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Abstract

Independent component analysis (ICA) is linked up with the problem of estimating a non
linear functional of a density for which optimal estimators are well known. The precision
of ICA is analyzed from the viewpoint of functional spaces in the wavelet framework.
In particular, it is shown that, under Besov smoothness conditions, parametric rate of
convergence is achieved by a U-statistic estimator of the wavelet ICA contrast, while the
previously introduced plug-in estimator Ĉ2

j , with moderate computational cost, has a rate

in n
−4s
4s+d .

Keywords : density, ICA, quadratic functional estimation, wavelets.

1. Introduction

In signal processing, blind source separation consists in the identification of analogical,
independent signals mixed by a black-box device. In psychometrics, one has the notion of
structural latent variable whose mixed effects are only measurable through series of tests ;
an example are the Big Five identified from factorial analysis by researchers in the domain
of personality evaluation (Roch, 1995). Other application fields such as digital imaging, bio
medicine, finance and econometrics also use models aiming to recover hidden independent
factors from observation. Independent component analysis (ICA) is one such tool ; it can
be seen as an extension of principal component analysis, in that it goes beyond a simple
linear decorrelation only satisfactory for a normal distribution ; or as a complement, since
its application is precisely pointless under the assumption of normality.

Papers on ICA are found in the fields of signal processing, neural networks, statistics and
information theory. Comon (1994) defined the concept of ICA as maximizing the degree
of statistical independence among outputs using contrast functions approximated by the
Edgeworth expansion of the Kullback-Leibler divergence.

The model is usually stated as follows : let X be a random variable on R
d, d ≥ 2 ; find

pairs (A,S), such that X = AS, where A is a square invertible matrix and S a latent
random variable whose components are mutually independent. This is usually done by



minimizing some contrast function that cancels out if, and only if, the components of WX
are independent, where W is a candidate for the inversion of A.

Matrix A is identifiable up to a scaling matrix and a permutation matric if and only if S
has at most one Gaussian component (Comon, 1994).

Maximum-likelihood methods and contrast functions based on mutual information or other
divergence measures between densities are commonly employed. Bell and Snejowski (1990s)
published an approach based on the Infomax principle. Cardoso (1999) used higher-order
cumulant tensors, which led to the Jade algorithm, Miller and Fisher III (2003) proposed
a contrast based on a spacing estimates of entropy. Bach and Jordan (2002) proposed a
contrast function based on canonical correlations in a reproducing kernel Hilbert space.
Similarly, Gretton et al (2003) proposed kernel covariance and kernel mutual information
contrast functions. Tsybakov and Samarov (2002) proposed a method of direct estimation
of A, based on nonparametric estimates of matrix functionals using the gradient of fA.

Let f be the density of the latent variable S relative to Lebesgue measure, assuming it
exists. The observed variable X = AS has the density fA, given by

fA(x) = |detA−1|f(A−1x)

= |detB|f1(b1x) . . . f
d(bdx),

where bℓ is the ℓth row of the matrix B = A−1 ; this resulting from a change of variable
if the latent density f is equal to the product of its marginals f1 . . . fd. In this regard,
latent variable S = (S1, . . . , Sd) having independent components means independence of the
random variables Sℓ ◦ πℓ defined on some product probability space Ω =

∏

Ωℓ, with πℓ the
canonical projections. So S can be defined as the compound of the unrelated S1,. . . , Sd

sources.

In the ICA model expressed this way, both f and A are unknown, and the data consists in
a random sample of fA. The semi-parametric case corresponds to f left unspecified, except
for general regularity assumptions.

In this paper, we consider the exact contrast provided by the factorization measure
∫

|fA − f
⋆
A|

2 , with f⋆
A the product of the marginals of fA. Let’s mention that the idea of

comparing in the L2 norm a joint density with the product of its marginals, can be traced
back to Rosenblatt (1975).

Estimation of a quadratic functional

The problem of estimating nonlinear functionals of a density has been widely studied. In
estimating

∫

f2 under Hölder smoothness conditions, Bickel and Ritov (1988) have shown
that parametric rate is achievable for a regularity s ≥ 1/4, whereas when s ≤ 1/4, minimax
rates of convergence under mean squared error are of the order of n−8s/1+4s. This result
has been extended to general functionals of a density

∫

φ(f) by Birgé and Massart (1995).
Laurent (1996) has built efficient estimates for s > 1/4.

Let Pj be the projection operator on a multiresolution analysis (MRA) at level j, with
scaling function ϕ, and let αjk =

∫

fϕjk be the coordinate k of f .

In the wavelet setting, given a sample X̃ = {X1, . . . , Xn} of a density f defined on R,
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independent and identically distributed, the U-statistic

B̂2
j (X̃) =

2

n(n− 1)

∑

i1<i2

∑

k∈Z

ϕjk(Xi1)ϕjk(Xi2 )

with mean
∫

(Pjf)2 is the usual optimal estimator of the quantity
∫

f2 ; see Kerkyacharian
and Picard (1996), and Tribouley (2000) for the white noise model with adaptive rules.

In what follows, this result is implicitly extended to d dimensions using a tensorial
wavelet basis Φjk, with Φjk(x) = ϕjk1 (x1) . . . ϕjkd (xd), k ∈ Z

d, x ∈ R
d ; that is to say

with X̃ an independent, identically distributed sample of a density f on R
d, the U-

statistic B̂2
j (X̃) = 2

n(n−1)

∑

i1<i2

∑

k∈Z
d Φjk(Xi1)Φjk(Xi2) with mean

∫

(Pjf)2 =
∑

k∈Z
d α2

jk is

also optimal in estimating the quantity
∫

R
d f2.

In the case of a compactly supported density f , B̂2
j is computable with a Daubechies

wavelet D2N and dyadic approximation of X, but the computational cost is basically in
O(n2(2N − 1)d), which is generally too high in practice.

On the other hand, the plug-in, biased, estimator Ĥ2
j (f) =

∑

k

[

1
n

∑

Φjk(Xi)
]2

=
∑

k α̂
2
jk

enjoys both ease of computation and ease of transitions between resolutions through discrete
wavelet transform (DWT), since it builds upon a preliminary estimation of all individual
wavelet coordinates of f on the projection space at level j, that is to say a full density
estimation. In this setting it is just as easy to compute

∑

k |α̂jk|
p for any p ≥ 1 or even

sup |α̂jk|, with a fixed computational cost in O(n(2N − 1)d) plus sum total, or seek out the
max, of a 2jd array.

Both estimators Ĥ2
j and B̂2

j build on the same kernel hj(x, y) =
∑

k∈Z
d Φjk(x)Φjk(y) since

they are written

Ĥ2
j (X̃) = (n2)−1

∑

i∈Ω2
n

hj(Xi1 , Xi2) and B̂2
j (X̃) = (A2

n)−1
∑

i∈I2
n

hj(Xi1 , Xi2),

where, here and in the sequel, Ωm
n =

{

(i1, . . . , im): iℓ ∈ N, 1 ≤ iℓ ≤ n
}

, Im
n =

{

i ∈ Ωm
n : ℓ1 6= ℓ2 ⇒

iℓ1 6= iℓ2
}

and Ap
n = n!/(n− p)!.

The plug-in estimator Ĥ2
j is then identified as the Von Mises statistic associated to B̂2

j . In

estimating
∑

k α
2
jk, the mean squared error of unbiased B̂2

j is merely its variance, while the

mean squared error of Ĥ2
j adds a squared component E(Ĥ2

j − B̂
2
j )2 because of the inequality

(Ĥ2
j −

∑

k α
2
jk)2 ≤ 2(Ĥ2

j − B̂
2
j )2 + 2(B̂2

j −
∑

k α
2
jk)2.

From general results, a U-statistic with finite second raw moment has a variance in Cn−1 and
under similar conditions, the difference E|U−V |r between the U-statistic and its associated
Von Mises statistic is of the order of n−r (See for instance Serfling, 1980).

In the wavelet case, the dependence of the statistics on the resolution j calls for special
treatment in computing these two quantities. This special computation, taking j and other
properties of wavelets into account, constitutes the main topic of the paper. In particular
whether 2jd is lower than n or not is a critical threshold for resolution parameter j. Moreover,
on the set { j: 2jd > n2}, the statistic B̂2

j , and therefore also Ĥ2
j , have a mean squared error

not converging to zero.

If B̂2
j and Ĥ2

j share some features in estimating
∑

k α
2
jk =

∫

(Pjf)2, they differ in an essential
way : the kernel hj is averaged in one case over Ω2

n, the set of unconstrained indexes, and
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in the other case over I2
n the set of distinct indexes. As a consequence, it is shown in the

sequel that Ĥ2
j has mean squared error of the order of 2jdn−1, which makes it inoperable

as soon as 2jd ≥ n, while B̂2
j has mean squared error of the order of 2jdn−2, which is then

parametric on the set { j: 2jd < n}. In a general way, this same parallel Ωm
n versus Im

n is
underpinning most of the proofs presented throughout the paper.

Wavelet ICA

Let f be the latent density in the semi-parametric model introduced above. Let fA be the
mixed density and let f⋆

A be the product of the marginals of fA.

Assume, as regularity condition, that f belongs to a Besov class Bs2∞. It has been checked
in previous work (Barbedor, 2005) that fA and f⋆

A, hence fA− f
⋆
A belong to the same Besov

space than f .

As usual, the very definition of Besov spaces (here Bs2∞) and an orthogonality property of
the projection spaces Vj and Wj entails the relation

0 ≤

∫

(fA − f
⋆
A)2 −

∫

[Pj(fA − f
⋆
A)]

2
≤ C2−2js.

In this relation, the quantity
∫

[Pj(fA − f⋆
A)]2 is recognized as the wavelet ICA contrast

C2
j (fA − f

⋆
A), introduced in a preliminary paper (Barbedor, 2005).

The wavelet ICA contrast is then a factorization measure with bias, in the sense that a
zero contrast implies independence of the projected densities, and that independence in
projection transfers to original densities up to some bias 2−2js.

Assume for a moment that the difference fA − f
⋆
A is a density and that we dispose of an

independent, identically distributed sample S̃ of this difference. Computing the estimators
B̂2

j (S̃) or Ĥ2
j (S̃) provides an estimation of

∫

(fA− f
⋆
A)2, the exact ICA factorization measure.

In this case, the j∗ realizing the best compromise between the mean squared error in C2
j

estimation and the bias of the ICA wavelet contrast 2−2js, is exactly the same as the one
to minimize the overall risk in estimating the quadratic functional

∫

(fA − f
⋆
A)2. It is found

by balancing bias and variance, a standard procedure in nonparametric estimation. From
what was said above B̂2

j (S̃) would be an optimal estimator of the exact factorization measure
∫

(fA − f
⋆
A)2.

The previous assumption being heuristic only, and since, in ICA, the data at hand is a
random sample of fA and not fA− f

⋆
A, we are lead to consider estimators different from B̂2

j

and Ĥ2
j , but still alike in some way.

Indeed, let δjk =
∫

(fA−f
⋆
A)Φjk be the coordinate of the difference function fA−f

⋆
A. In the ICA

context, δjk is estimable only through the difference (αjk−αjk1 . . . αjkd) where αjk =
∫

fAΦjk

is the coordinate of fA and αjkℓ =
∫

f⋆ℓ
A ϕjkℓ refers to the coordinate of marginal number ℓ

of fA, written f⋆ℓ
A .

To estimate
∑

k δ
2
jk, estimators of the type B̂2

j and Ĥ2
j are not alone enough. Instead we

use the already introduced wavelet contrast estimator (plug-in), Ĉ2
j (X̃) =

∑

k(α̂jk1 ,...kd −
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α̂jk1 . . . α̂jkd)2, and the corresponding U-statistic estimator of order 2d+ 2,

D̂2
j (X̃) =

1

A2d+2
n

∑

i∈I2d+2
n

∑

k∈Z
d

[

Φjk(Xi1)− ϕjk1 (X1
i2) . . . ϕjkd (Xd

id+1)
]

[

Φjk(Xid+2)− ϕjk1 (X1
id+3) . . . ϕjkd (Xd

i2d+2)
]

with as above Im
n =

{

(i1, . . . , im): iℓ ∈ N, 1 ≤ iℓ ≤ n, iℓ1 6= iℓ2 if ℓ1 6= ℓ2
}

and Xℓ referring to

the dimension ℓ of X ∈ R
d.

As it turns out, the U-statistic estimator D̂2
j computed on the full sample X̃ is slightly

suboptimal, compared to the rate of a B̂2
j in estimating a bare quadratic functional.

