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Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin

populations.
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(Dated: November 6, 2006)

We present a theoretical interpretation of a recent experiment presented in ref. [14] on the
density profile of Fermi gases with unbalanced spin populations. We show that in the regime of
strong interaction, the boundaries of the three phases observed in [14] can be characterized by two
dimensionless numbers ηα and ηβ . Using a combination of a variational treatment and a study of
the experimental results, we infer rather precise bounds for these two parameters.

PACS numbers: 03.75.Hh, 03.75.Ss

INTRODUCTION

In fermionic systems, superfluidity arises from the pair-
ing of two particles with opposite spin states, a scenario
first pointed out by Bardeen Cooper and Schrieffer (BCS)
to explain the onset of superconductivity in metals. For
this mechanism to be efficient, the Fermi surfaces asso-
ciated with each spin component need be matched, and
soon after the seminal BCS work the question of the ef-
fect of a population imbalance between the two states was
raised. At the time, it was understood that pairing and
superfluidity could sustain a certain amount of mismatch,
above which the system would undergo a quantum phase
transition towards a normal state [1]. The original work
of Fulde, Ferrel, Larkin and Ovchinnikov, who proposed
the existence of Cooper pairing at finite momentum, was
later generalized to trapped systems [2]. Alternative sce-
narios were also proposed, including deformed Fermi sur-
faces [3], interior gap superfluidity [4], phase separation
between a normal and a superfluid state through a first
order phase transition [5], BCS quasi-particle interactions
[7] or onset of p-wave pairing [8]. When the strength of
the interactions is varied, a complicated phase diagram
mixing several of these scenarios is expected [9].

However, due to the absence of experimental evidence,
these scenarios could never be tested experimentally un-
til the subject was revived by the possibility of reach-
ing superfluidity in ultra-cold fermionic gaseous systems
[10, 11]. Contrarily to usual condensed matter systems,
spin relaxation is very weak in cold atoms, and this allows
one to keep spin polarized samples for long times. This
unique possibility led to the first experimental studies
of imbalanced Fermi gases at MIT and Rice University
[12, 13, 14]. These results triggered a host of theoretical
work aiming at explaining the various results observed
by the two groups [15, 16].

One remarquable feature of ref. [14] is the observation
of three different phases in the cloud. At the center, the
authors observe a superfluid core, where the densities of
the two spin states are equal, then an intermediate nor-
mal shell where the two states coexist and finally an outer

rim of the majority component. In the present paper,
we show that, though performed in a trap, the observa-
tions of MIT can offer valuable information on the phase
diagram of a strongly interacting Fermi gas with unbal-
anced populations. In a first part we will present a brief
overview of the simplest free space scenario for transition
from a paired superfluid to a pure normal state, through
a mixed phase. Focusing on the disappearance of the
minority component, we will present a variational study
of the problem of a single minority particle embedded in
the Fermi sea of majority atoms. Finally, we will show
that the comparison with experiments allows for a rather
precise determination of the transition thresholds. One
of the key point is that, contrarily to previous works, we
rely on universal thermodynamics [17] as well as “exact”
experimental or Monte Carlo results, without the need
of the mean field BCS ansatz often used in other publi-
cations, an approach similar to that of [18].

HOMOGENEOUS SYSTEM

Before addressing the case of trapped fermions, let us
first discuss their free space phase diagram. We consider
zero temperature fermions of mass m with two internal
states labelled 1 and 2. Within a quantization volume V
and in the limit of short range interactions, we can write
the hamiltonian of the system as

Ĥ =
∑

k,σ

ǫkâ
†
k,σâk,σ +

gb
V

∑

k,k′,q

â†k+q,1â
†
k′−q,2âk′,2âk,1.

