells and where atoms could be trapped by the gaussian intensity

envelope of the laser beam. For the laser intensities used in these experiments, the mean

speckle potential σV is always smaller than the chemical potential of the initially trapped

condensate. We define the normalized amplitude of the random potential γ = σV /µTF

relative to the Thomas-Fermi chemical potential µTF of the initially trapped condensate.

In our experiments, γ is always smaller than unity.

As explained in Section 2.3, we can create an anisotropic speckle pattern by

controlling the shape of the laser beam incident on the diffuser. We use a set of

cylindrical optics such that in the xOy plane (Figure 3a) the out-coupled beam from

the fibre is directly focussed onto the atoms. Thus along Oy the height of the beam

incident on the diffuser is small, DY = 0.95 mm, giving a speckle grain size ∆y = 49 µm.

In the xOz plane (Figure 3b), the beam is first expanded before being focussed onto

the atoms and the horizontal size of the beam on the diffuser is DZ = 55 mm, giving a

horizontal grain size ∆z = 0.85 µm. The longitudinal grain size is ∆x = 406µm. With

our cigar-shaped Bose-Einstein condensates elongated along Oz, of transverse radius

RTF = 1.5 µm and longitudinal half-length LTF = 150 µm along Oz, we have:

LTF ≫ ∆z and RTF ≪ ∆y, ∆x, (9)

and the speckle pattern can be considered as a one-dimensional potential for the

condensate.

The scattered laser beam has a total power of up to 150mW and diverges to rms

radii wy and wz which are two orders of magnitude larger than RTF and LTF respectively
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at the condensate. Therefore the average intensity (the Gaussian envelope) of the beam

can be assumed constant over the region where the atoms are trapped.

Figure 3. Optical setup used to create the speckle potential. The BEC is at the focus

of the lens system with its long axis oriented along the z direction. The two figures

are shown in the same scale. The beam incident on the diffuser has different widths

in the y and z directions, which leads to anisotropic speckle grains (see text). a) Side

view. b) Upper view.

3.2. Calibration of the speckle grain size

In principle, the size of the speckle grains ∆z can be calculated from the parameters

l and D of the optical system. However, a large aperture cylindrical lens system is

not stigmatic and we have therefore calibrated the speckle grain size using images

from a CCD camera. The optical set-up is removed from the BEC apparatus and the

intensity distribution observed on a CCD camera at the same distance l as the atoms.

Taking images with various beam apertures DZ , we determine the autocorrelation

function of the speckle patterns to obtain the grain size ∆z that we plot versus

1/DZ . For speckle grain sizes larger than the CCD camera pixels (2 µm), we can fit

the data with a straight line, obtaining ∆z = 1.11(9) × λl/DZ to be compared with

the calculated grain ∆z = λl/DZ with the paraxial assumption. The camera cannot

resolve speckle grains smaller than the pixel size and so we extrapolate the fit to give

the grain size corresponding to the aperture we use: for DZ = 55 mm, we obtain

∆z = 0.95(7) µm. The width of the auto-correlation function in the perpendicular

axis gives the experimental value ∆y = 54(1) µm, leading to the longitudinal size

∆x = 499(38) µm.
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3.3. Calibration of the speckle average intensity via light shift measurements

Obtaining a reliable value for a dipolar potential from a photometric measurement of

light intensity is notoriously difficult. In our case, an additional problem arises due to

the strong focussing, entailing a strong variation of the intensity along the beam axis

Ox. The ideal method to calibrate the dipolar potential is to use the atoms themselves

as a sensor. This potential is nothing else than the light-shift of the lower level, F = 1

in our case. In order to relate this light-shift to the directly measured power of the

laser that creates the speckle random potential, we have used a measurement of the

differential light-shift of the F = 1 → F = 2 hyperfine transition.

Figure 4. The speckle light at 780 nm induces a light shift in both F = 1 and F = 2.

Tuning the speckle laser close to the F = 2 level as shown creates a spatially varying

differential light-shift on the 6.8GHz transition.

The condensate is magnetically trapped in the |F =1, mF =−1 〉 sublevel (Figure 4).

We use a microwave frequency generator and antenna to drive the 6.8GHz σ+ transition

to the |F = 2, mF = 0〉 sublevel. Atoms coupled into this state are then lost from the

trap. By monitoring the number of atoms remaining in |F =1, mF =−1 〉 as a function

of microwave frequency fmw, we obtain a spectrum of this transition.