As an alternative to D̂2
j (X̃), we are then led to consider various U-statistic and plug-in

estimators based on splits of the full sample, which seems the only way to find back the
well-known optimal convergence rate of the estimation of quadratic functional, for reasons
that will be explained in the course of the proofs.

These additional estimators and conditions of use, together with the full sample estimators
Ĉ2

j and D̂2
j are presented in section 3.

Section 2 of the paper recalls some essential definitions for the convenience of the reader
not familiar with wavelets and Besov spaces, and may be skipped.

Section 4 is all devoted to the computation of a risk bound for the different estimators
presented in section 3.

We refer the reader to a preliminary paper on ICA by wavelets (Barbedor, 2005) which
contains numerical simulations, details on the implementation of the wavelet contrast
estimator and other practical considerations not repeated here. Note that this paper gives
an improved convergence rate in C2jdn−1 for the wavelet contrast estimator Ĉ2

j , already
introduced in the preliminary paper.

1.1 Notations

We set here general notations and recall some definitions for the convenience of ICA
specialists. The reader already familiar with wavelets and Besov spaces can skip this part.

Wavelets

Let ϕ be some function of L2(R) such that the family of translates {ϕ(. − k), k ∈ Z} is an
orthonormal system ; let Vj ⊂ L2(R) be the subspace spanned by {ϕjk = 2j/2ϕ(2j .−k), k ∈ Z}.

By definition, the sequence of spaces (Vj), j ∈ Z, is called a multiresolution analysis (MRA)
of L2(R) if Vj ⊂ Vj+1 and

⋃

j≥0 Vj is dense in L2(R) ; ϕ is called the father wavelet or scaling
function.

Let (Vj)j∈Z be a multiresolution analysis of L2(R), with Vj spanned by {ϕjk = 2j/2ϕ(2j . −
k), k ∈ Z}. Define Wj as the complement of Vj in Vj+1, and let the families {ψjk, k ∈ Z} be a
basis for Wj, with ψjk(x) = 2j/2ψ(2jx− k). Let αjk(f) =< f, ϕjk > and βjk(f) =< f, ψjk >.

5



A function f ∈ L2(R) admits a wavelet expansion on (Vj)j∈Z if the series

∑

k

αj0k(f)ϕjk +

∞
∑

j=j0

∑

k

βjk(f)ψjk

is convergent to f in L2(R) ; ψ is called a mother wavelet.

A MRA in dimension one also induces an associated MRA in dimension d, using the tensorial
product procedure below.

Define V d
j as the tensorial product of d copies of Vj . The increasing sequence (V d

j )j∈Z defines

a multiresolution analysis of L2(R
d) (Meyer, 1997) :

– for (i1 . . . , id) ∈ {0, 1}d and (i1 . . . , id) 6= (0 . . . , 0), define

Ψ(x)i1...,id =

d
∏

ℓ=1

ψ(iℓ)(xℓ), (1)

with ψ(0) = ϕ, ψ(1) = ψ, so that ψ appears at least once in the product Ψ(x) (we now on
omit i1 . . . , id in the notation for Ψ, and in (2), although it is present each time) ;

– for (i1 . . . , id) = (0 . . . , 0), define Φ(x) =
∏d

ℓ=1 ϕ(xℓ) ;

– for j ∈ Z, k ∈ Z
d, x ∈ R

d, let Ψjk(x) = 2
jd
2 Ψ(2jx− k) and Φjk(x) = 2

jd
2 Φ(2jx− k) ;

– define W d
j as the orthogonal complement of V d

j in V d
j+1 ; it is an orthogonal sum of 2d− 1

spaces having the form U1j . . . ⊗ Udj, where U is a placeholder for V or W ; V or W are
thus placed using up all permutations, but with W represented at least once, so that a
fraction of the overall innovation brought by the finer resolution j + 1 is always present in
the tensorial product.

A function f admits a wavelet expansion on the basis (Φ,Ψ) if the series

∑

k∈Z
d

αj0k(f)Φj0k +

∞
∑

j=j0

∑

k∈Z
d

βjk(f)Ψjk (2)

is convergent to f in L2(R
d).

In connection with function approximation, wavelets can be viewed as falling in the category
of orthogonal series methods, or also in the category of kernel methods.

The approximation at level j of a function f that admits a multiresolution expansion is the
orthogonal projection Pjf of f onto Vj ⊂ L2(R

d) defined by

(Pjf)(x) =
∑

k∈Z
d

αjkΦjk(x),

where αjk = αjk1...,kd =
∫

f(x)Φjk(x) dx.

6



With a concentration condition verified for compactly supported wavelets, the projection
operator can also be written

(Pjf)(x) =

∫

R
d

Kj(x, y)f(y)d(y),

with Kj(x, y) = 2jd
∑

k∈Z
d Φjk(x)Φjk(y). Kj is an orthogonal projection kernel with window

2−jd (which is not translation invariant).

Besov spaces

Besov spaces admit a characterization in terms of wavelet coefficients, which makes them
intrinsically connected to the analysis of curves via wavelet techniques.

f ∈ Lp(R
d) belongs to the (inhomogeneous) Besov space Bspq(R

d) if

Jspq(f) = ‖α0.‖ℓp
+

[

∑

j≥0

[

2js2dj( 1
2
− 1

p )‖βj.‖ℓp

]q
]

1
q

<∞,

with s > 0, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and ϕ, ψ ∈ Cr, r > s (Meyer, 1997).

Let Pj be the projection operator on Vj and let Dj be the projection operator on Wj . Jspq

is equivalent to

J ′
spq(f) = ‖Pjf‖p +

[

∑

j≥0

[

2js‖Djf‖p
]q
]

1
q

A more complete presentation of wavelets linked with Sobolev and Besov approximation
theorems and statistical applications can be found in the book from Härdle et al. (1998).
General references about Besov spaces are Peetre (1975), Bergh & Löfström (1976), Triebel
(1992), DeVore & Lorentz (1993).

1.2 Estimating the factorization measure
∫

(fA − f
⋆
A)2

We first recall the definition of the wavelet contrast already introduced in Barbedor(2005).

Let f and g be two functions on R
d and let Φ be the scaling function of a multiresolution

analysis of L2(R
d) for which projections of f and g exist.

Define the approximate loss function

C2
j (f − g) =

∑

k∈Z
d

(
∫

(f − g)Φjk

)2

= ‖Pj(f − g)‖
2
2.

It is clear that f = g implies C2
j = 0 and that C2

j = 0 implies Pjf = Pjg almost surely.

Let f be a density function on R
d ; denote by f⋆ℓ the marginal distribution in dimension ℓ

xℓ 7→

∫

R
d−1

f(x1. . . , xd) dx1 . . . dxℓ−1dxℓ+1 . . . dxd

7



and denote by f⋆ the product of marginals f⋆1 . . . f⋆d. The functions f , f⋆ and the f⋆ℓ admit
a wavelet expansion on a compactly supported basis (ϕ, ψ). Consider the projections up to
order j, that is to say the projections of f , f⋆ and f⋆ℓ on V d

j and Vj, namely

Pjf
⋆ =

∑

k∈Z
d

αjk(f⋆)Φjk, Pjf =
∑

k∈Z
d

αjk(f)Φjk and P ℓ
j f

⋆ℓ =
∑

k∈Z

αjk(f⋆ℓ)ϕjk ,

with αjk(f⋆ℓ) =
∫

f⋆ℓϕjk and αjk(f) =
∫

fΦjk. At least for compactly supported densities
and compactly supported wavelets, it is clear that Pjf

⋆ = P 1
j f

⋆1 . . . P d
j f

⋆d.

Proposition 1.1 (ICA wavelet contrast)

Let f be a compactly supported density function on R
d and let ϕ be the scaling function of a compactly

supported wavelet.

Define the wavelet ICA contrast as C2
j (f − f⋆). Then,

f factorizes =⇒ C2
j (f − f⋆) = 0

C2
j (f − f⋆) = 0 =⇒ Pjf = Pjf

⋆1 . . . Pjf
⋆d a.s.

Proof f = f1 . . . fd =⇒ f⋆ℓ = f ℓ, ℓ = 1, . . . d.

Wavelet contrast and quadratic functional

Let f = fI be a density defined on R
d whose components are independent, that is to

say f is equal to the product of its marginals. Let fA be the mixed density given by
fA(x) = |detA−1|f(A−1x), with A a d × d invertible matrix. Let f⋆

A be the product of the
marginals of fA. Note that when A = I, f⋆

A = f⋆
I = fI = f .

By definition of a Besov space Bspq(R
d) with a r-regular wavelet ϕ, r > s,

f ∈ Bspq(R
d)⇐⇒ ‖f − Pjf‖p = 2−js ǫj , {ǫj} ∈ ℓq(N

d). (3)

So, from the decomposition

‖fA − f
⋆
A‖

2
2 =

∫

Pj(fA − f
⋆
A)2 +

∫

[

fA − f
⋆
A − Pj(fA − f

⋆
A)
]2
,

= C2
j (fA − f

⋆
A) +

∫

[

fA − f
⋆
A − Pj(fA − f

⋆
A)
]2
,

resulting from the orthogonality of Vj and Wj, and assuming that fA and f⋆
A belong to

Bs2∞(Rd),
0 ≤ ‖fA − f

⋆
A‖

2
2 − C

2
j (fA − f

⋆
A) ≤ C2−2js, (4)

which gives an illustration of the shrinking (with j) distance between the wavelet contrast
and the always bigger squared L2 norm of fA − f⋆

A representing the exact factorization
measure. A side effect of (4) is that C2

j (fA − f
⋆
A) = 0 is implied by A = I.
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Estimators under consideration

Let S be the latent random variable with density f .
Define the experiment En =

(

X⊗n, A⊗n, (X1, . . . , Xn), Pn
fA
, fA ∈ Bspq

)

, where X1, . . . , Xn is
an iid sample of X = AS, and Pn

fA
= PfA

. . .⊗ PfA
is the joint distribution of (X1 . . . , Xn).

Define the coordinates estimators

α̂jk = α̂jk1...,kd =
1

n

n
∑

i=1

ϕjk1 (X1
i ) . . . ϕjkd (Xd

i ) and α̂jkℓ =
1

n

n
∑

i=1

ϕjkℓ (Xℓ
i ) (5)

where Xℓ is coordinate ℓ of X ∈ R
d. Define also the shortcut λ̂jk = α̂jk1 . . . α̂jkd .

Define the full sample plug-in estimator

Ĉ2
j = Ĉ2

j (X1, . . . , Xn) =
∑

(k1,...,kd)∈Z
d

(α̂j(k1,...,kd) − α̂jk1 . . . α̂jkd )2 =
∑

k∈Z
d

(α̂jk − λ̂jk)2 (6)

and the full sample U-statistic estimator

D̂2
j = D̂2

j (X1, . . . , Xn) =
1

A2d+2
n

∑

i∈I2d+2
n

∑

k∈Z
d

[

Φjk(Xi1)− ϕjk1 (X1
i2) . . . ϕjkd (Xd

id+1)
]

[

Φjk(Xid+2)− ϕjk1 (X1
id+3) . . . ϕjkd (Xd

i2d+2)
]

(7)
where Im

n is the set of indices
{

(i1, . . . , im): iℓ ∈ N, 1 ≤ iℓ ≤ n, iℓ1 6= iℓ2 if ℓ1 6= ℓ2
}

and
Am

n = n!
(n−m)! = |Im

n |.

Define also the U-statistic estimators

B̂2
j ({X1, . . . , Xn}) =

∑

k

1

A2
n

∑

i∈I2
n

Φjk(Xi1)Φjk(Xi2)

B̂2
j ({Xℓ

1, . . . , X
ℓ
n}) =

∑

kℓ

1

A2
n

∑

i∈I2
n

ϕjkℓ (Xℓ
i1)ϕjkℓ (Xℓ

i2).

(8)

Notational remark

Unless otherwise stated, superscripts designate coordinates of multi-dimensional entities
while subscripts designate unrelated entities of the same set without reference to multi-
dimensional unpacking. For instance, an index k belonging to Z

d is also written k =
(k1, . . . , kd), with kℓ ∈ Z. Likewise a multi-index i is written i = (i1, . . . , im) when belonging
to some Ωm

n = {i = (i1, . . . , im): iℓ ∈ N, 1 ≤ iℓ ≤ n} or Im
n = {i ∈ Ωm

n : ℓ1 6= ℓ2 ⇒ iℓ1 6= iℓ2},
for some m ≥ 1 ; but i1, i2 would designate two different elements of Im

n , so for instance
[
∑n

i=1

∑

k∈Z
d Φjk(Xi)

]2
is written

∑

i1,i2

∑

k1,k2
Φjk1

(Xi1)Φjk2
(Xi2). Finally Xℓ is coordinate ℓ

of observation X ∈ R
d and X̃ refers to a sample {X1, . . .Xn}.