(1)

Here, ǫk = ~
2k2/2m, âk,σ is the annihilation opera-

tor of a species σ particle with momentum k, and gb is
the bare coupling constant characterizing inter-particle
interactions. It is related to the s-wave scattering length
of the system a by the Lippmann-Schwinger equation

1

gb
=

m

4π~2a
−

1

V

∑

k

1

2ǫk
. (2)
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We note that only interactions between particles of oppo-
site spins are taken into account, due to the Pauli prin-
ciple which forbids s-wave scattering of atoms with iden-
tical spin. In this paper, we assume we are working at
the unitary limit where |a| = ∞ and, using the grand
canonical ensemble, we wish to find the ground state of
the grand-potential Ξ̂ = Ĥ − µ1N̂1 − µ2N̂2. Here N̂i

is the particle number operator for species i and µi is
the associated chemical potential (we take species 1 as
majority hence µ1 > µ2). The grand potential can be
expressed as the function of the volume V and pressure
P of the ensemble according to 〈Ξ̂〉 = −PV . In other
words, searching the ground state of the system is equiv-
alent to searching the phase with the highest pressure
P .

To start our analysis, we note first that two exact
eigenstates of Ξ̂ can be found quite easily. First, when
the gas is fully polarized, we recover the case of an ideal
Fermi gas for which we know that

PN =
1

15π2

(
2m

~2

)3/2

µ
5/2

1 .

Second, let us now consider the exact ground state
|SF〉µ of the balanced grand potential Ξ̂′ = Ĥ − µ(N̂1 +

N̂2), describing a superfluid with chemical potential µ.
This potential commutes with the number operators,
hence the ground state can be searched as an eigenstate
for both N̂1 and N̂2, with N̂1|SF〉µ = N̂2|SF〉µ. We
check readily that |SF〉µ̄, with µ̄ = (µ1 + µ2)/2, is still

an eigenstate of the unbalanced Ξ̂, by noting that Ξ̂ =
Ξ̂′ +(µ1−µ2)(N̂1− N̂2)/2. At unitarity the pressure of a

balanced Fermi gas reads PS = 2
(
2m/ξ~2

)3/2
µ5/2/15π2,

where ξ ∼ 0.42 is a universal parameter whose de-
termination has attracted interest of both theoreticians
[6, 19, 20, 21] and experimentalists [11, 22]. In the case
of mismatched chemical potentials, the pressure of this
fully paired superfluid state is therefore

PS =
1

15π2

(
m

ξ~2

)3/2

(µ1 + µ2)
5/2.

The evolution of PN and PS is presented in Fig. 1
as a function of η = µ2/µ1. We see that they cross for
ηc = (2ξ)3/5 − 1 ∼ −0.10, marking the instability of
the superfluid against large population imbalances [16].
However, since we only compare the energy of the fully
paired state to the one of the fully polarized ideal gas,
the real breakdown of superfluidity could very well hap-
pen for some η larger than ηc. We know this is actually
the case, since in ref. [14], the authors observed an inter-
mediate normal phase, containing atoms of both species.
From universality at unitarity, the phase transition from
the fully paired to the intermediate phase, and then from

h

h
b h

a

-1.0 -0.5 0.0 0.5 1.0 

0 

1 

2 

3 

4 

5 

6 

7 

 
 

  

  

P
/
P

N

h
c

Norm
al

m
ixtu

re

F
u
ll
y
 
p
a
ir
e
d
 
s
u
p
e
r
f
lu

id

Fully

polarized

gas

FIG. 1: Comparison of the pressure of the various phases,
normalized by the pressure PN of the fully polarized ideal
Fermi gas, as a function of the chemical potential mismatch
η = µ2/µ1. Dotted line: fully polarized phase. Full line: fully
paired superfluid phase. The fully paired and fully polarized
states meet for ηc ∼ −0.099. Dashed line: sketch of the
intermediate normal phase. ηα and ηβ designate the universal
chemical potential thresholds for this phase.

the intermediate to the fully polarized normal phase are
given by conditions µ2/µ1 = ηα, and µ2/µ1 = ηβ , where
ηα and ηβ are two universal parameters we would like to
determine as precisely as possible.