When the speckle laser is shone onto the atoms, both ground-states F = 1 and

F = 2 are light-shifted and the microwave spectrum is modified. To produce a

substantial differential light shift on the transition, we must tune the speckle laser

close to resonance for either the F = 1 or F = 2 state. We chose to tune the

laser close to the F = 2 → F ′ = 3 transition frequency, to minimize spontaneous

scattering by the atoms trapped in the F = 1 level. Then the speckle laser is sufficiently

detuned from F = 1 → F ′ transitions (δ1 ∼ 6.8 GHz) that the hyperfine structure

of the upper F ′ levels is not resolved for this transition and the light-shift of the

|F = 1, mF = −1 〉 sublevel is calculated using Equation (8) [the transition strength

is 2/3 for π-polarized light]. For the F = 2 → F ′ transitions, one has to take into

account the hyperfine structure of the excited state F ′. The π-polarized speckle laser

beam couples the |F = 2, mF = 0 〉 sublevel to |F ′ = 1, mF = 0 〉 and |F ′ = 3, mF = 0 〉
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with the transition strengths 1/15 and 3/5 respectively. For detunings close to resonance

with F = 2 → F ′ = 3, the contribution to the light-shift of the transition to the F ′ = 1

sublevel is negligible at the 1% level. In this approximation we obtain the differential

light-shift of the transition:

∆E =
~Γ2

8Isat
I

(

3

5

1

δ2
− 2

3

1

δ1

)

(10)

≃ 3

5

~Γ2

8Isat

I

δ2
for δ2 ≪ δ1

where δ1 is the detuning relative to the F = 1 → F ′ = 3 transition, δ2 is the detuning

relative to the F = 2 → F ′ = 3 transition (δ1 = δ2 − 6.835GHz). Note that the laser

is always red-detuned from F = 1 by about −6.8 GHz, so creates an attractive speckle

potential for the atoms, while it is red or blue-detuned for the F = 2 state. Atoms

transferred to F = 2 by the microwave pulse will be rapidly lost due to near resonant

spontaneous scattering.

Spectra obtained for a condensate in the absence of the speckle potential (red

crosses + on Figure 5a) have a width of ≃ 15 kHz and are shifted by fB = fmw−6.8GHz

≃ −2800 kHz from the F = 1 → F = 2 transition frequency. This shift and this

width are due to the Zeeman effect on the magnetic |F = 1, mF = −1 〉 sublevel:

the minimum magnetic field B0 of the Ioffe trap shifts the frequency transition by

fB = gFµBB0/h and the curvature of the magnetic trap over the region of the condensate

broadens the spectrum towards lower frequencies. When the speckle laser is shone on the

atoms, different atoms experience different light-shifts due to the spatial modulations of

intensity in the speckle pattern. The spectrum is therefore inhomogeneously broadened

due to the range of light intensities, as shown in Figure 5a. For these measurement

we used speckle intensities of 〈I〉 . 0.3 mW. cm−2 and detunings δ2 from -15MHz to

-500MHz.

Figure 5. a) Fraction of atoms remaining in F = 1 after a 5ms pulse of microwaves

at frequency fmw = 6.8GHz + f, for speckle laser powers P indicated and fixed (blue)

detuning δ = 15 MHz. Increasing the speckle laser power broadens the spectra to lower

microwave frequencies. (Frequency f is indicated relative to the unshifted transition

frequency at 6.834683GHz.) The solid lines represent fits to Equation (15). b) σI

versus speckle laser power P . The fit gives σI/P = 1.0(1)× 103m−2.
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In order to calibrate the dipolar potential and to extract the average intensity

σI from these experimental spectra, we have developed a simple model. Since the

broadening of the spectra due to the variation of the speckle intensity is very large

compared with the Zeeman broadening we neglect the latter. Approximating to a

constant density profile, we use the statistics of the speckle intensity distribution to

model the evaporation. Since the mean potential σV is typically 100 times greater

than the chemical potential of the condensate, we assume that the atoms are located

essentially at the maxima of the speckle intensity peaks (minima of the trapping

potential). The number of atoms remaining after application of the microwave pulse at

frequency fmw = 6.8 GHz+f is then:

N(f) = N0

[

1 − α
∆f

3Γ2/80πIsatδ2
P ′(I(f))

]

= N0 [1 −AP ′(I(f))] (11)

where α is the coupling efficiency of the microwave knife and ∆f the frequency width

coupled by the microwave knife, I(f) is the intensity resonant with the frequency

(f − fB), i.e.

h(f − fB) =
3~Γ2I(f)

40Isatδ2
. (12)

In Equation (11) P ′(I) is the distribution of ‘nearest local maxima’ of intensity given

by:

P ′(I ′) =
4I ′ exp(−2I ′/Ī ′)

Ī ′2
(13)

where Ī
′
= 1.89σI is the average value of the distribution of intensity maxima. Equation

(13) is obtained by simulations of the speckle distribution in which the intensity I at

each point of the speckle random potential was replaced by the intensity at the nearest

maximum I ′ (see Figure 6).

Figure 6. Plot of the ‘nearest local maxima’ effective potential (black line) of one

realization of the speckle pattern (red line). We use this simulation to obtain the

probability distribution of the ‘nearest local maxima’ P ′(I).
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We finally obtain from Equation (11)-(13):

N(f) = N0

[

1 − B (f − fB)

(1.89σI)2
exp

(

−2
f − fB

1.89(fσI
− fB)

)]

(14)

where B = 320πAIsatδ2/3Γ2.