As was said in the introduction and as is shown in proposition 1.6, the estimator D̂2
j

computed on the full sample is slightly suboptimal. We now review some possibilities to

9



split the sample so that various alternatives to D̂2
j on the full sample could be computed in

an attempt to regain optimality through block independence.

We need not consider Ĉ2
j on independent sub samples because, as will be seen, the order

of its risk upper bound is given by the order of the component
∑

k α̂
2
jk − α

2
jk which is not

improved by splitting the sample (contrary to
∑

k λ̂
2
jk − λ

2
jk and

∑

k α̂jkλ̂jk − αjkλjk). The

rate of Ĉ2
j is unchanged compared to what appeared in Barbedor (2005).

Sample split

Split the full sample {X1, . . . , Xn} in d + 1 disjoint sub samples R̃0, R̃1, . . . R̃d where the
sample R̃0 refers to a plain section of the full sample, {X1, . . . , X[n/d+1]} say, and the
samples R̃1, . . . , R̃d refer to dimension ℓ of their section of the full sample, for instance
{Xℓ

[n/d+1]ℓ+1, . . . , X
ℓ
[n/d+1](ℓ+1)}.

Estimate each plug-in α̂jk(R̃0) and α̂jkℓ (R̃ℓ), and the U-statistics B̂2
j (R̃0), B̂2

j (R̃ℓ), ℓ = 1, . . . , d
on each independent sub-sample. This leads to the definition of the d + 1 samples mixed
plug-in estimator

F̂ 2
j (R̃0, R̃1, . . . , R̃d) = B̂2

j (R̃0) +

d
∏

ℓ=1

B̂2
j (R̃ℓ)− 2

∑

k∈Z
d

α̂jk(R̃0)α̂jk1 (R̃1) . . . α̂jkd (R̃d). (9)

to estimate the quantity
∑

k α
2
jk +

∏d
ℓ=1

(

∑

kℓ∈Z
α2

jkℓ

)

− 2
∑

k αjkαjk1 . . . αjkd = C2
j .

Using estimators B̂2
j places us in the exact replication of the case B̂2

j found in Kerkyacharian

and Picard (1996), except for an estimation taking place in dimension d in the case of B̂2
j (R0).

The risk of this procedure is given by proposition 1.3.

Using the full sample {X1, . . . , Xn} we can generate an identically distributed sample of f⋆
A,

namely D̃S = ∪i∈Ωd
n
{X1

i1 . . . X
d
id}, but is not constituted of independent observations when

A 6= I.

But then using a Hoeffding like decomposition, we can pick from D̃S, a sample of inde-
pendent observations, ĨS = ∪k=1...[n/d]{X

1
(k−1)d+1 . . . X

d
kd}, although it leads to a somewhat

arbitrary omission of a large part of the information available. Nevertheless we can assume
that we dispose of two independent, identically distributed samples, one for fA labelled R̃
and one for f⋆

A labelled S̃, with R̃ independent of S̃. In this setting we define the mixed
plug-in estimator

Ĝ2
j(R̃, S̃) = B̂2

j (R̃) + B̂2
j (S̃)− 2

∑

k∈Z
d

α̂jk(R̃)α̂jk(S̃) (10)

and the two samples U-statistic estimator

∆̂2
j(R̃, S̃) =

1

A2
n

∑

i∈I2
n

∑

k∈Z
d

[

Φjk(Ri1)− Φjk(Si1)
][

Φjk(Ri2)− Φjk(Si2)
]

(11)

assuming for simplification that both samples have same size n (that would be different
from the size of the original sample). ∆̂2

j (R,S) is the exact replication (except for dimension
d instead of 1) of the optimal estimator of

∫

(f − g)2 for unrelated f and g found in Butucea
and Tribouley (2006). The risk of this optimal procedure is found in proposition 1.4.
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Bias variance trade-off

Let an estimator T̂j be used in estimating the quadratic functional K⋆ =
∫

(fA−f
⋆
A)2 ; using

(4), an upper bound for the mean squared error of this procedure when fA ∈ Bs2∞(Rd) is
given by

En
fA

(T̂j −K⋆)
2 ≤ 2En

fA
(T̂j − C

2
j )2 + C2−4js, (12)

which shows that the key estimation is that of the wavelet contrast C2
j (fA − f⋆

A) by the

estimator T̂j. Once an upper bound of the risk of T̂j in estimating C2
j is known, balancing

the order of the bound with the squared bias 2−4js gives the optimal resolution j. This is a
standard procedure in nonparametric estimation.

Before diving into the computation of risk bounds, we give a summary of the different
convergence rates in proposition 1.2 below. The estimators based on splits of the full sample
are optimal. D̂2

j is almost parametric on {2jd < n} and is otherwise optimal.

Proposition 1.2 (Minimal risk resolution in the class Bs2∞ and convergence rates)

Assume that f belongs to Bs2∞(Rd), and that projection is based on a r-regular wavelet ϕ, r > s.
Convergence rates for the estimators defined at the beginning of this section are the following :

Convergence rates

statistic 2jd < n 2jd ≥ n

∆̂2
j (R̃, S̃), Ĝ2

j (R̃, S̃), F̂ 2
j (R̃0, R̃1, . . . , R̃d) parametric n

−8s
4s+d

D̂2
j (X̃) n−1+ 1

1+4s n
−8s
4s+d

Ĉ2
j (X̃) n

−4s
4s+d inoperable

Table 7. Convergence rates at optimal j⋆

The minimal risk resolution j⋆ satisfies, 2j⋆d ≈ (<)n for parametric cases ; 2j⋆d ≈ n1+ d−4s
d+4s for D̂2

j ,

∆̂2
j , Ĝ

2
j or F̂ 2

j when s ≤ d
4 and 2j⋆d ≈ n

d
d+4s for Ĉ2

j .

Besov assumption about f transfers to fA (see Barbedor, 2005). Using

En
fA

(Ĥj −K⋆)
2 ≤ 2En

fA
(Ĥj − C

2
j )2 + C2−4js,

and balancing bias 2−4js and variance of the estimator Ĥj, yields the optimal resolution j.

from proposition 1.5, for estimator Ĉ2
j (X̃), the bound is inoperable on {2jd > n}. Otherwise

equating 2jdn−1 with 2−4js yields 2j = n
1

d+4s and a rate in n
−4s

d+4s .

from proposition 1.4 and 1.3, for estimators F̂ 2
j (R0, R1, . . . , Rd), F̂ 2

j (R,S) and D̂2
j (R,S) , on

{2jd > n} equating 2jdn−2 with 2−4js yields 2j = n
2

d+4s and a rate in n− 8s
d+4s ; on {2jd < n} the

rate is parametric. Moreover 2jd < n implies that s ≥ d/4 and 2jd > n implies that s ≤ d/4.

from proposition 1.6, for estimator D̂2
j (X̃) on {2jd > n} equating 2jdn−2 with 2−4js yields

2j = n
2

d+4s and a rate in n− 8s
d+4s ; on {2jd < n} the rate is found by equating 2jn−1 with

2−4js.
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1.3 Risk upper bounds in estimating the wavelet contrast

In the forthcoming lines, we make the assumption that both the density and the wavelet
are compactly supported so that all sums in k are finite. For simplicity we further suppose
the density support to be the hypercube, so that

∑

k∈Z
d 1 ≈ 2jd.

Proposition 1.3 (Risk upper bound, d+ 1 independent samples — fA, f
⋆1
A , . . . , f⋆d

A )

Let {X1, . . . , Xn} be an independent, identically distributed sample of fA. Let {Rℓ
1, . . . , R

ℓ
n} be an

independent, identically distributed sample of f⋆ℓ
A , ℓ = 1, . . . , d. Assume that f is compactly supported

and that ϕ is a Daubechies D2N . Assume that the d + 1 samples are independent. Let En
fA

be the

expectation relative to the joint distribution of the d+1 samples. Then on {2jd < n2},

En
fA

(

F̂ 2
j (X̃, R̃1, . . . , R̃d)− C2

j

)2

≤ Cn−1 + C2jdn−2
I
{

2jd > n
}

.

For the U-statistic F̂ 2
j (X̃, R̃1, . . . , R̃d), with α̂jk = α̂jk(X̃), α̂jkℓ = α̂jkℓ(R̃ℓ) and λ̂jk =

α̂jk1 . . . α̂jkd ,

(F̂ 2
j − C

2
j )2 ≤ 3

[

B̂2
j (X̃)−

∑

k

α2
jk

]2

+ 3
[

∏

ℓ

B̂2
j (R̃ℓ)−

∏

ℓ

∑

kℓ

α2
jkℓ

]2

+ 6
[

∑

k

α̂jkλ̂jk −
∑

k

αjkλjk

]2

.

On {2jd < n2}, by proposition 1.9 for the term on the left, proposition 1.10 for the
middle term, and proposition 1.11 for the term on the right, the quantity is bounded
by Cn−1 + C2jdn−2.

Proposition 1.4 (Risk upper bound, 2 independent samples — fA, f
⋆
A)

Let X̃ = {X1, . . . , Xn} be an independent, identically distributed sample of X with density fA. Let
R̃ = {R1, . . . , Rn} be an independent, identically distributed sample of R with density f⋆

A. Assume
that f is compactly supported and that ϕ is a Daubechies D2N . Assume that the two samples are
independent. Let En

fA
be the the expectation relative to the joint distribution of the two samples.

Then

En
fA

(

Ĝ2
j (X̃, R̃)− C2

j

)2

≤ Cn−1 + C2jdn−2
I
{

2jd > n
}

En
fA

(

∆̂2
j (X̃, R̃)− C2

j

)2

≤ C⋆n−1 + C2jdn−2.

with C⋆ = 0 at independence.

For the estimator Ĝ2
j(X̃, R̃) the proof is identical to the proof of proposition 1.3, the

only difference being that λ̂jk and λjk no more designate a product of d one dimensional
coordinates but full fledged d dimensional coordinate equivalent to α̂jk and αjk.
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The only new quantity to compute is then En
fA

(

∑

k α̂jk(X̃)λ̂jk(R̃) −
∑

k αjkλjk

)2

, coming

from the crossed term.

Let Q = En
fA

(
∑

k α̂jk(X̃)λ̂jk(R̃)
)2

. Let θ =
∑

k αjkλjk. Recall that Ωm
n =

{

(i1, . . . , im): iℓ ∈

N, 1 ≤ iℓ ≤ n
}

.

Let ı̃ be the set of distinct coordinates of i ∈ Ω4
n. So that, estimators being plug-in, with a

sum on Ω4
n, with cardinality n4,

Q = En
fA

1

n4

∑

i∈Ω4
n

∑

k1,k2

Φjk1
(Xi1)Φjk1

(Ri2)Φjk2
(Xi3)Φjk2

(Ri4 )

≤
1

n4

[

∑

|ı̃|=4

θ2 +
∑

|ı̃|=3

[

θ2 + (4N − 3)d
∑

k

En
fA

Φ(X)2λ2
jk + (4N − 3)d

∑

k

En
fA
α2

jkΦ(R)2
]

+

+
∑

|ı̃|≤2

(4N − 3)d
∑

k

En
fA

Φ(X)2Φ(R)2
]

with lines 2 and 3 expressing all possible matches between the coordinates of i, and using
lemma 1.7 to reduce double sums in k1, k2.

By independence of the samples, using lemma 1.8 and the fact that |{i ∈ Ω4
n: | ı̃ | = c}| = O(nc)

given by lemma 1.2,

Q ≤
A4

n

n4
θ2 + Cn−1

(

θ2 + C
∑

k

λ2
jk + C

∑

k

α2
jk

)

+ Cn−22jd.

with Ap
n = n!/(n− p)!. So that, with A4

nn
−4 = 1− 6

n + Cn−2,

Q− θ2 ≤ Cn−2 + Cn−1 + Cn−22jd.

The rate is thus unchanged for F̂ 2
j compared to the d+1 sample case in previous proposition.

Case ∆̂2
j(X̃, R̃)

Recall that Im
n =

{

(i1, . . . , im): iℓ ∈ N, 1 ≤ iℓ ≤ n, iℓ1 6= iℓ2 if ℓ1 6= ℓ2
}

.

For i ∈ I2
n, let hjk(i) =

[

Φjk(Xi1)− Φjk(Ri1 )
][

Φjk(Xi2)− Φjk(Ri2 )
]

and let θ = C2
j ; so that

En
fA

(

∆̂2
j (X̃, R̃)− θ

)2

= −θ2 + En
fA

1

(A2
n)2

∑

i1,i2

∑

k1,k2

hjk1
(i1)hjk2

(i2)

=
(#{i1, i2: |i1 ∩ i2| = 0}

(A2
n)2

− 1
)

θ2 +
1

(A2
n)2

∑

|i1∩i2|≥1

∑

k1,k2

En
fA
hjk1

(i1)hjk2
(i2),

and by lemma 1.3 the quantity in parenthesis on the left is of the order of Cn−2.

