N

N

On non-overdetermined inverse scattering at zero energy
in three dimensions

Roman Novikov

» To cite this version:

Roman Novikov. On non-overdetermined inverse scattering at zero energy in three dimensions. Annali

della Scuola Normale Superiore di Pisa, Classe di Scienze, 2006, 5 (3), pp.279-328. hal-00077701

HAL Id: hal-00077701
https://hal.science/hal-00077701
Submitted on 31 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00077701
https://hal.archives-ouvertes.fr

ccsd-00077701, version 1 - 31 May 2006

On non-overdetermined inverse scattering
at zero energy in three dimensions

R. G. Novikov

31 May 2006
CNRS, Laboratoire de Mathématiques Jean Leray (UMR 6629), Université de Nantes, BP 92208,
F-44322, Nantes cedex 03, France
e-mail: novikov@math.univ-nantes.fr

Abstract. We develop the 0- approach to inverse scattering at zero energy in dimen-
sions d > 3 of [Beals, Coifman 1985], [Henkin, Novikov 1987] and [Novikov 2002]. As a
result we give, in particular, uniqueness theorem, precise reconstruction procedure, stabil-
ity estimate and approximate reconstruction for the problem of finding a sufficiently small
potential v in the Schrédinger equation from a fixed non-overdetermined (”backscattering”
type) restriction h}r of the Faddeev generalized scattering amplitude A in the complex do-
main at zero energy in dimension d = 3. For sufficiently small potentials v we formulate
also a characterization theorem for the aforementioned restriction h‘r and a new charac-
terization theorem for the full Faddeev function A in the complex domain at zero energy in
dimension d = 3. We show that the results of the present work have direct applications to
the electrical impedance tomography via a reduction given first in [Novikov, 1987, 1988].

1.Introduction
Consider the Schrodinger equation at zero energy

~AYp+o(z)p =0, zeR? d>2, (1.1)

where

v is a sufficiently regular function on R? (1.2)
with sufficient decay at infinity '

(precise assumptions on v are specified below in this introduction and in Sections 2 and
3). For equation (1.1), under assumptions (1.2), we consider the Faddeev generalized
scattering amplitude h(k,!), where (k,[) € O,

O={keC¥ leC: K2=12=0, Imk=1Iml}. (1.3)

For definitions of h see, for example, [HN] (Section 2.2) and [Nol] (Section 2). Given v, to
determine h on © one can use, in particular, the formula

h(k,l) = H(k,k—1), (k) €0, (1.4)
and the linear integral equation

o(p + §H (K, —§)d¢

keXx R? 1.
T , keX, peR", (1.5)

H(k,p) = 9(p) — /
Rd
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where
o(p) = (2m) 7@ / ePry(x)dz, peRY, (1.6)
Rd
S={keC’: kK =0} (1.7)

In the present work we consider, mainly, the three dimensional case d = 3. In addition,
in the main considerations of the present work for d = 3 our basic assumption on v consists
in the following condition on its Fourier transform

(NS L;’f(RS) for some real p > 2, (1.8)

where J J
Ly (R?) ={ue LR : ||lull, < +oo},

|ull,, = ess sup (1 + [p|)*|u(p)|, p> 0.
peR?

(1.9)

If v satisfies (1.8), then we consider (1.5) at fixed k as an equation for H(k,-) € L7° (R3).
An analysis of equation (1.5) for d = 3 and with (1.8) taken as a basic assumption on v is
given in Section 3.

Note that, actually, h on © is a zero energy restriction of a function h introduced by
Faddeev (see [F2|, [HN]) as an extention to the complex domain of the classical scattering
amplitude for the Schrodinger equation at positive energies. In addition, the restriction
h’@ was not considered in Faddeev’s works. Note that h’@ was considered for the first
time in [BC1] for d = 3 in the framework of Problem la formulated below. The Faddeev
function h was, actually, rediscovered in [BC1]. The fact that O- scattering data of [BC1]
coincide with the Faddeev function h was observed, in particular, in [HN].

In the present work, in addition to h on ©, we consider h} oy h}@T and h}FT, where

i|p D . ip
+ M’Y(p), l=—-2+ u’y(p) . pe R, (1.10a)

I'=H{k=
{ 2 2 2

o RS

where v is a piecewise continuous (or just measurable) function of p € R? with values in
S? ! and such that

v(p)p=0, peR?, (1.100)
0" ={(k,l) €O : |[Imk|=|Iml| <1}, (1.11)
I"=Inoe, (1.12)
where 7 > 0. Note that
I'co, (1.13)
dim® =3d — 4, dimT = dimR* = d, (1.14)
3d—4=d for d=2, 3d—4>d for d>3. (1.15)
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Using (1.4), (1.5) one can see that

in the Born approximation (that is in the linear approximation near zero potential). Using
(1.10), (1.13), (1.14), (1.16) one can see that, in general, h|. is a nonlinear analog of the
Fourier transform v. Note also that h}r is a zero energy analog of the reflection coefficient
(backscattering amplitude) considered (in particular) in [Mos|, [P], [HN], [ER].

In the present work we consider, in particular, the following inverse scattering prob-
lems for equation (1.1) under assumptions (1.2).