In the experiment, we measure the power P at the input of the optical setup that

creates the speckle random potential. The aim of the calibration is thus to relate P to

the average intensity σI of the random potential on the atoms. In order to extract σI

from the experimental data we fit the spectra in Figure 5a with a function similar to

Equation (14):

N(f) = N0

[

1 − C(f − fB) exp

(

−2
f − fB

1.89(fσI
− fB)

)]

(15)

where C, fB and fσI
are fitting parameters. Plotting the fitted values of fσI

versus

P/δ2 for red- and blue-detuned light we then obtain a more accurate value of fB than

that obtained by fitting Equation (15) to each individual spectrum. Using Equation

(12) we obtain σI from fσI
− fB and plot σI versus P in Figure 5b. We obtain

σI/P = 1.0(1)×103m−2 as the calibration constant relating the power P to the average

speckle intensity at the atoms σI .

4. Expansion in a 1D waveguide : a study of transport properties of a

Bose-Einstein condensate in a speckle random potential

4.1. Production of a condensate of 87Rb atoms

We produce a Bose-Einstein condensate of 87Rb atoms in the |F = 1, mF = −1 >

hyperfine state. The design of our iron-core electromagnet allows us to create an

elongated Ioffe-Pritchard magnetic trap with axial and radial frequencies of ωz =

2π × 6.70(7) Hz and ω⊥ = 2π × 660(4) Hz respectively. The magnetic trap is loaded

from a magneto-optical trap (MOT) and the atom cloud is cooled down to quantum

degeneracy (BEC) using a radio-frequency (rf) evaporation ramp. Typically, our BECs

comprise 3.5 ×105 atoms and are characterized by a chemical potential µTF/2π~ ∼ 4.6

kHz and Thomas-Fermi half length LTF = 150 µm and radius RTF = 1.5 µm. Further

details of our experimental apparatus are presented in [33].

The large aspect ratio of the trap is of primary importance for the experiments

described in this article. As stated in Section 3.1 the large anisotropy of the speckle

grains (∆x = 499(38) µm, ∆y = 54(1) µm and ∆z = 0.95(7) µm) help us to obtain a

1D random potential for the atoms. Yet to work with true 1D random potentials, i.e.

LTF/∆z ≫ 1 and RTF/∆x ≪ 1, an order of magnitude difference between the sizes LTF

and RTF of the BEC is needed. With the aspect ratio of our magnetic trap we have

LTF/∆z ≃ 158 and RTF/∆x ≃ 0.03.
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4.2. Axial expansion: opening the longitudinal trap

To study the coherent transport of the BEC in the random potential, we observe the

longitudinal expansion of the condensate in a long magnetic guide. The setup of our

magnetic trap allows us to control almost independently the longitudinal and transverse

trap frequencies by changing the currents in the axial and radial excitation coils. By

reducing the axial confinement without modifying the transverse confinement, we create

a 1D magnetic waveguide for the condensate. Repulsive inter-atomic interactions drive

the longitudinal expansion of the BEC along this guide.

Reducing the current in the axial excitation coils reduces both the longitudinal

trap frequency and the minimum value of the magnetic field. If the minimum magnetic

field crosses zero, atoms can undergo Majorana spin-flips from the trapped hyperfine

state |F = 1, mF = −1 > to non-trapped hyperfine states and are then lost from the

trap. Therefore we monitor the atom number as a function of the axial current in order

to determine the current at which the magnetic field crosses zero. This zero-crossing

defines a lower limit for the axial current and so we reduce the axial trap frequency

ωz/2π to a final value slightly above this limit. Since we cannot reduce the axial field

curvature strictly to zero, a small longitudinal trapping remains. By observing dipole

and quadrupole oscillations (at frequencies ω′
z and

√

2/5 ω′
z respectively) in the magnetic

waveguide, we measured ω′
z/2π = 1.10(5) Hz for the residual trapping frequency in the

guide.

Opening the trap abruptly induces atom loss and heating of the atom cloud, there-

fore the trap is ramped over 30ms to avoid these processes. Once the current in the

axial coils has reached its final value we have a BEC of N ∼ 2.5 × 105 – 3 × 105 atoms

in the magnetic guide.

To perform the experiment in the presence of the random potential, we use

the following procedure. After creating the condensate of 87Rb atoms we shine the

random potential onto the atoms and wait 200 ms for the BEC to reach equilibrium

in the combined initial trap and disorder potential. We then open the longitudinal

confinement, switch off the evaporation RF knife and the BEC expands in the 1D

waveguide in the presence of disorder due to repulsive interactions. We turn off all

remaining fields (including the random potential) after a total axial expansion time τ

(which includes the 30 ms opening time of the axial trap) and wait a further ttof = 15

ms of free fall before imaging the atoms by absorption.