Label Q(i1, i2) the quantity En
fA

∑

k1,k2
hjk1

(i1)hjk2
(i2). Let also δjk = αjk − λjk.

So that with only one matching coordinate between i1 and i2,

Q(i1, i2) I {|i1 ∩ i2| = 1} = En
fA

∑

k1,k2

δjk1
δjk2

(

Φjk1
(X)Φjk2

(X) + Φjk1
(R)Φjk2

(R)
)

− 2
∑

k

δjkαjk

∑

k

δjkλjk

13



Again by lemma 1.7 and lemma 1.8, for X or R

En
fA

∑

k1,k2

δjk1
δjk2
|Φjk1

(X)Φjk2
(X)| ≤ (4N − 3)d

∑

k

δ2jkE
n
fA

Φjk(X)2 ≤ C
∑

k

δ2jk ≤ C

and since all other terms are bounded by a constant not depending on j, by lemma 1.3
(A2

n)−2
∑

i1,i2
Q(i1, i2) I { |i1 ∩ i2| = 1} ≤ Cn−1.

Likewise, the maximum order of Q(i1, i2) I {|i1 ∩ i2| = 2} is
∑

k[En
fA

Φjk(X)2]2, and the corre-
sponding bound is 2jdn−2.

Proposition 1.5 (Full sample Ĉ2
j risk upper bound)

Let X̃ = X1, . . . , Xn be an independent, identically distributed sample of fA. Assume that f is
compactly supported and that ϕ is a Daubechies D2N . Let En

fA
be the the expectation relative to

the joint distribution of the sample X̃. Let Ĉ2
j be the plug-in estimator defined in (6), Then on

{2jd < n2}

En
fA

(

Ĉ2
j (X̃)− C2

j

)2

≤ C2jdn−1

En
fA

[

Ĉ2
j − C

2
j

]2
≤ En

fA
3
(

∑

k

α̂2
jk − α

2
jk

)2
+ 3
(

∑

k

λ̂2
jk − λ

2
jk

)2
+ 3
(

4
∑

k

α̂jkλ̂jk − αjkλjk

)2

By proposition 1.7 the first term is of the order of 2jdn−1. By proposition 1.8 the two other
terms are of the order of Cn−1 + 2jn−1

I
{

2jd < n2
}

.

As is now shown, the rate of D̂2
j (X̃) computed on the full sample is slower than the one for

∆̂2
j(R̃, S̃) in the two samples setting.

The reason is that we cannot always apply lemma 1.7 allowing to reduce double sums in
k1, k2 to a sum on the diagonal k1 = k2 for translates of the same ϕ functions. Indeed, when
a match between multi indices i1 and i2 involves terms corresponding to margins, it is not
guaranteed that a match on observation numbers also corresponds to a match on margin
numbers ; that is to say, in the product ϕ(Xℓ1−k1)ϕ(Xℓ2 −k2), only once in a while ℓ1 = ℓ2 ;
so most of the time we can say nothing about the support of the product, and the sum
spans many more terms, hence the additional factor 2j in the risk bound for D̂2

j on the full
sample.
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Proposition 1.6 (Risk upper bound, full sample — fA)

Let X1, . . . , Xn be an independent, identically distributed sample of fA. Assume that f is compactly
supported and that ϕ is a Daubechies D2N . Let D̂2

j be the U-statistic estimator defined in (7), Then

En
fA

(

D̂2
j (X̃)−

∑

k∈Z
d

δ2jk

)2

≤ C2jdn−2 + C⋆2jn−1

with δjk the coordinate of fA − f
⋆
A and C⋆ = 0 at independence, when fA = f⋆

A.

En
fA

[

D̂2
j (X̃)−

∑

k∈Z
d δ2jk

]2

= En
fA

[D̂2
j (X̃)]2 −

(

∑

k∈Z
d δ2jk

)2

.

To make D̂2
j (X̃) look more like the usual U-estimator of

∫

(f − g)2 for unrelated f and g,
we define for i ∈ I2d+2

n , the dummy slice variables Yi = Xi1 , Vi = (Xi2 , . . . Xid+1), Zi = Xid+2 ,
Ti = (Xid+3 , . . . Xi2d+2) ; so that Yi and Zi have distribution PfA

, Vi and Ti have distribution
Pf⋆

A
= Pf⋆1

A
. . . Pf⋆d

A
(once canonically projected), and Yi, Vi, Zi, Ti are independent variables

under Pn
fA

. Next, for k ∈ Z
d, define the function Λjk as

Λjk(Xi1 , . . . , Xid) = ϕjk1 (X1
i1) . . . ϕjkd (Xd

id) ∀i ∈ Ωd
n

Λjk(Xi) = Φjk(Xi) = ϕjk1 (X1
i ) . . . ϕjkd (Xd

i ) ∀i ∈ Ω1
n = {1 . . . , n}

(13)

with second line taken as a convention.

So that D̂2
j (X̃) can be written under the more friendly form

D̂2
j (X̃) =

1

A2d+2
n

∑

i∈I2d+2
n

∑

k∈Z
d

[

Λjk(Yi)− Λjk(Vi)
][

Λjk(Zi)− Λjk(Ti)
]

,

with Im
n =

{

(i1, . . . , im): iℓ ∈ N, 1 ≤ iℓ ≤ n, iℓ1 6= iℓ2 if ℓ1 6= ℓ2
}

.

Following the friendly notation, let hik =
[

Λjk(Yi)−Λjk(Vi)
][

Λjk(Zi)−Λjk(Ti)
]

be the kernel

of D̂2
j (X̃) at fixed k. Then,

[D̂2
j (X̃)]2 = |I2d+2

n |−2
∑

i1,i2∈I2d+2
n ×I2d+2

n

∑

k1,k2∈Z
d×Z

d

hi1k1
hi2k2

.

Consider the partitioning sets Mc = {i1, i2 ∈ I
2d+2
n × I2d+2

n : |i1 ∩ i2| = c}, c = 0 . . . , 2d+ 2, that
is to say the set of pairs with c coordinates in common. Equivalently, Mc can be defined as
the set {i1, i2 ∈ I2d+2

n × I2d+2
n : |i1 ∪ i2| = 4d+ 4− c}.

According to the partitioning, with hi =
∑

k hik,

En
fA

[D̂2
j (X̃)]2 = |I2d+2

n |−2
2d+2
∑

c=0

∑

(i1,i2)∈Mc

En
fA
hi1hi2 .

Let λjk = αjk1 . . . αjkd and δjk = αjk − λjk.

On M0, with no match,

En
fA
hi1hi2 I {M0} =

∑

k1,k2

(αjk1
− λjk1

)2(αjk2
− λjk2

)2 =

(

∑

k

δ2jk

)2
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By lemma 1.3, the ratio |M0|/|I
2d+2
n | is lower than 1 + Cn−2. So that

|I2d+2
n |−2

∑

M0
En

fA
hi1hi2 −

(

∑

k δ
2
jk

)2

= |I2d+2
n |−2|M0|E

n
fA
hi1hi2 I {M0} ≤ Cn

−2.

On M1, assuming the match involves Yi1 and Yi2 ,

En
fA
hi1hi2 I {M1} =

∑

k1,k2

δjk1
δjk2

En
fA

(

Φjk1
(Yi1 )− Λjk1

(Vi1 )
)(

Φjk2
(Yi2)− Λjk2

(Vi2 )
)

=
∑

k1,k2

δjk1
δjk2

(

En
fA

Φjk1
(X)Φjk2

(X)− λjk1
αjk2

− δjk1
λjk2

)

= En
fA

(

∑

k

δjkΦjk(X)

)2

− C2
j

∑

k

λjkδjk −

(

∑

k

λjkδjk

)(

∑

k

αjkδjk

)

(14)

with C2
j =

∑

k δ
2
jk.

Next by (17) in lemma 1.7 for the first line, the double sum in k under expectation is
bounded by a constant times the sum restricted to the diagonal k1 = k2 because of the
limited overlapping of translates ϕjk ; using also lemma 1.8,

En
fA

(

∑

k

δjkΦjk(X)
)2

≤ (4N − 3)d
∑

k

δ2jkE
n
fA

Φjk(X)2 ≤ (4N − 3)d
∑

k

Cδ2jk.

Since all other terms in (14) are clearly bounded by a constant not depending on j, we
conclude by symmetry that En

fA
hi1hi2 I {M1} ≤ C for any match of cardinality 1 between

narrow slices (Yi1 Yi2 or Zi1 Zi2 or Yi1 Zi2 or Zi1 Yi2). Moreover C = 0 when fA = f∗
A i.e. at

independence, because of the omnipresence of δjk, the coordinate of fA − f
⋆
A.

On M1, if the match is between Yi1 and Vi2 , a calculus as in (14) yields,

En
fA
hi1hi2 I {M1} = −

∑

k1,k2

δjk1
δjk2

En
fA

Φjk1
(Yi1 )Λjk2

(Vi2) + C2
j

∑

k

αjkδjk +

(

∑

k

λjkδjk

)2

;

which can also be found from line 2 of (14) using the swap Φjk(Yi2) ←→ −Λjk(Vi2 ) and
αjk ←→ −λjk.

Next, for some ℓ ∈ {1, . . . , d},
∑

k1,k2

δjk1
δjk2

En
fA

Φjk1
(Yi1)Λjk2

(Vi2 ) =
∑

k1,k2

δjk1
δjk2

λ
〈 d−1 〉
jk2

En
fA

Φjk1
(X)ϕjkℓ

2
(Xℓ)

with special notation λ
〈 r 〉
jk = αp1

jk1 . . . α
pd

jkd for some pi, 0 ≤ pi ≤ r,
∑d

i=1 pi = r.

In the present case Φjk1
(X)ϕjkℓ

2
(Xℓ) = Φjk1

(X)ϕjkℓ
2
(Xℓ) I

{

|kℓ
1 − k

ℓ
2| < 2N − 1

}

does not give
any useful restriction of the double sum because the coefficient αjk hidden in δjk is not
guaranteed to factorize under any split of dimension unless A = I ; and lemma 1.7 is
useless. This is a difficulty that did not raise in propositions 1.3 and 1.4 because we could
use the fact that these kind of terms were estimated over independent samples.

Instead write En
fA
|Φjk1

(X)ϕjk2
(Xℓ)| ≤ 2

j
2 ‖ϕ‖∞E

n
fA
|Φjk1

(X)| ≤ C2
j
2 2−

jd
2 using lemma 1.8. So

that when multiplied by
∑

k δjk

∑

k δjkλ
〈 d−1 〉
jk , using Meyer’s lemma, the final order is 2j.
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By symmetry, for any match of cardinality 1 between a narrow and a wide slice (Y or T or
equivalent pairing), En

fA
|hi1hi2 | I {M1} ≤ C2j, with C = 0 at independence.

On M1, if the match is between Vi1 and Vi2 , by symmetry with (14) or using the swap
defined above,

En
fA
hi1hi2 I{M1} =

∑

k1,k2

δjkδjk′En
fA

Λjk(Vi)Λjk′ (Vi2 )− C
2
j

∑

k

αjkδjk −

(

∑

k

λjkδjk

)(

∑

k

αjkδjk

)

,

and for some not necessarily matching ℓ1, ℓ2 ∈ {1, . . . , d} (i.e. lemma 1.7 not applicable),
∑

k1,k2

δjk1
δjk2

En
fA

Λjk1
(Vi1)Λjk2

(Vi2 ) =
∑

k1,k2

δjk1
δjk2

λ
〈 d−1 〉
jk1

λ
〈 d−1 〉
jk2

En
fA
ϕ

jk
ℓ1
1

(Xℓ1)ϕ
jk

ℓ2
2

(Xℓ2)

≤
(

∑

k

δjkλ
〈 d−1 〉
jk

)2

= C2j

with last line using Meyer’s lemma, and having reduced the term under expectation to a
constant by Cauchy-Schwarz inequality and lemma 1.8.

And we conclude again that, for any match of cardinality 1 between two wide slices (V or
T or equivalent), En

fA
hi1hi2 I {M1} ≤ C2j, with C = 0 at independence.

By lemma 1.3, the ratio |M1|/|I
2d+2
n × I2d+2

n | ≈ n−1, so in summary, the bound for M1 has
the order C⋆2jn−1, with C⋆ = 0 at independence.

On Mc, c = 2 . . . 2d+ 2.