Noting that the transition from the fully paired state to
the intermediate one must happen before the transition
to the fully polarized phase, we see graphically that we
have necessarily ηα > ηc, and, similarly, ηβ < ηc. The
upper bound on ηβ can be further improved by noting
that at the threshold between the normal mixture and
the fully polarized ideal gas, there are only a few atoms
of the minority species. In principle, the value of ηβ

should then be found by studying the N+1 body problem
of a Fermi sea of N particles 1, in presence of a single
minority atom. To address this problem, we use here a
variational method inspired from first order perturbation
theory, where we expect the ground state of the system
to take the form

|ψ〉 = φ0|FS〉 +
∑

k,q

φk,q |k, q〉,

where |SF〉 is a non interacting majority Fermi sea plus a
minority atom with 0 momentum, and |k, q〉 is the per-
turbed Fermi sea with a majority atom with momentum
q (with q lower than kF ) excited to momentum k (with
k > kF ). To satisfy momentum conservation, the minor-
ity atom acquires a momentum q−k. The energy of this
state with respect to the non interacting ground state is
〈∆̂H〉 = 〈Ĥ0〉 + 〈V̂ 〉, with
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〈Ĥ0〉 =
∑

k,q

|φk,q |
2(ǫk + ǫq−k − ǫq),

and

〈V̂ 〉 =
gb

V




∑

q

|φ0|
2 +

∑

k,k′,q

φk′,qφ
∗
k,q +

∑

k,q,q′

φk,qφ
∗
k,q′

+
∑

q,k

(φ∗0φk,q + φ0φ
∗
k,q)



 ,

where the sums on q and k are implicitly limited to q <
kF and k > kF . As we will check later (see below, eqn.
(3)), φk,q ∼ 1/k2 for large momenta, in order to satisfy
the short range behavior 1/r of the pair wave function
in real space. This means that most of the sums on k

diverge for k → ∞. This singular behavior is regularized
by the renormalization of the coupling constant using the
Lippman-Schwinger formula, thus yielding a vanishing
gB. As a consequence, since the third sum in 〈V̂ 〉 is
convergent, it gives a zero contribution to the final energy
when multiplied by gB, and can therefore be omitted in
the rest of the calculation.

The minimization of 〈Ĥ〉 with respect to φ0 and φk,q is
straightforward and yields the following set of equations

(ǫk + ǫq−k − ǫq)φk,q +
gb

V

∑

k′

φk′,q +
gb

V
φ0 = Eφk,q,

gb

V

∑

q

φ0 +
gb

V

∑

q,k

φk,q = Eφ0

where E is the Lagrange multiplier associated to the nor-
malization of |ψ〉, and can also be identified with the trial
energy. These equations can be solved self consistently
by introducing an auxiliary function χ(q) = φ0+

∑
k φk,q

and we obtain

φk,q =
gBχ(q)/V

E − (ǫk + ǫq−k − ǫq)
, (3)

After a straightforward calculation, this yields

E =
∑

q<kF

1
∑

k>kF

(
1

ǫk+ǫq−k−ǫq−E − 1

2ǫk

)
−

∑
k<kF

1

2ǫk

.

where we got rid of the bare coupling constant gB by us-
ing the Lippman-Schwinger equation (2). This equation
can be solved numerically and yields E = −0.3~

2k2
F /m,

i.e. ηβ < −0.6 [26]. Note that the same analytical result
was obtained independently in [27].
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FIG. 2: Comparison between experimental data of ref. [14]
(squares) and eq. (4) (full line). Rα, Rβ and R1 are re-
spectively the radii of the superfluid, minority and major-
ity components. The condensate vanishes for Rα = 0 at
q = R2

β/R2

1 ∼ 0.32.

TRAPPED SYSTEM AND COMPARISON WITH

EXPERIMENTS

In the rest of the paper, we would like to show how
experimental data from ref. [14] permits to improve the
determination of the parameters ηα,β . In this pursuit,
we use the Local Density Approximation (LDA) to cal-
culate the density profile of the cloud in a harmonic trap,
which for simplicity we assume is isotropic. In this case,
the chemical potentials µ1,2 of each species depends on
position according to the law µ1,2(r) = µ0

1,2 −mω2r2/2,
where ω is the trap frequency.