4.3. Image analysis and longitudinal density profiles

In our experiment we obtain quantitative information about the atom cloud by taking

absorption images after a time-of-flight ttof=15 ms. Absorption imaging effectively in-

tegrates the atomic density along the direction of the imaging beam Oy, such that we

measure the 2D density after time-of-flight n2D(x, z, ttof ).
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In the harmonic trap (τ = 0) without disorder, the Thomas-Fermi condition is

fulfilled and this justifies the use of the scaling theory [34]. During the time-of-fligth

ttof , the atom cloud expands with the scaling factors λ⊥(ttof) and λz(ttof) in the radial

and longitudinal directions respectively. In our elongated trap λz(ttof) ≃ 1 and, after a

time-of-flight ttof , we have:

n2D(x, z, t = ttof) =
1

λ⊥(ttof)
n2D

[

x

λ⊥(ttof)
, z, t = 0

]

. (16)

In the magnetic waveguide, the radial frequency ω⊥ is unchanged. When the

longitudinal expansion is stopped, i.e. when there is no longitudinal kinetic energy,

the energy of atom cloud is also totally transferred to the transverse degree of freedom

during ttof with the scaling factor λ⊥ of the initial trap. Then Equation (16) is still

valid to describe the expansion of the condensate from the magnetic waveguide during

the time-of-flight. Therefore the 2D density before time-of-flight is n2D(x, z, τ) =

λ⊥(ttof) n2D(λ⊥(ttof)x, z, τ +ttof) where τ is the time spent by the BEC in the waveguide.

In the waveguide in presence of a random potential, the 3D density can be written as:

n3D(x, y, z, τ) =
1

g

[

µ(τ) − mω2
⊥x2/2 − mω2

⊥y2/2 − V (z)
]

, (17)

where µ(τ) is the chemical potential in presence of the 1D random potential V (z),

g = 4π~
2a

m
is the interaction parameter and a is the scattering length. Then the 2D

density is:

n2D(x, z, τ) =

∫

dy n3D(x, y, z, τ) =
4RTF

3g
√

µTF

[

µ(τ) − mω2
⊥x2/2 − V (z)

]3/2
. (18)

In particular, assuming the amplitude of the random potential < V >= σV is small

compared to the chemical potential µ, σV ≪ µ, we have n2D(x = 0, z, τ) ≃ 4RTFµ(τ)3/2

3g
√

µTF

up to first order in σV /µ.

From these 2D images, we extract the “longitudinal density profile” n2D(x = 0, z, τ)

and use it to calculate the rms length L and the centre-of-mass position of the expanding

condensate in the absence or presence of the random potential.

4.4. Expansion of the BEC and time evolution of rms length L

We measure the rms size L and the centre-of-mass position of the condensate as a

function of the longitudinal expansion time τ and plot these quantities as a function of

ωzτ in Figure 7. The expansion of the condensate in the 1D waveguide without disorder

(γ=0) is linear as predicted by the scaling theory [34]. When the 1D random potential

is added (γ=0.15, 0.23, 0.28) the expansion is reduced and eventually stops as reported

in [26]. The dashed lines in Figure 7a indicate Lf , the final rms size of the condensate

once it stops expanding. The data in Figure 7a indicate that the larger the normalized

amplitude of the random potential compared to the initial chemical potential (γ), the

shorter the final rms length Lf of the condensate.
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Figure 7. a) Time evolution of the rms size L of the expanding Bose-Einstein

condensate in the 1D magnetic guide in presence of a 1D random potential with

amplitude γ = σV /µTF. Error bars represents standard deviation over 5 realizations

of the speckle pattern (dashed lines are guides to the eye) ; b) Time evolution of the

centre of mass position for the different values of γ.

Figure 7b shows the centre-of-mass position of the BEC as a function of axial ex-

pansion time τ . In the absence of the random potential, the condensate acquires a

centre-of-mass velocity of 2.8(1) mms−1, due to a magnetic ‘kick’ during the longitudi-

nal opening of the trap. We observe that applying a small amplitude random potential

also inhibits this centre-of-mass motion. The displacement of the condensate decreases

with increasing amplitude γ as shown in Figure 7b. Each point in Figure 7 is obtained

by averaging the experimental results over 5 different realizations of the speckle pat-

tern. The error bars represent the corresponding standard deviations. We find that

these standard deviations are not larger than the shot-to-shot deviation observed using

a single realization of the random potential. We therefore claim that this system is

self-averaging within our experimental resolution. Further justification is presented in

Section 5.2. This self-averaging property of our system allows us to measure transport

properties without averaging over many realizations of the disorder, which is an impor-

tant practical advantage.

The suppression of transport of the expanding matter-wave also appears clearly on

the longitudinal density profiles obtained in the experiments. We plot in Figure 8 the

time evolution of the longitudinal density profiles for different values of the amplitude

γ of the random potential. The dotted red profile on every graph represents the longi-

tudinal profile before expansion (τ = 0) in the absence of the random potential. This

is the usual inverted parabola for a harmonically trapped Bose-Einstein condensate in

the Thomas-Fermi regime. During the expansion without disorder (see Figure 8a), the

shape remains an inverted parabola with the rms size increasing as expected from the

scaling theory [34]. When the random potential is added (see Figure 8b and c), the
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longitudinal density profile changes with time. Eventually it reaches a stationary shape

(corresponding to the stationary rms size on Figure 7a) with two main characteristics:

(i) a constant central density (with random spatial modulations) and (ii) steep edges

demarcating this central region.