Fix the pair of indexes (i1, i2) ∈ I
2d+2
n × I2d+2

n , we need to bound a term having the form

Q(i1, i2) = En
fA

∑

k1,k2

Λjk(Ri1)Λjk(Si1)Λjk2
(R′

i2)Λjk2
(S′

i2)

where both slices Ri1 6= Si1 unrelated with both slices R′
i2 6= S′

i2 are chosen among any of
the dummy Y , V , Z, T .

— Narrow slices only. For a match spanning four narrow slices exclusively, that is to say
(Yi1 = Yi2) ∩ (Zi1 = Zi2) or (Yi1 = Zi2) ∩ (Zi1 = Yi2 ), a case possible on M2 only, the general
term of higher order is written

∑

k1,k2
En

fA
Φjk1

(X)Φjk2
(X)En

fA
Φjk1

(X)Φjk2
(X). By lemma 1.7

this is again lower than (4n − 3)d
∑

k

[

En
fA

Φjk(X)2
]2

, that is C2jd. By lemma 1.3, this case

thus contributes to the general bound up to C2jdn−2.

Three narrow slices only is not possible and two narrow slices correspond to the case M1

treated above.

— Wide slices only. For a match spanning wide slices on Mc, c = 2, . . . 2d, a general term with
higher order is written

∑

k1,k2
En

fA
Λjk1

(Vi1 )Λjk1
(Ti1)Λjk2

(Vi2 )Λjk2
(Ti2), with |i1 ∩ i2| = c, (an

equivalent is obtained by swapping one V with a T ). Since the slices are wide, it is not
possible to distribute expectation any further right now : if Vi1 is always independent of Ti1 ,
both terms may depend on Vi2 , say. Also matching coordinates on i1, i2 do not necessarily
correspond to matching dimensions Xℓ of the observation, and then lemma 1.7 is not
applicable. Instead write,

Q(i1, i2) =
∑

k1,k2

λ
〈 2d−c 〉
jk1

λ
〈 2d−c 〉
jk2

En
fA

[

Λ
〈 c 〉
jk1

(Vi1 , Ti1)Λ
〈 c 〉
jk2

(Vi2 , Ti2)
]

,
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with Λ
〈 c 〉
jk (Vi, Ti) a product of c independent terms of the form ϕjkℓ (Xℓ) spanning at least

one of the slices Vi, Ti.

By definition of i1 and i2, the product of 2c terms under expectation can be split into c
independent products of two terms. So, using En

fA
|ϕjkℓ (X)2| ≤ C on each bi-term, the order

at the end is C
(
∑

k λ
〈 2d−c 〉
jk

)2
; and using Meyer’s lemma, the bound is then of the order of

C2jc.

Finally, using lemma 1.3 as above, the contribution of this kind of term to the general
bound is

∑2d
c=1 2jcn−c.

On {2j < n} ⊃ {2jd < n2} ⊃ {2jd < n}, this quantity is bounded by C2jn−1 < C2jdn−2 and
on {2j > n} it is unbounded.

— Narrow and wide slices Reusing the general pattern above, with cw ≤ 2d matching coordinates
on wide slices and cr ≤ 2 on narrow slices

Q(i1, i2) =
∑

k1,k2

λ
〈 2d−cw 〉
jk1

λ
〈 2d−cw 〉
jk2

α2−cr

jk1
α2−cr

jk2
En

fA

[

Λ
〈 c 〉
jk1

(Yi1 , Vi1 , Zi1 , Ti1)Λ
〈 c 〉
jk2

(Yi2 , Vi2 , Zi2 , Ti2)
]

,

with Λ
〈 c 〉
jk (Yi, Vi, Zi, Ti) a product of c independent terms of the form ϕjkℓ (X) or Φjk(X)

spanning at least one of the slices Vi, Ti and one of the slices Yi, Zi. As above, the bracket
is a product of independent bi-terms, each under expectation bounded by some constant
C, by lemma 1.8, using Cauchy-schwarz inequality if needed. So this is bounded by

Q(i1, i2) ≤ C
∑

k1,k2

λ
〈 2d−cw 〉
jk1

λ
〈 2d−cw 〉
jk2

α2−cr

jk1
α2−cr

jk2
= C

(

∑

k

λ
〈 2d−cw 〉
jk α2−cr

jk

)2

;

using Cauchy-Schwarz inequality and Meyer’s lemma this is bounded by 2
j
2
(cw−d)2

jd
2

(cr−1)

and, with lemma 1.3, the contribution to the general bound on {2j < n2} ⊃ {2jd < n2} is

2−jd
2
∑

a=1

2d
∑

b=1

2
jb
2 n−b2

jda
2 n−a

I
{

2j < n2
}

≤ Cn−1

Finally on {2jd < n2}, En
fA
B̂2

j −
(

∑

k δ
2
jk

)2

≤ C⋆2jn−1 + 2jdn−2.

Implementation issues

The statistic Ĉ2
j is a plug-in estimator ; its evaluation uses in the first place the complete

estimation of the density fA and margins ; which takes a computing time of the order
of O(n(2N − 1)d) where N is the order of the Daubechies wavelet, and n the number of
observations.

In the second place, the actual contrast is a simple function of the 2jd +d2j coefficients that
estimate density fA and its margins ; the additional computing time is then in O(2jd).
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One can see here the main numerical drawback of the wavelet contrast in its total
formulation — to be of exponential complexity in dimension d of the problem ; but this is by
definition the cost of a condition that guarantees mutual independence of the components
in full generality : d sets B1, . . . , Bd are mutually independent if P (B1∩. . .∩Bd) = PB1 . . . PBd

for each of the 2d choices of indices in {1, . . . , d}.

Complexity in jd drops down to O(d222j) if one concentrates on a pairwise independence, like
in kernel ICA and related methods, and in the minimum marginal entropy type method
of Miller and Fisher III (2003). Pairwise independence is in fact equivalent to mutual
independence in the no noise ICA model and with at most one Gaussian component
(Comon, 1994). The minimization used by

The pairwise algorithm used by Miller et Fisher (2003) consists in searching for the
minimum in each of the C2

d free plans of R
d, applying Jacobi rotations to select a particular

plan. A search in each plan is equivalent to the case d = 2, where the problem is to find the
minimum in θ of a function on R, for θ ∈ [0, π/2]. To do so, the simplest could be to try out
all points from 0 to π/2 along a grid, or to use bisection type methods.

U-statistic estimators of C2
j have complexity at minimum in O(n2(2N − 1)2d), that is to say

quadratic in n as the method of Tsybakov and Samarov (2002) which also attains parametric
rate of convergence ; on the other hand the complexity in jd is probably lowered since the
contrast can be computed by accumulation, without it be necessary to keep all projection
in memory, but only a window whose width depends upon the length of the Daubechies
filter.

1.4 Appendix 1 – Propositions

Proposition 1.7 (2nd moment of
∑

k α̂
2
jk about

∑

k α
2
jk )

Let X1, . . . , Xn be an independent, identically distributed sample of f , a compactly supported function
defined on R

d. Assume that ϕ is a Daubechies D2N . Let α̂jk = 1
n

∑n
i=1 ϕjk1 (X1

i ) . . . ϕjkd (Xd
i ),

k ∈ Z
d.

Then En
fA

(

∑

k α̂
2
jk −

∑

k α
2
jk

)2

= C2jdn−1 + C22jdn−2
I
{

2jd > n
}

For the mean, using lemma 1.8,

En
fA

∑

k

α̂2
jk =

1

n2

∑

i1=i2

∑

k

En
fA

Φjk(Xi1 )Φjk(Xi2 ) +
1

n2

∑

i1 6=i2

∑

k

α2
jk

=
1

n

∑

k

Φjk(Xi)
2 +

n− 1

n

∑

k

α2
jk =

∑

k

α2
jk +O(

2jd

n
).

For the second moment, let Mc = {i1, i2, i3, i4 ∈ {1, . . . , n}: |{i1} ∪ . . . ∪ {i4}| = c}.

En
fA

(

∑

k

α̂2
jk

)2
=

1

n4

4
∑

c=1

∑

i1,...,i4

En
fA

∑

k1,k2

Φjk1
(Xi1)Φjk1

(Xi2)Φjk2
(Xi3)Φjk2

(Xi4) I {Mc}
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On c = 1, the kernel is equal to
∑

k1,k2
Φjk1

(X)2Φjk2
(X)2 ≤ (4N − 3)d

∑

k Φjk(X)4 by lemma

1.7. And by lemma 1.8, En
fA

∑

k Φjk(X)4 ≤
∑

k C2jd = C22jd.

On c = 2, the kernel takes three generic forms : (a)
∑

k1,k2
Φjk1

(X)Φjk1
(Y )Φjk2

(X)Φjk2
(Y ) or

(b)
∑

k1,k2
Φjk1

(X)2Φjk2
(Y )2 or (c)

∑

k1,k2
Φjk1

(X)Φjk1
(Y )Φjk2

(Y )2. In cases (a) and (c), using
lemma 1.7, the double sum can be reduced to the diagonal k1 = k2. So using also lemma
1.8,

(a) En
fA
|
∑

k1,k2

Φjk1
(X)Φjk1

(Y )Φjk2
(X)Φjk2

(Y )| ≤ En
fA

(4N − 3)d
∑

k

Φjk(X)2Φjk(Y )2 ≤ C2jd

(b) En
fA

∑

k1,k2

Φjk1
(X)2Φjk2

(Y )2 ≤ C22jd

(c) En
fA
|
∑

k1,k2

Φjk1
(X)Φjk1

(Y )Φjk2
(Y )2| ≤ En

fA
(4N − 3)d

∑

k

|Φjk(X)Φjk(Y )3| ≤ C2jd.

On c = 3 the only representative form is

En
fA

∑

k1,k2

Φjk1
(X)Φjk1

(Y )Φjk2
(Z)2 =

∑

k

α2
jk

∑

k

En
fA

Φjk(X)2 ≤ C2jd,

and on c = 4 the statistic is unbiased equal to
(
∑

k α
2
jk

)2
under expectation.

Next, since |M4| = A4
n and, using lemma 1.2, |Mc| = O(nc),

En
fA

(

∑

k

α̂2
jk

)2
≤ A4

nn
−4
(

∑

k

α2
jk

)2
+ C22jdn−3 + n−222jd + n−12jd

≤
(

∑

k

α2
jk

)2
+ Cn−2 + Cn−12jd

I
{

2jd < n
}

+ Cn−222jd
I
{

2jd > n
}

with A4
nn

−4 = 1− 6
n + Cn−2.

Finally

En
fA

(

∑

k

α̂2
jk −

∑

k

α2
jk

)2
= En

fA

(

∑

k

α̂2
jk

)2
+
(

∑

k

α2
jk

)2
− 2En

fA

∑

k

α̂2
jk

∑

k

α2
jk

≤ Cn−2 + Cn−12jd + Cn−222jd
I
{

2jd > n
}

Proposition 1.8 (2nd moment of
∑

k λ̂
2
jk about

∑

k λ
2
jk and of

∑

k λ̂jkα̂jk about
∑

k λjkαjk

)

Let X1, . . . , Xn be an independent, identically distributed sample of f , a compactly supported function
defined on R

d. Assume that ϕ is a Daubechies D2N . Let λ̂jk = 1
nd

∑n
i=1 ϕjk1 (X1

i ) . . .
∑n

i=1 ϕjkd (Xd
i ),

k ∈ Z
d.

Then on {2jd < n2}

En
fA

(

∑

k

λ̂jkα̂jk −
∑

k

λjkαjk

)2

≤ O(n−2) + C
2j

n

En
fA

(

∑

k

λ̂2
jk −

∑

k

λ2
jk

)2

≤ O(n−2) + C
2j

n
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En
fA

(

∑

k

λ̂2
jk − λ

2
jk

)2

= En
fA

[

(

∑

k

λ̂2
jk

)2

− 2
∑

k

λ2
jk

∑

k

λ̂2
jk +

(

∑

k

λ2
jk

)2
]

For i ∈ Ω2d
n , let Vi be the slice (X1

i1 , X
1
i2 , . . . , X

d
i2d−1 , X

d
i2d). Let the coordinate-wise kernel

function Λjk be given by Λjk(Vi) = ϕjk1 (X1
i1)ϕjk1 (X1

i2) . . . ϕjkd (Xd
i2d−1)ϕjkd (Xd

i2d).

Let |i| be the shortcut notation for |{i1}∪ . . .∪{i2d}|. Let W 2d
n = {i ∈ Ω2d

n : |i| < 2d}, that is to
say the set of indices with at least one repeated coordinate.