Using this assumption, the transition between the var-
ious phases will happen at radii Rα and Rβ given by
µ2(Rα,β)/µ1(Rα,β) = ηα,β . When these two equations
are associated with the condition giving the radius R1 of
the majority component, µ1(R1) = 0, we can eliminate
both µ0

1 and µ0
2 from the equations, yielding the following

close formula relating the radii Rα, Rβ and R1

Rα

R1

=

√
(Rβ/R1)2 − q

1 − q
. (4)

Here, q = (ηα − ηβ)/(1 − ηβ) corresponds to the value
of the R2

β/R
2
1 at which Rα vanishes, i.e. at which the

superfluid fraction disappears. In Fig. 2, we compare
the prediction of eq. 4 with the experimental finding
of ref. [14], taking q = 0.32 to match the superfluidity
thresholds. We see that close to the threshold, the agree-
ment between the two graphs is quite good. However,
they depart from each other for Rβ/R1 & 0.7, corre-
sponding to low population imbalance. One explanation
for this discrepancy might involve finite temperature ef-
fects. Indeed, it was already noted in Fig. 4 of ref. [12]
that, although the superfluid fraction was very sensitive
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to temperature at small imbalances, the value of the crit-
ical population imbalance was more robust.

The superfluid phase disappears when Rα vanishes.
From eq. 4, we see this happens for a ratio R2

β/R
2
1 = q.

As seen in Fig. 2, q can be extracted from the experimen-
tal data of ref. [14], which yield q ∼ 0.32 and therefore
constrain the possible values of ηα and ηβ . Indeed, using
this determination of q, as well as the rough upper and
lower values for ηα,β , one obtains

− 0.10 < ηα < −0.088 (5)

−0.62 < ηβ < −0.60 (6)

These bounds can be compared to the values deduced
by BCS theory, predicting ηα ∼ 0.1 and ηβ = 0. Our
calculation excludes these values and explains why the
width of the mixed normal state predicted by BCS theory
is much narrower than observed in experiments.

CONCLUSION

In conclusion, we have presented an analysis of the ex-
perimental data of ref. [14] providing stringent bounds
on the values of the thresholds for quantum phase tran-
sitions in uniform unbalanced fermi gases. Since they
were obtained using minimal assumptions (mainly zero
temperature and LDA), these bounds are fairly robust.
In particular, they do not depend precisely on the su-
perfluid nature of the intermediate phase. Our results
suggest interesting follow-ups. First, the full understand-
ing of the system, and in particular of the density profile
of the cloud, requires the knowledge of the state equa-
tion of the intermediate phase, whose exact nature then
needs to be clarified. Second, the comparison with the
data of ref. [13] suggests an intriguing issue. Indeed, al-
though the superfluidity threshold was not directly mea-
sured in this paper, the parameter q can be inferred from
the critical imbalance 0.7 measured by MIT. Rice’s ex-
perimental data yield at this value q ∼ 0.16. Not only
is this value very far from the one obtained here from
the analysis of MIT’s experiments, but it also contra-
dicts the theoretical bounds ηα > −0.10 and ηβ < −0.60
which imply q > 0.31. As suggested in ref. [23], this dis-
crepancy may arise from surface tension effects provoked
by the strong anisotropy of Rice’s trap. Another inter-
pretation might be the onset of the intermediate phase
due to finite temperature effects, as suggested by some
mean-field scenarios. Finally, the ηα,β parameters can
be evaluated experimentally using the value of q associ-
ated with the measurement of the density discontinuity
∆n1,2 at r = Rα, given by ∆n1/∆n2 = −ηα [24]. The
preliminary data presented in fig. 2.b of ref. [25] suggest
that the discontinuity ∆n1 is very weak, hence indicat-
ing a small value of ηα, in agreement with the bounds
obtained here.
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