Figure 8. Longitudinal density profiles of the expanding BEC for times ωzτ =1.0,

3.0, 5.1 and 7.2 with a) γ=0, b) γ=0.15 and c) γ=0.3. The dotted (red) line is the

longitudinal profile in the initial trap (τ = 0) in the absence of disorder.

Our experimental results clearly show the suppression of transport of a coherent

matter-wave induced by a random potential [26]. Although phenomenologically similar

to a single particle Anderson localization (AL), we have argued in Refs.[12, 26] that,

in the mean-field regime of our experiment where interactions are weak but interaction

energy dominates over the kinetic energy, the physics strongly changes compared with

that of AL with non-interacting bosons. In the following we investigate experimentally

the scenario of disorder-induced trapping of an interacting Bose-Einstein condensate in

the mean field regime proposed in Refs.[12, 26].

5. Experimental characterization of the disorder-induced trapping scenario

5.1. The disorder-induced trapping scenario of an elongated BEC

The disorder-induced trapping scenario proposed in [12, 26] describes the expansion of

a 1D interacting matter-wave in a 1D random potential in a regime where interactions

dominate over the kinetic energy. The dynamics of the BEC is governed by three kinds of

energy: the amplitude of the random potential, the kinetic energy of the atoms and the

inter-atomic interaction energy. The relative importance of each of these three energy

contributions depends on the local density of the BEC. At the centre of the condensate

where the density remains large, interactions play a crucial role and the kinetic energy
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is negligible. In contrast, the wings are populated by fast atoms with a low density

and therefore the kinetic energy dominates over the interaction energy. Let us briefly

describe what happens in each of these regions.

In the wings, the kinetic energy dominates over the interaction energy. The fast,

weakly interacting atoms which populate the wings undergo multiple reflections and

transmissions on the modulations of the random potential (see numerical simulations in

[12, 26]). Trapping finally results from a classical reflection on a large modulation of the

random potential. The density in the wings of the disorder-trapped BEC is too small

to be measured by absorption imaging in our experiment.

We will now focus on the behaviour in the centre of the BEC. Following the defi-

nitions of [12], we arbitrarily delimit the core of the BEC as half the size of the initial

condensate: −LTF/2 < z < LTF/2. During the expansion of the condensate in the

waveguide, the density at the centre of the cloud slowly decreases. It is thus possible to

define a quasi-static effective chemical potential µeff(τ) for the core of the BEC after an

expansion time τ in the magnetic guide. The kinetic energy is small, the time evolution

is quasi-static and the healing length ξ = 0.11 µm remains much smaller than the cor-

relation length of the speckle potential ∆z = 0.95 µm: thus the Thomas-Fermi approxi-

mation is valid. As a consequence, the random potential modulates the density and the

calculation of µeff(τ) requires averaging over the length of the core. The effective chemi-

cal potential µeff(τ) is simply the sum of the interaction energy and the random potential

energy and is defined as µeff(τ) = 1
LTF

∫ LTF/2

−LTF/2
dz [g n3D(x = 0, y = 0, z, τ) + V (z)].

The rapid lost of the overall parabolic shape during the initial expansion of the BEC

in the random potential (see Figure 8 and [12]) justifies this expression for µeff(τ) with

no longitudinal magnetic trapping term. The effective chemical potential µeff(τ) slowly

decreases with the density during the axial expansion time τ and eventually drops to

a value smaller than the amplitude of some peaks of the speckle potential. Once this

situation is reached, the condensate is trapped in the region between these peaks and

it fragments [12, 26]. The criterion for trapping the core of the BEC is the existence of

two large modulations of the random potential equal or greater than the effective chem-

ical potential µeff . Below, we adapt the calculations of [12] for 1D BECs to take into

account the transverse extension of our 3D atom cloud. We note that the calculations of

[12] assume a random potential with < V >= 0 so that the effective chemical potential

reduces to the interaction term: µ(τ) = µeff(τ)− < V > ‡. However, none of the physics

of our experiment is lost by making this adjustment with the time-independent energy

< V >. In the following we will use this new effective chemical potential µ(τ).

As the speckle potential is truly a 1D potential we can write the condition of

fragmentation in our 3D experimental BEC in the same way as it is done in [12] for a

‡ This expression for µ(τ) is strictly valid if < V >= 1
LTF

∫ LTF/2

−LTF/2 dz V (z), i.e. that our system is

self-averaging on the first-order moment m1. Given our experimental setup, this approximation is valid

: σm1
(LTF) ≃ 9% inferior to experimental uncertainties ≃ 15%.
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1D BEC: the picture developed for 1D BECs holds for the experimental 3D condensates

with the effective chemical potential µ(τ) defined here. On the one hand if the BEC

is fragmented at the centre (r2 = x2 + y2 = 0) then the condition for fragmentation

holds along the x-axis and y-axis since the density decreases as |r| increases. On the

other hand when the condition of fragmentation is not fulfilled at the centre of the BEC

(r = 0) the BEC expands and there is no disorder-induced trapping.