Then the mean term is written

En
fA

∑

k

λ̂2
jk = n−2d

∑

i∈Ω2d
n

∑

k

Λjk(Vi)

= n−2d
∑

W 2d
n

∑

k

En
fA

Λjk(Vi) +A2d
n n

−2d
∑

k

λ2
jk

= Q1 +A2d
n n−2dθ

Let Mc = {i ∈ Ω2d
n : |i| = c} be the set indices with c common coordinates. So that Q1 is

written

Q1 = n−2d
2d−1
∑

c=1

I {Mc}
∑

Mc

∑

k

En
fA

Λjk(Vi) =
∑

k

Q1jk

By lemma 1.4 with lemma parameters (d = 1,m = 2d, r = 1), En
fA
|Λjk(Vi)| I {Mc} ≤ C2

j
2
(2d−2c)

and by lemma 1.2, |Mc| = O(nc). Hence,

Q1jk ≤

2d−1
∑

c=1

n−2d+cC2j(d−c) = 2−jd
2d−1
∑

c=1

C

(

2j

n

)(2d−c)

which on {2jd < n} has maximum order 2j(1−d)n−1 when d − c is minimum i.e. c = 2d − 1.
Finally |Q1| ≤

∑

k C2j(1−d)n−1 ≤ C2jn−1.

Next, the second moment about zero is written

En
fA

(

∑

k

λ̂2
jk

)2

= n−4d
∑

i1,i2∈(Ω2d
n )2

∑

k1,k2

Λjk1
(Vi1 )Λjk2

(Vi2 )

= n−4d
∑

W 4d
n

∑

k1,k2

En
fA

Λjk1
(Vi1 )Λjk2

(Vi2 ) +A4d
n n

−4d
(

∑

k

λ2
jk

)2

= Q2 +A4d
n n

−4dθ2

with W 4d
n = {i1, i2 ∈ (Ω2d

n )2: |i1 ∪ i2| < 4d}, that is to say the set of indices with at least one
repeated coordinate somewhere.

Let this time Mc = {i1, i2 ∈ (Ω2d
n )2: |i1 ∪ i2| = c} be the set indices with overall c common

coordinates in i1 and i2. So that Q2 is written

Q2 = n−4d
4d−1
∑

c=1

I {Mc}
∑

Mc

∑

k1,k2

En
fA

Λjk1
(Vi1 )Λjk2

(Vi2) =
∑

k1,k2

Q2j1k1j2k2
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By lemma 1.6, unless c = 1, it is always possible to find indices i1, i2 with no match between
the observations falling under k1 and those falling under k2, so that there is no way to
reduce the double sum in k1, k2 to a sum on the diagonal using lemma 1.7. Note that if
c = 1, En

fA
Λjk(Vi)Λjk(Vi) = En

fA
Φjk(X)4 has order C2jd.

So coping with the double sum, by lemma 1.4 with lemma parameters (d = 1,m = 2d, r = 2),

En
fA
|Λjk(Vi1 )Λjk(Vi2 )| ≤ C2

j
2
(4d−2c), and again by lemma 1.2 |Mc| = O(nc), so En

fA
|Q2j1k1j2k2

| ≤
∑4d−1

c=1 nc−4dC2
j
2
(4d−2c), which on {2jd < n} has maximum order 2j(1−2d)n−1 when c = 4d− 1.

Finally, En
fA
Q2 ≤

∑

k1,k2
C2j(1−2d)n−1 ≤ C2jn−1.

Putting all together, and since Ap
nn

−p = 1− (d+1)(d+2)
2n +O(n−2),

En
fA

(

∑

k

λ̂2
jk − λ

2
jk

)2

= Q2 +A4d
n n−4dθ2 − 2θ(Q1 +A2d

n n−2dθ) + θ2

= Q2 − 2θQ1 + θ2(1 +A4d
n n

−4d − 2A2d
n n

−2d) ≤ |Q2|+ 2θ|Q1|+O(n−2)

≤ C2jn−1

For the cross product,

As above, for i ∈ Ωd+1
n , let Vi be the slice (Xi0 , X

1
i1 , . . . , X

d
id). Let the coordinate-wise kernel

function Λjk be given by Λjk(Vi) = Ψjk(Xi0)ψjk1 (X1
i1) . . . ψjkd (Xd

id). Let θ =
∑

k αjkλjk .

Let W d+1
n = {i ∈ Ωd+1

n : |i| < d+1}, that is to say the set of indices with at least one repeated
coordinate.

So that, En
fA

∑

k α̂jkλ̂jk = Q1 + Ad+1
n n−d−1θ with Q1 = n−d−1

∑

W d+1
n

∑

k E
n
fA

Λjk(Vi) and
likewise

En
fA

(

∑

k

α̂jkλ̂jk

)2

= Q2 +A2d+2
n n−2d−2θ2

with Q2 = n−2d−2
∑

W 2d+2
n

∑

k1,k2
En

fA
Λjk1

(Vi1 )Λjk2
(Vi2 ). And we obtain in the same way,

En
fA

(

∑

k

α̂jkλ̂jk − αjkλjk

)2

≤ |Q2|+ 2θ|Q1|+O(n−2)

Let Mc = {i ∈ Ωd+1
n : |i| = c} be the set indices with c common coordinates. So that Q1 is

written

Q1 = n−d−1
d
∑

c=1

I {Mc}
∑

Mc

∑

k

En
fA

Λjk(Vi) =
∑

k

Q1jk

By lemma 1.4 with lemma parameters (md = 1,m1 = d, r = 1),

En
fA
|Λjk(Vi)| I {Mc} ≤ C2

jd
2

(1−2cd)2
j
2
(d−2c1)

with c1 + cd = c, 0 ≤ c1 ≤ d, 1 ≤ cd ≤ 1 and by lemma 1.2, |Mc| = O(nc). Hence,

Q1jk ≤

d
∑

c=1

n−d−1+cC2j(d−dcd−c1) = 2j(−1+(1−d)cd)
d
∑

c=1

C

(

2j

n

)(d+1−c)
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which on {2jd < n} has maximum order C2j(1−d)n−1 when d + 1 − c is minimum i.e. c = d.
Finally |Q1| ≤

∑

k C2j(1−d)n−1 ≤ C2jn−1.

Next, as above Q2 =
∑

k1,k2
Q2jk1jk2

, and again by lemma 1.6, unless c = 1, it is always
possible to find indices i1, i2 with no matching coordinates corresponding also to matching
dimension number, so that there is no way to reduce the double sum in k1, k2 to a sum on
the diagonal using lemma 1.7.

So coping once more with the double sum, by lemma 1.4 with lemma parameters (md =

1,m1 = d, r = 2), En
fA
|Λjk(Vi1 )Λjk(Vi2)| ≤ C2

jd
2

(2−2cd)2
j
2
(2d−2c1), with c1 + cd = c, 1 ≤ cd ≤ 2,

0 ≤ c1 ≤ 2d, and again by lemma 1.2 |Mc| = O(nc), so

En
fA
|Q2j1k1j2k2

| ≤

2d+1
∑

c=1

nc−2d−2C2j(d−dcd+d−c1) = 2j(−2+(1−d)cd)
2d+1
∑

c=1

C

(

2j

n

)(2d+2−c)

,

which on {2jd < n} has maximum order C2−jdn−1 when c = 2d+1. Then either cd = 1, which
means that the two terms Φjk1

(Xi1)Φjk2
(Xi2) match on the observation number, in which

case the sum in k1, k2 can be reduced ; either cd = 2. In the first case the order is En
fA
Q2 ≤

(4N − 3)d
∑

k C2−jdn−1 ≤ Cn−1 and in the second case En
fA
Q2 ≤

∑

k1,k2
C21−2jdn−1 ≤ C2jn−1.

Proposition 1.9 (Variance of
∑

k B̂
2
j )

Let {X1, . . . , Xn} be an i.i.d. sample with density f . Assume that f is compactly supported and that
ϕ is a Daubechies D2N .

Let B̂2
j =

∑

k
1

A2
n

∑

i∈I2
n

Φjk(Xi1)Φjk(Xi2) be the U-statistic estimator of
∑

k α
2
jk.

Then on {2jd < n2},

En
fA

(

B̂2
j −

∑

k

α2
jk

)2

≤ Cn−1 + 2jdn−2

Write that,

En
fA

[

B̂2
j (X̃)

]2
= n−2(n− 1)−2

∑

i1,i2∈I2
n

∑

k1,k2

Φjk1
(Xi1

1
)Φjk1

(Xi2
1
)Φjk2

(Xi1
2
)Φjk2

(Xi2
2
)

On M4 = {i1, i2 ∈ I
2
n: |i1 ∪ i2| = 4}, i.e. with no match between the two indices, the kernel

hi1hi2 =
∑

k1,k2
Φjk1

(Xi1
1
)Φjk1

(Xi2
1
)Φjk2

(Xi1
2
)Φjk2

(Xi2
2
) is unbiased, equal under expectation to

(
∑

k α
2
jk)2.

On Mc, c = 2, 3, with at least one match between i1 and i2 lemma 1.7 is applicable to reduce
the double sum in k1, k2 and,

En
fA
hi1hi2 I {M2 ∪M3} =

∑

i1,i2∈I2
n

∑

k1,k2

Φjk1
(Xi1

1
)Φjk1

(Xi2
1
)Φjk2

(Xi1
2
)Φjk2

(Xi2
2
) I {M2 ∪M3}

≤
∑

M2,M3

(4N − 3)d
∑

k

|Φjk(Xi1
1
)Φjk(Xi2

1
)Φjk(Xi1

2
)Φjk(Xi2

2
)|

≤
∑

M2,M3

C
∑

k

2jd(2−|i1∪i2|) = C
∑

M2,M3

2jd(3−|i1∪i2|),
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using lemma 1.4 with parameter m = 2 and r = 2 for line 3.

Next, by lemma 1.2, |Mc| = O(nc) and |M4| divided by (A2
n)2 is more precisely equal to

1− 4n−1 + Cn−2. So that

En
fA

[

B̂2
j (X̃)

]2
≤ (1 + Cn−2)

(

∑

k

α2
jk

)2
+ C

3
∑

c=2

ncn−42jd(3−c) =
(

∑

k

α2
jk

)2
+ Cn−1 + C2jdn−2.

Proposition 1.10 (Variance of multisample
∏∑

k B̂
2
j (R̃ℓ))

Let {Rℓ
1, . . . , R

ℓ
n} be an i.i.d. sample of f⋆ℓ, ℓ = 1, . . . , d. Assume that f is compactly supported and

that ϕ is a Daubechies D2N . Assume that the d samples are independent.

Let B̂2
j (Rℓ) =

∑

k
1

A2
n

∑

i∈I2
n

Φjk(Rℓ
i1)Φjk(Rℓ

i2 ) be the U-statistic estimator of
∑

k α
2
jkℓ , ℓ = 1 . . . d.

Then on {2jd < n2},

En
fA

(

d
∏

ℓ=1

B̂2
j (Rℓ)−

∑

k1,...,kd

α2
jk1 . . . α2

jkd

)2

≤ Cn−1 + C
2j

n2
.

Successive application of ab− cd = (a− c)b+ (b− d)c leads to

a1 . . . ad − b1 . . . bd =
d
∑

ℓ=1

(aℓ − bℓ)b1 . . . bℓ−1aℓ+1 . . . ad. (15)

So applying (15),

∑

k

λ̂2
jk − λ

2
jk =

∑

k1...kd

α̂2
jk1 . . . α̂2

jkd − α
2
jk1 . . . α2

jkd

=
∑

k1...kd

d
∑

ℓ=1

(α̂2
jkℓ − α

2
jkℓ )α

2
jk1 . . . α2

jkℓ−1 α̂
2
jkℓ+1 . . . α̂

2
jkd

=

d
∑

ℓ=1

C
∑

kℓ

(α̂2
jkℓ − α

2
jkℓ )

∑

kℓ+1

α̂2
jkℓ . . .

∑

kd

α̂2
jkd

And
(

∑

k

λ̂2
jk − λ

2
jk

)2

≤ d

d
∑

ℓ=1

C
(

∑

kℓ

(α̂2
jkℓ − α

2
jkℓ )

∑

kℓ+1

α̂2
jkℓ . . .

∑

kd

α̂2
jkd

)2

Label Q = En
fA

(

∑

k λ̂
2
jk − λ

2
jk

)2

.
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If the d samples are independent, if 2jd < n2, and by proposition 1.9 with parameter d = 1,

Q ≤

d−1
∑

ℓ=1

[

C(Cn−1 +
2j

n2
)

d−1
∏

l=ℓ+1

(C + Cn−1 +
2j

n2
)

]

+ C(Cn−1 +
2j

n2
)

≤ Cn−1 + C
2j

n2

Proposition 1.11 (Variance of multi sample
∑

k α̂jkλ̂jk)

Let {X1, . . . , Xn} be an independent, identically distributed sample of fA. Let {Rℓ
1, . . . , R

ℓ
n} be an

independent, identically distributed sample of f⋆ℓ, ℓ = 1, . . . , d. Assume that f is compactly supported
and that ϕ is a Daubechies D2N . Assume that the d + 1 samples are independent. Let En

fA
be the

expectation relative to the joint samples.