The number of peaks in the core of the BEC with energy greater than the effective

chemical potential µ(τ) is given by:

Npeaks(V ≥ µ(τ)) ≃ 0.94

(

LTF

∆z

)

exp

[

−0.75
V

σV

]

(19)

The condition of fragmentation is Npeaks = 2, and leads to a relation between the final

effective chemical potential µf once the core of the BEC is trapped and the characteristic

parameters σV and ∆z of the speckle potential. For small values of γ = σV /µTF we

obtain :

µf ≃ µTF

0.75
γ ln

(

0.47LTF

∆z

)

, (20)

the logarithmic term reflecting the exponential probability distribution of intensity of

the speckle pattern (see Section 2.2) and ∆z the second-order statistics of our speckle

potential.

Since the effective chemical potential µ(τ) of the core of the BEC decreases

during the expansion, it cannot be larger than the initial value µ(τ = 0) = µi =
g

LTF

∫ LTF/2

−LTF/2

dz n3D(0, 0, z). Integration over the core gives:

µi =
11µTF

12
≃ 0.92µTF (21)

which thus provides an upper value for µf .

In order to compare the experiments with this scenario we have to extract the

effective chemical potential µ(τ) in the core of the condensate from the data (as detailed

in Section 4.3). We extract the mean density from our longitudinal profiles by averaging

the density over the core of the condensate n2D(τ) = 1
LTF

∫ LTF/2

−LTF/2
dz n2D(x = 0, z, τ).

Then the experimental effective chemical potential is [see Equation (18))]:

µ(τ) = µ
1/3
TF

(

3gn2D(τ)

4RTF

)2/3

, (22)

so that µ(τ) can be directly extracted from the measured density n2D.

5.2. Measurement of the average density in the core of the elongated condensate

When disorder-induced trapping occurs at the centre, the average density in the core has

dropped to a final value n f
2D ∼ γµTF/g [see Equation (20)-(22)] and is then expected to

remain stationary. However, because of atom losses due to processes such as evaporation,

collisions, etc, the density in the core will continue to fall. In Figure 9a we plot the time
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evolution of the ratio of the average density n2D(τ) over the initial one n i
2D for different

amplitudes γ of the random potential. Without the random potential (black dots •),
the time evolution of the average density is in very good agreement with the predicted

expansion in the magnetic waveguide according to scaling theory (dashed black line). In

the presence of the random potential, the rate of decrease of the average density n2D(τ)

is much reduced (see Figure 9a). In particular, once the core of the condensate stops

expanding, the evolution of n2D(τ) changes to an exponential decay (the solid lines in

Figure 9a). This exponential decay is due to atom losses and indicates that the density is

no longer decreasing due to expansion. Hence the onset of disorder-induced trapping is

marked by a change of slope in the time evolution of the density n2D(τ), and is indicated

by the start of each solid line in Figure 9a). For a speckle amplitude γ = 0.30, trapping

occurs at ωzτ = 0.5. The subsequent decrease in the density n2D(τ) (ωzτ > 0.5) is

fitted with an exponential exp[−Γτ ], giving the time constant 1/Γ ≃ 280 ms for atom

losses. We then use an exponential with the same time constant 1/Γ to fit the curves

corresponding to γ = 0.05 and γ = 0.10. The onset of this exponential decay gives

us a measurement of the final average density nf
2D for which disorder-induced trapping

occurs. In Figure 9, the error bars on nf
2D represent the difference in the density between

the last point considered as part of the expansion and the first point marking the onset

of disorder-induced trapping.

Figure 9. a) Ratio n2D(τ)/n i
2D of the average density to the initial density at the

centre of the condensate after an expansion time ωzτ in the 1D magnetic guide for

different amplitudes of the random potential γ=0, 0.05, 0.10 and 0.30. The dashed

line shows the predicted time evolution according to scaling theory for γ = 0. After

the onset of disorder-induced trapping, atom losses lead to a purely exponential decay

indicated by the solid line fits. The onset of a purely exponential decay (marked by

the start of each solid line) indicates the final density nf
2D at which disorder-induced

trapping occurs. b) Final effective potential µf = µ
1/3
TF

(

3gn f
2D

4RTF

)2/3

at the centre of the

trapped condensate as a function of the amplitude of the random potential γ. The (red)

solid line corresponds to the expected slope from Equation (20). The black dashed line

corresponds to the saturation value 0.92µ [Equation (21)].
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From the analysis of our experimental data in Figure 9a we extract the final effec-

tive chemical potential µf = µ
1/3
TF

(

3gn f
2D

4RTF

)2/3

and plot µf versus the speckle amplitude γ

in Figure 9b. Comparing the final effective chemical potential µf once the core of the

BEC is trapped with the amplitude γ of the random potential allows a test of Equa-

tion (20)-(21). Indeed, according to Equation (20), the slope of the function µf(γ) for

small values of γ reflects the first and second-order statistical properties of the disorder,

in particular the exponential one-point distribution of intensity of the speckle and the

correlation length ∆z. For the parameters of our speckle potential we expect to obtain

for the asymptotic value of the effective chemical potential µf ≃ 26.4(2) 103 × γ [see

Equation (20)]. The evolution of µf at small values of γ is in good agreement with this

predicted value for the slope (red solid line on Figure 9b). For larger amplitudes γ of the

random potential, µf saturates at a nearly constant value in agreement with Equation

(21) (black dashed line in Figure 9b is the expected saturation value). We note that

this clearly distinguishes between our case and the case of a lattice. In the mean-field

regime with the healing length smaller than the lattice spacing, the expansion of the

condensate in a lattice is never suppressed as no large peak can provide a sharp stop-

ping [12]. However, the decrease of the average density of the BEC is stopped when the

effective chemical potential µ equals the depth of the lattice V (fragmentation). The

dependence of the final effective chemical potential µf with γ = V/µTF in the case of a

lattice is then µf = µTF × γ ≃ 4.6 103 × γ, independently of the lattice spacing.

The self-averaging property of our system appears in this measurement once again.

Experimentally we measure n f
2D which depends on σV [see Equation (20)-(22)]. The

average speckle amplitude σV is related to the second order moment m2 of the random

potential. In Section 2.4 we showed that the standard deviation of moment m2 is

expected to vary as Equation (7). For our optical apparatus [∆z = 0.95(7) µm],

the deviation σm2
(LTF) is less than 8% from one realization of the speckle potential

to another §. This variation is less than the experimental shot-to-shot variations of

≃ 15% on n f
2D obtained with one realization of the speckle potential. The arguments of

Section 2.4 are therefore in agreement with our observations and we conclude that our

system can be considered as self-averaging given our experimental resolution.

6. Conclusion

In conclusion, we have observed the suppression of transport of a coherent matter-

wave of interacting particles in a 1D optical random potential. Using laser speckle

patterns to create the random potential is particularly interesting as all statistical

properties can be controlled accurately. We have developed a technique to calibrate

the average amplitude σV of our random potential using the atoms as a sensor. The

§ For the quasi-1D setup [∆z = 5.2(2) µm] of [26], the condensate half-length LTF covers about 40

peaks of the random potential. We have πLTF/∆z ≃ 90 and Equation (7) predicts σm2
(LTF) ≃ 15%.
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spatial correlation length ∆z is also carefully calibrated. In addition, we have observed

and justified that our experimental conditions are such that our system is self-averaging,

which is of primary importance when studying properties of disorder. We have extended

the disorder-induced trapping scenario for an expanding 1D BEC proposed in [12, 26] to

the experimental 3D condensate. Our experimental results are in excellent agreement

with the prediction of this scenario where interactions play a crucial role and this allows

us to experimentally study in detail the interplay between the interactions and the

random potential.

The theoretical scenario predicts a central role of the interactions in the localization

of a coherent matter-wave whose density adapts to the fluctuations of the random

potential (ξ < ∆z, where ξ = 0.11 µm is the healing length). Contrary to the case

of non-interacting matter-waves where Anderson localization is expected, the interplay

between the interactions and the disorder induces the trapping of the BEC when the

chemical potential has dropped to a value smaller than the amplitude of typically two

barriers. The particular statistical distribution of the random potential modulations is

reflected in the condition necessary for trapping of the coherent matter-wave.

An interesting extension of this work would be to study the transport properties of

the BEC for smaller interactions, which can be controlled through Feshbach resonances

for example. In the Thomas-Fermi regime but for ξ > ∆z, a screening of the random

potential is expected [12]. For even smaller interaction (arbitrary small), Anderson

localization may occur.
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Appendix A. Calculation of σm2
(d)

The ith-order moment of a single realization of the normalized speckle field v(z)

calculated over a finite length d is defined as

mi(d) =
1

d

∫ d/2

−d/2

dz vi(z). (A.1)

Since v(z) is random mi(d) is random as well. Its statistical standard deviation σmi
(d)

for a given length d is thus:

σ2
mi

(d) = < mi(d)2 > − < mi(d) >2, (A.2)

where < . > stands for an ensemble average over the disorder. Since the average over

the disorder < . > and the integration over a finite distance d commute, we can write:

< mi(d)2 > =
1

d2

∫ d/2

−d/2

dz

∫ d/2

−d/2

dz′ < vi(z)vi(z′) > (A.3)

< mi(d) > =
1

d

∫ d/2

−d/2

dz < vi(z) > . (A.4)

The calculation of σ2
m2

(d) thus requires the knowledge of the second-order correlation

function < v2(z)v2(z′) > of the intensity field. In the following we address this point

studying the statistics of the speckle pattern.