Then

En
fA

(

∑

k

α̂jk(X̃)λ̂jk(R̃1, . . . R̃d)−
∑

k

αjkλjk

)2

≤ Cn−1
I
{

2j < n
}

+ C2jdn−d−1
I
{

2j > n
}

Let Q = En
fA

(

∑

k∈Z
d α̂jkλ̂jk

)2

; expanding the statistic,

Q = En
fA

∑

k1,k2

1

n2d+2

∑

i∈Ω2d+2
n

Φjk1
(Xi1)Φjk2

(Xi2)ϕjk1
1
(R1

i3)ϕjk1
2
(R1

i4) . . . ϕjkd
1
(Rd

i2d+1)ϕjkd
2
(Rd

i2d+2).

By independence of the samples, we only need to consider local constraints on the
coordinates of i ∈ Ω2d+2

n .

Let a be a subset of {0, 1, . . . d}. Let Ja = {i ∈ Ω2d+2
n : ℓ ∈ a ⇒ i2ℓ+1 = i2ℓ+2 ; ℓ /∈ a ⇒ i2ℓ+1 6=

i2ℓ+2}. It is clear that |Ja| =
(

n(n−1)
)d+1−|a|

n|a| and that the Ja s define a partition of Ω2d+2
n

when a describes the 2d+1 subsets of {0, 1, . . . d}. One can check that there are Cc
d+1 distinct

sets a such that |a| = c, and that
∑d+1

c=0 C
c
d+1n

c(n(n− 1))d+1−c = nd+1
∑d+1

c=0 C
c
d+1(n− 1)d+1−c =

n2d+2.

On J∅ the kernel is unbiased. On Ja, 0 ∈ a, with the first two coordinates matching, the
sum in k1, k2 can be reduced to a sum on the diagonal by lemma 1.7. If 0 /∈ a, but some
ℓ ∈ a the sum can be reduced only on dimension ℓ, kℓ

1 = kℓ
2, but to no purpose as will be

seen below.

So Q is written Q = n−2d−2
∑

a∈P({0,...,d})Q0a +Q1a, with

Q0a ≤ C1

∑

i∈Ja, 0∈a

∑

k∈Z
d

En
fA

Φjk(X)2En
fA
ϕjkℓ1 (Rℓ1)2 . . . En

fA
ϕ

jk
ℓ|a|−1 (Rℓ|a|−1)2α2

jkl1
. . . α2

jk
ld−|a|+1

and

Q1a =
∑

i∈Ja, 0/∈a

∑

k1,k2

αjk1
αjk2

En
fA
ϕ

jk
ℓ1
1

(Rℓ1)ϕ
jk

ℓ1
2

(Rℓ1) . . . En
fA
ϕ

jk
ℓ|a|−1

1

(Rℓ|a|−1)ϕ
jk

ℓ|a|−1

2

(Rℓ|a|−1)

α
jk

l1
1

α
jk

l1
2

. . . α
jk

ld−|a|+1

1

α
jk

ld−|a|+1

2
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for some all distinct ℓ1, . . . ℓ|a|−1 and l1, . . . ld−|a|+1 whose union is {1, . . . d} and with C1 =

(4N − 3)d. The bound for Q0a is also written

(4N − 3)d
∑

i∈Ja, 0∈a

∑

k∈Z
d

Cλ
〈 2d−2|a|+2 〉
jk

with special notation λ
〈 r 〉
jk = αp1

jk1 . . . α
pd

jkd for some integers p1, . . . , pd, 0 ≤ pi ≤ r with
∑d

i=1 pi = r. And so, by Meyer’s lemma this is also bounded by
∑

i∈Ja, 0∈a C2j(|a|−1).

For Q1a with |a| ≥ 1, the sum in k1, k2 could be split in kl1
1 . . . k

ld−|a|+1

1 , kl1
2 . . . k

ld−|a|+1

2 where no
concentration on the diagonal is ensured, and kℓ1 . . . kℓ|a|−1 where lemma 1.7 is applicable,
but precisely the multidimensional coefficient αjk = αjk1...kd is not guaranteed factorisable
under any split, unless A = I. So we simply fall back to

Q1a ≤
∑

i∈Ja, 0/∈a

∑

k1,k2

[

αjk1
αjk2

][

α
jk

l1
1

α
jk

l1
2

. . . α
jk

ld−|a|+1

1

α
jk

ld−|a|+1

2

][

C2
j
2En

fA
|ϕjkℓ

1
(Rℓ)|

]|a|−1
.

This is also written, using Meyer’s lemma at the end,

Q1a ≤
∑

i∈Ja, 0/∈a

(

∑

k

αjkλ
〈 d−|a|+1 〉
jk

)2

≤
∑

i∈Ja, 0/∈a

C2j(|a|−1)

Finally, with
∑

i∈Ja
1 = |Ja| given above, the general bound is written,

Q ≤ n−2d−2





∑

a6=∅

C2j(|a|−1)nd+1(n− 1)d+1−|a| + nd+1(n− 1)d+1
(

∑

k

αjkλjk

)2





and so

Q−
(

∑

k

αjkλjk

)2

≤ 2−j
d+1
∑

c=1

2jc(n− 1)−c + Cn−2

≤ Cn−1
I
{

2j < n
}

+ 2jdn−d−1
I
{

2j > n
}

1.5 Appendix 2 – Lemmas

Lemma 1.1 (Property set)

Let A1, . . . , Ar be r non empty subsets of a finite set Ω. Let J be a subset of {1, . . . , r}.

Define the property set BJ = {x ∈ ∪Aj :x ∈ ∩j∈JAj ; x /∈ ∪j∈JcAj}, that is to say the set of
elements belonging exclusively to the sets listed through J . Let bJ = |BJ | and bκ =

∑

|J|=κ bJ .

Then
∑r

κ=0

∑

|J|=κBJ = Ω, and

|A1| ∨ . . . |Ar| ≤

r
∑

κ=1

bκ = |A1 ∪ . . . Ar| ≤ |A1|+ . . . |Ar| =

r
∑

κ=1

κbκ
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with equality for the right part only if bκ = 0, κ = 2 . . . , r i.e. if all sets are disjoint, and equality for
the left part if one set Ai contains all the others.

It follows from the definition that no two different property sets intersect and that the
union of property sets defines a partition of ∪Ai, hence a partition of Ω with the addition
of the missing complementary Ω − ∪Ai denoted by B∅. The BJ are also the atoms of the
Boolean algebra generated by {A1, . . . , Ar,Ω− ∪Ai} with usual set operations.

With B∅, an overlapping of r sets defines a partition of Ω with cardinality at most 2r ; there
are Cκ

r property sets satisfying |J | = κ, with
∑r

κ=0 C
κ
r = 2r.

Lemma 1.2 (Many sets matching indices)

Let m ∈ N, m ≥ 1. Let Ωm
n be the set of indices {(i1, . . . , im): ij ∈ N, 1 ≤ ij ≤ n }. Let r ∈ N, r ≥ 1.

Let Im
n =

{

i ∈ Ωm
n : ℓ1 6= ℓ2 ⇒ iℓ1 6= iℓ2

}

.

For i = (i1, . . . , im) ∈ Ωm
n , let ı̃ = ∪m

j=1{i
j} ⊂ {1, . . . , n} be the set of distinct integers in i.

Then, for some constant C depending on m,

#
{

(i1, . . . , ir) ∈
(

Ωm
n

)r
, : | ı̃1 ∪ . . . ∪ ı̃r | = a

}

= O(na)I { |̃ı1| ∨ . . . ∨ |̃ır| ≤ a ≤ mr}

and in corollary #
{

(i1, . . . , ir) ∈
(

Im
n

)r
: | i1 ∪ . . . ∪ ir | = a

}

= O(na)I {m ≤ a ≤ mr}.

In the setting introduced by lemma 1.1, building the compound (̃ı1, . . . , ı̃r) while keeping
track of matching indices is achieved by drawing b1{1} = | ı̃1| integers in the 20–partition b0∅ =

{1, . . . , n} thus constituting ĩ1, then b2{1,2} + b2{2} = |̃ı2| integers in the 21–partition {b1{1}, b
1
∅}

thus constituting two subindexes from which to build ı̃2, then b3{1,2,3}+b
3
{2,3}+b

3
{1,3}+b

3
{3} = | ı̃3|

integers in the 22–partition {b2{1,2}, b
2
{1}, b

2
{2}, b

2
∅} thus constituting 22 subindexes from which

to build ı̃3, and so on, up to br{1,...,r}+ . . .+br{r} = | ı̃r| integers in the cardinality 2r−1 partition

{br−1
{1,...,r−1} . . . , b

r−1
∅ } thus constituting 2r−1 subindexes from which to build ı̃r.

The number of ways to draw the subindexes composing the r indexes is then

A
b1{1}

b0
∅

A
b2{1,2}

b1
{1}

A
b2{2}

b1
∅

. . . A
br
{1,...,r}

br−1

{1,...,r−1}

. . . A
br
{r}

br−1

∅

(16)

with the nesting property bjJ = bj+1
J +bj+1

J∪{j+1} (provided J exists at step j) and Am
n = n!

(n−m)! .

At step j, the only property set with cardinality equivalent to n, is Bj−1
∅ , while all others

have cardinalities lower than m ; so picking integers inside these light property sets involve
cardinalities at most in m! that go in the constants, while the pick in Bj−1

∅ entails a

cardinality A
bj

{r}

bj−1

∅

= A
bj

{r}

n−| ı̃1∪...∪ ı̃j−1|
≈ n

bj

{r} .

Note that, at step j − 1, bj−1
∅ = n − | ı̃1 ∪ . . . ∪ ı̃j−1 |, because, at step j, bj{j} designates

the number of integers in ı̃j not matching any previous index ı̃1, . . . , ı̃j−1 ; so that also
∑r

j=1 b
j
{j} = | ı̃i ∪ . . . ∪ ı̃r| ; and incidentally

∑

J∋j0
bjJ = | ı̃j0 |.
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The number of integers picked from the big property set at each step is

A
b1{1}

b0
∅

A
b2{2}

b1
∅

. . . A
br
{r}

br−1

∅

with bj∅ = n− | ı̃1 ∪ . . . ∪ ı̃j−1|, b0∅ = n and
∑r

j=1 b
j
{j} = | ı̃i ∪ . . . ∪ ı̃r|.

For large n this is equivalent to n| ı̃1∪...∪ ı̃r |.

Having drawn the subindexes, building the indexes effectively is a matter of iteratively
intermixing two sets of a and b elements ; an operation equivalent to highlighting b cells in
a line of a+ b cells, which can be done in Cb

a+b ways, with Cp
n = Ap

n/p!.

Intermixing the subindexes thus involve cardinalities at most in m!, that go in the constant
C.

Likewise, passing from ı̃ to i involve cardinalities at most in C
|ı̃|
m and no dependence on n.

For the corollary, if i ∈ Im
n then ı̃ = i and |̃ı| = m. If moreover i1 < . . . < ir, the number of

ways to draw the subindexes is given by replacing occurrences of ’A’ by ’C’ in (16), with
Cm

n = n!
m!(n−m)! , which does not change the order in n. Also there is only one way to intermix

subindexes, because of the ordering constraint.

Lemma 1.3 (Two sets matching indices [Corollary and complement])

Let Im
n be the set of indices {(i1, . . . , im): ij ∈ N, 1 ≤ ij ≤ n, ij 6= iℓ if i 6= ℓ}, and let I ′

m
n be the

subset of Im
n such that {i1 < . . . < im}.

Then for 0 ≤ b ≤ m,

#
{

(i1, i2) ∈ I
m
n × I

m
n : | i1 ∩ i2 | = b

}

= Am
n A

b
mA

m−b
n−mC

b
m = O(n2m−b)

#
{

(i1, i2) ∈ I
′m
n × I

′m
n : | i1 ∩ i2 | = b

}

= Cm
n C

b
mC

m−b
n−m = O(n2m−b)

In corollary, with P (resp. P ′) the mass probability on (Im
n )2 (resp. (I ′

m
n )2), P (|i1 ∩ i2| = b) ≈

P ′(|i1 ∩ i2| = b) = O(n−b) and P (|i1 ∩ i2| = 0) = P ′(|i1 ∩ i2| = 0) ≤ 1−m2n−1 + Cn−2.