Let A(z) denote the normalized amplitude of the electric field of the light diffused

by the scattering plate, i.e. v(z) = A∗(z)A(z), and CA(z1 − z2) =< A∗(z1)A(z2) > the

first order correlation function for this amplitude A(z). Assuming A(z1), A(z2),...,A(z2k)

are complex Gaussian random variables, so that one can use the so-called Vick’s theorem

for those variables,

< A∗(z1)A
∗(z2)...A

∗(zk)A(zk+1)A(zk+2)...A(z2k) >= (A.5)
∑

Π

< A∗(z1)A(zp) >< A∗(z2)A(zq) > ... < A∗(zk)A(zr) >, (A.6)

where the symbol
∑

Π represents a summation over the k! possible permutations (p, ..., r)

of (1, 2, ..., k). For the first-order and second-order correlation functions on the intensity

field v we obtain:

< v(z)v(z′) >= 1 + |CA(z − z′)|2 (A.7)

< v2(z)v2(z′) >= 4
(

1 + 4|CA(z − z′)|2 + |CA(z − z′)|4
)

. (A.8)

In order to obtain a simple analytic expression for m2(d) we approximate the auto-

correlation function of the normalized speckle electric field amplitude to a Gaussian:

| < A∗(z)A(z′) > |2 = |CA(z − z′)|2 = exp

[

−
(

π(z − z′)√
3∆z

)2
]

. (A.9)

This Gaussian function has the Taylor expansion at (z1 − z2) → 0 as the true

auto-correlation function of the speckle pattern sin(πz)/πz for a rectangle aperture (see
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Section 2). The calculation can also be done using the true correlation function, but

leads to a more complex formula.

The calculation of the deviation σm1
(d) with the Gaussian auto-correlation function

leads to the following equation:

σ2
m1

(d) =

√
3π

u
Erf

(

u√
3

)

+
3

u2

(

e−u2/3 − 1
)

. (A.10)

Here, Erf(x) = 2√
π

∫ x

0
dt exp(−t2) is the Error function and the dimensionless variable

u = πd
∆z

is related to the typical number of speckle grains in a given length d of the

system, d/∆z. Let us now turn to the calculation of σ2
m2

(d) itself. Using Equation

(A.8), we can relate σ2
m2

(d) to σ2
m1

(d):

σ2
m2

(d) = 16σ2
m1

(d) + 4σ2
m1

(
√

2d). (A.11)

Substituting Equation (A.10) into (A.11), we obtain an analytic expression for σm2
(d).

We have verified numerically that this result is a very good approximation to that

obtained using the true auto-correlation function to within a few percent, as shown in

Figure 2. In the asymptotic limit d ≫ ∆z, we obtain:

σm2
(d) ≃

(

2
√

3π

u
(8 +

√
2)

)1/2

≃ 7.60
1√
u
. (A.12)

In the opposite limit d → 0, we find

σm2
(d = 0) =

√
20. (A.13)

The asymptotic function Equation (A.12) is a very good approximation of the

analytical solution even for small numbers of peaks d/∆z. Indeed the difference between

the asymptotic and analytic solution is less than 1% for systems larger than d/∆z ≃ 6.

Appendix B. Condensate expansion in quasi-1D and true 1D random

potentials

In this article, we have presented a comparison of the expansion of a condensate in a 1D

random potential with a theoretical scenario, obtaining good quantitative agreement.

However, we have found that the 1D requirement for the potential is quite stringent.

As described in section Section 2.3, we are able to vary both the size and anisotropy

of the speckle grains. By performing the same experiments with a quasi-1D potential

(∆y/RTF ≃ 3.5, as used in ref. [26]), we observe a behaviour on the longitudinal density

profiles which is qualitatively different from that obtained using the true 1D potential

(∆y/RTF ≃ 36) presented in this article.

The main difference is the appearance of “wings” in the longitudinal density

profiles, which can be clearly seen in figure Figure B1(a). The shape of these wings is

approximately an inverted parabola. Whereas the central core of the profile is trapped

by the disorder, the wings continue to expand at a rate of 3.6(1)mms−1. This is
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Figure B1. Longitudinal density profiles, each averaged over 10 realizations of the

speckle pattern, observed after expansion times τ = 22, 72, 122 and 172ms in a speckle

potential of amplitude γ = σV /µTF = 0.3 for: a) a quasi-1D potential (∆y/RTF ≃ 3.5)

and b) a true 1D potential (∆y/RTF ≃ 36). In a), parabolic “wings”’ are visible around

the central, trapped core. These continue to expand as a function of time.

significantly slower than condensate expansion in the absence of disorder, 6.1(1)mms−1.

To exclude the possibility of these wings being composed of thermal atoms, produced

by heating of the condensate in the speckle potential, we repeated the experiment with

an atom cloud at 600 nK with a condensate fraction of only 15%. In this case, the large

thermal fraction leads to wings with a gaussian profile, which expand with a velocity

of 11(2)mms−1. From this we conclude that the additional wings appearing in the

BEC during expansion in a quasi-1D random potential must be related to possibility of

condensate atoms passing around some of the speckle peaks and continuing to expand.

The measurement of the rms size L in quasi-1D potentials reveals the phenomenon

of suppression of transport as L saturates [26]. Yet, since the additional wings contribute

to the rms size L of the condensate, L may continue to increase for some time after the

onset of disorder-induced trapping of the central core and thus may not give a direct

access to the time-scale of the trapping scenario. Therefore, in a quasi-1D potential,

it is important to study the time evolution of the density profiles in order to correctly

obtain the predicted timescales for this trapping phenomenon.