For i1, i2 ∈ Im
n , the equivalence |i1 ∩ i2| = b ⇐⇒ |i1 ∪ i2| = 2m − b gives the link with the

general case of lemma 1.2.

Reusing the pattern of lemma 1.2 in a particular case : there are Am
n ways to constitute

i1, there are Ab
m ways to draw b unordered integers from i1 and Am−b

n−m ways to draw m− b
unordered integers from {1, . . . , n} − i1.

To constitute i2, intermixing both subindexes of b and m − b integers is equivalent to
highlighting b cells in a line of m cells ; there are Cb

m ways to do so. On I ′
m
n , by definition,

having drawn the b then m−b ordered distinct integers, intermixing is uniquely determined.

Incidentally, one can check that
∑m

b=0A
b
mA

m−b
n−mC

b
m = Am

n , and that
∑m

b=0 C
b
mC

m−b
n−m = Cm

n .
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Dividing by
(

Am
n

)2
or
(

Cm
n

)2
, both equivalent to n2m, gives the probabilities. Finally for the

special case b = 0, use the fact that

Am
n

Am
n−c

= (1−
c

n
) . . . (1−

c

n−m+ 1
) ≤ (1−

c

n
)m

Lemma 1.4 (Product of r kernels of degree m)

Let r ∈ N
∗. Let m ≥ 1. Let (X1 . . . , Xn) be an independent, identically distributed sample of a

random variable on R
d. Let Ωm

n be the set of indices {(i1, . . . , im): ij ∈ N, 1 ≤ ij ≤ n} .

For i ∈ Ωm
n , define

aik = Φjk(Xi1 ) . . .Φjk(Xim)

bik = ϕjk(Xℓ1
i1 ) . . . ϕjk(X

ℓm1

im1 )Φjk(Xim1+1) . . .Φjk(Xim1+md ).

Let ı̃ be the set of distinct coordinates in i and let c = c(̃ı1, . . . ı̃r) = |̃ı1 ∪ . . . ∪ ı̃r| be the overall
number of distinct coordinates in r indices (i1, . . . ir) ∈ (Ωm

n )r.

Then
En

f |ai1k1
. . . airkr

| ≤ C2
jd
2

(mr−2c)

En
f |bi1k1

. . . birkr
| ≤ C2

jd
2

(mdr−2cd) 2
j
2
(m1r−2c+2cd)

with cd = cd(̃ı1, . . . ı̃r) ≤ c the fraction of c corresponding to products with at least one Φ(X) term
and 1 ≤ cd ≤ mdr, 0 ≤ c− cd ≤ m1r, 1 ≤ c ≤ (m1 +m2)r.

Using lemma 1.1, one can see that the product ai1k1
. . . airkr

, made of mr terms, can always
be split into |̃ı1 ∪ . . .∪ ı̃r| independent products of c(l) dependent terms, 1 ≤ l ≤ |̃ı1 ∪ . . .∪ ı̃r|,
with c(l) in the range from |̃ı1| ∨ . . . ∨ |̃ır| to mr and

∑

l c(l) = mr.

Using lemma 1.8, a product of c(l) dependent terms, is bounded under expectation by

C2
jd
2

(c(l)−2). Accumulating all independent products, the overall order is C2
jd
2

(mr−2|ı̃1∪...̃ır |).

For bi1k1
. . . birkr

make the distinction between groups containing at least one Φ(X) term and
the others containing only ϕ(Xℓ) terms. This splits the number |̃ı1 ∪ . . . ∪ ı̃d| into gΦ,ϕ + gϕ.
Let cϕ(l) be the number of ϕ terms in a product of c(l) terms, mixed or not.

On the gΦ,ϕ groups containing Φ terms, first bound the product of cϕ(l) terms by C2
j
2
cϕ(l),

and the remaining terms by C2
jd
2

(c(l)−cϕ(l)−2). On the gϕ groups with only ϕ terms, bound

the product by C2
j
2
(cϕ(l)−2).

The overall order is then

C2
jd
2

[(

∑

gΦ,ϕ

l=1
c(l)−cϕ(l)

)

−2gΦ,ϕ

]

2
j
2

∑

gΦ,ϕ

l=1
cϕ(l) 2

j
2

[(

∑

gϕ

l=1
cϕ(l)

)

−2gϕ

]

.

The final bound is found using
∑gϕ

l=1 cϕ(l) +
∑gΦ,ϕ

l=1 cϕ(l) = m1r and
∑gΦ,ϕ

l=1 c(l)− cϕ(l) = mdr.
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Rename cd = gΦ,ϕ and c− cd = gϕ.

As for the constraints, in the product of (m1 +md)r terms, it is clear that Φ terms have to
be found somewhere, so cd ≥ 1, which also implies that c − cd = 0 when c = 1 (in this case
there are no independent group with only φ terms, but only one big group with all indices
equal). Otherwise cd ≤ mdr and c− cd ≤ m1r since there are no more that this numbers of
Φ and φ terms in the overall product.

Lemma 1.5 (Meyer)

Let Vj , , j ∈ Z an r-regular multiresolution analysis of L2(R
n) and let ϕ ∈ V0 be the father wavelet.

There exist two constant c2 > c1 > 0 such that for all p ∈ [1, +∞] and for all finite sum
f(x) =

∑

k α(k)ϕjk(x) one has,

c1‖f‖p ≤ 2jd( 1
2
− 1

p
)

(

∑

k

|α(k)|p

)
1
p

≤ c2‖f‖p

See Meyer (1997)

We use the bound under a special form.

First note that if f ∈ Bsp∞, ‖f‖sp∞ = ‖Pjf‖p + supj 2js‖f − Pjf‖p so that ‖f − Pjf‖p ≤

C‖f‖sp∞2−js. So using (3),

∑

k

|αjk|
p ≤ C2jd(1−p/2)‖Pjf‖

p
p ≤ C2jd(1−p/2)2p−1

(

‖f‖pp + ‖f − Pjf‖
p
p

)

≤ C2jd(1−p/2)2p−1
(

‖f‖pp + C‖f‖psp∞2−jps
)

≤ C2jd(1−p/2)‖f‖psp∞.

When applying the lemma to special coefficient λ
〈 r 〉
jk = αp1

jk1 . . . α
pd

jkd for some integers

p1, . . . , pd, 0 ≤ pi ≤ r with
∑d

i=1 pi = r, we use

∑

k∈Z
d

|λ
〈 r 〉
jk | =

∑

k1∈Z

|αp1

jk1 | . . .
∑

kd∈Z

|αpd

jkd |

≤ C2
j
2
(2−p1)‖f⋆1‖p1

sp1∞ . . . 2
j
2
(2−pd)‖f⋆d‖pd

spd∞

≤ C2
j
2
(2d−r)‖max

ℓ
f⋆ℓ‖rsr∞

so that even if some pℓ was zero, the result is a 2j, which returns the effect of
∑

kℓ 1.
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Lemma 1.6 (Path of non matching dimension numbers)

Let r ∈ N, r ≥ 2. Let Ωm
n =

{

(i1, . . . , im): iℓ ∈ N, 1 ≤ iℓ ≤ n
}

. For i ∈ Ωd
n, let Λjk(Vi) =

ϕjk(X1
i1) . . . ϕjk(Xd

id). Let ı̃ be the set of distinct coordinates of i.

In the product

(

∑

j

∑

k

1

nd

∑

i∈Ωd
n

Λjk(Vi)
)r

=
1

ndr

∑

i1,...,ir∈(Ωd
n)r

∑

j1...jr

∑

k1...,kr

Λj1k1
(Vi1 ) . . .Λjrkr

(Vir
)

unless |̃ı1 ∪ . . . ∪ ı̃r| < r, it is always possible to find indices (i1, . . . , ir) such that no two functions
ϕjk ϕjk′ match on observation number.

Let c = |̃ı1 ∪ . . . ∪ ı̃r|. For 1 ≤ ℓ ≤ n, let ℓ⊗d = (ℓ, . . . , ℓ) ∈ Ωd
n.

With r buckets of width d defined by the extent of each index k1 . . . , kr, and only c < r
distinct observation numbers, once c buckets have been stuffed with terms Vℓ⊗d , some
already used observation number must be reused in order to fill in the remaining r − c
buckets. So that r − c buckets will match on dimension and observation number allowing
to reduce the sum to only c distinct buckets.

Once c > r, starting with a configuration using Vℓ⊗d
1

, . . . Vℓ⊗d
r

we can always use additional

observation numbers to fragment further the ℓ⊗d terms, which preserves the empty inter-
section between buckets.

Lemma 1.7 (Daubechies wavelet concentration property)

Let r ∈ N, r ≥ 1. Let ϕ be the scaling function of a Daubechies wavelet D2N . Let hk be the function
on R

m defined as a product of translations of ϕ

hk(x1, . . . , xm) = ϕ(x1 − k
1) . . . ϕ(xm − k

m),

with k = (k1, . . . , km) ∈ Z
m.

Then for a Haar wavelet
[
∑

k hk(x1, . . . , xm)
]r

=
∑

k hk(x1, . . . , xm)r.

For any D2N,
(

∑

k

|hk(x1, . . . xm)|

)r

≤ (4N − 3)m(r−1)
∑

k

|hk(x1, . . . xm)|r (17)

With a Daubechies Wavelet D2N , whose support is [0, 2N − 1] with ϕ(0) = ϕ(2N − 1) = 0
(except for Haar where ϕ(0) = 1), one has the relation

x 7→ ϕ(x− k)ϕ(x − ℓ) = 0, for |ℓ− k| ≥ 2N − 1 ;

when k is fixed, the cardinal of the set |ℓ− k| < 2N − 1 is equal to (4N − 3).
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So that, with k1, . . . kr denoting r independent multi-index,

(

∑

k

hk

)r
=
∑

k1

∑

k2...kr

hk1
. . . hkr

I(∆)

with ∆ = {|kℓ1
i1
− kℓ2

i2
| < (2N − 1) ; i1, i2 = 1 . . . r ; ℓ1, ℓ2 = 1 . . .m}. Once k1 say, is fixed, the

cardinal of ∆ is not greater than (4N − 3)m(r−1) and is exactly equal to 1 for Haar, when all
k1 = . . . = kr.

For any Daubechies wavelet, and r ≥ 1, using the inequality (|hk1
|r . . . |hkr

|r)
1
r ≤ 1

r

∑

i |hki
|r,

(

∑

k

|hk|
)r
≤

∑

k1,...,kr

1

r

(

|hk1
|r + . . .+ |hkr

|r
)

I {∆}

=
1

r

[

∑

k1,...,kr

|hk1
|r I {∆} + . . .+

∑

k1,...,kr

|hkr
|r I {∆}

]

≤ (4N − 3)m(r−1)
∑

k

|hk|
r,

Lemma 1.8 (rth order moment of Φjk)

Let X be random variables on R
d with density f . Let Φ be the tensorial scaling function of an MRA

of L2(R
d). Let αjk = EfΦjk(X). Then for r ∈ N

∗,

Ef |Φjk(X)− αjk|
r ≤ 2rEf |Φjk(X)|r ≤ 2r2jd( r

2
−1)‖f‖∞‖Φ‖

r
r.

If Φ is the Haar tensorial wavelet then also Ef Φjk(X)r ≤ 2jd( r
2
− 1

2
)αjk.

For the left part of the inequality,
(

Ef |Φjk(X)−αjk|
r
)

1
r

≤
(

Ef |Φjk(X)|r
)

1
r

+Ef |Φjk(X)|, and

also Ef |Φjk(X)| ≤
(

Ef |Φjk(X)|r
)

1
r
(

Ef1
)

r−1

r

.

For the right part, Ef |Φjk(X)|r = 2jdr/2
∫

|Φ(2jx− k)|rf(x)dx ≤ 2jd( r
2
−1)‖f‖∞‖Φ‖

r
r.

Or also if Φ is positive,

EfΦjk(X)r = 2
jd
2

(r−1)

∫

Φ(2jx− k)r−1Φjk(x)f(x)dx

≤ 2
jd
2

(r−1)‖Φ‖r−1
∞ αjk.
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(Bergh & Löfström, 1976) J. Bergh and J. Löström. Interpolation spaces. Springer, Berlin,
1976.

(Bickel & Ritov, 1988) P. J. Bickel and Y. Ritov. Estimating integrated squared density
derivatives : sharp best order of convergence estimates. Sankya Ser A50, 381-393

(Butucea & Tribouley, 2006) C. Butucea and K. Tribouley. Nonparametric homogeneity
tests. Journal of Statistical Planning and Inference, 136(2006), 597–639.
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