Problem 1. (a) Given h on ©, find v on R? (and characterize h on ©);
(b) Given h on ©7 for some (sufficiently great) 7 > 0, find v on R?, at least, approxi-
mately.

Problem 2. (a) Given h on I, find v on R? (and characterize h on I');

(b) Given h on I'" for some (sufficiently great) 7 > 0, find v on R?, at least, approxi-
mately.

Using (1.14), (1.15), (1.16) one can see that Problems la,1b are strongly overdeter-
mined for d > 3, whereas Problems 2a, 2b are nonoverdetermined for d > 2 (at least, in
the sense of the dimension considerations and in the Born approximation). In addition,
using (1.12), (1.13) one can see that any reconstruction method for Problems 2 is also
a reconstruction method for Problems 1. The present work is focused on Problems 2a,
2b for the most important three-dimensional case d = 3. In addition, we are focused on
potentials v with

b € L°(R®) with sufficiently small [|3],, (1.17)
for some fixed p > 2, |

where L7° (R3) and || - ||, are defined in (1.9). In some results we also still assume for

simplicity that ¢ € C(R®) (in addition to (1.8) or (1.17)), where C denotes the space of

continuous functions. The main results of the present work include, in particular:

( I) uniqueness theorem, reconstruction procedure and stability estimate for Problem 2a
for v satisfying (1.17) (with ¢ € C(R?)) (see Theorem 2.1) and

( II) approximate reconstruction method for Problem 2b for v satisfying (1.17) (with v €
C(R?)) (see Theorem 2.1 and Corollary 2.1). These results are formulated and proved
in Sections 2-12. In the present work we formulate also:

(ITI) characterization for Problem 2a for v satisfying (1.17) (see Theorem 2.2) and

(IV) new characterization for Problem la or more precisely a characterization for Problem

la for v satisfying (1.17) (see Theorem 2.3).

We plan to give a complete proof of these characterizations in a separate work, where
we plan to show also that the aforementioned results I and II remain valid without the
additional assumption that © € C(R?). All these results I, II, III and IV are presented in
detail in Section 2.

Note that Problem la was considered for the first time in [BC1] for d = 3 from pure
mathematical point of view without any physical applications. No possibility to measure
h on ©\{(0,0)} directly in some physical experiment is known at present. However, as it
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was shown in [Nol] (see also [HN] (Note added in proof), [Nal], [Na2], [No4]), Problems 1
naturally arise in the electrical impedance tomography and, more generally, in the inverse
boundary value problem (Problem 3) formulated as follows. Consider the equation

—AY+ov(x)p =0, z €D, (1.18)

where
D is an open bounded domain in R, d> 2,
with sufficiently regular boundary 0D, (1.19)

v is a sufficiently regular function on D = D U dD.

We assume also that
0 is not a Dirichlet eigenvalue for

the operator — A +wv in D.
Consider the map ® such that

(1.20)

0
%’c’iD - q)w’aD) (1.21)

for all sufficiently regular solutions of (1.18) in D, where v is the outward normal to dD.
The map ® is called the Dirichlet-to-Neumann map for equation (1.18). The aforemen-
tioned inverse boundary value problem is:

Problem 3. Given &, find v on D.

In addition, the simplest interpretation of D, v and ® in the framework of the electrical
impedance tomography consists in the following (see [SU], [Nol], [Nal]): D is a body with
isotropic conductivity o(z) (where o > oy > 0),

v(z) = (o(z) V2 A (o(2)Y?, z e D, (1.22)
dol/?
v )

where A is the voltage-to-current map on 9D and o'/, 601/2/6V in (1.23) denote the
multiplication operators by the functions o~/ 2‘ oD’ (801/ 2 / 8y) ‘ op respectively.
Note that the formulation of Problem 3 goes back to Gelfand [G] and Calderon [C].
Returning to Problems 1, 2 and their relation to Problem 3 one can see that the
Faddeev function h of Problems 1, 2 does not appear in Problem 3. However, as it was
shown in [Nol] (see also [HN] (where this result of [Nol] was announced in Note added in
proof), [Nal], [Na2], [No4]), if h corresponds to equation (1.1), where

®=0"12(Ac7? ¢ (1.23)

v of (1.1) coincides on D with v of (1.18)

i = (1.24)
and v of (1.1) isidentically zero on R*\D,

then h on © can be determined from the Dirichlet-to-Neumann map ® for equation (1.18)
via the following formulas and equation:

h(k,1) = (27r)_d/ /e_ilm(CD — @) (z, )Y (y, k)dydx for (k,l) € O, (1.25)
0D 0D
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Y(z, k) = e + / Az, y, k)ip(y, k)dy, =€ dD, (1.26)
oD
Az, y, k) = /G(x —2,k)(® — ®p)(z,y)dz, z,y € ID, (1.27)
ik zﬁxdg
G(z, k) = —(2r) et / Zroe ©© RY, (1.28)

where k € C?, k? = 0 in (1.26)-(1.28), ®; denotes the Dirichlet-to-Neumann map for
equation (1.18) for v = 0, and (P — ®¢)(z, y) is the Schwartz kernel of the integral operator
® — ®. Note that (1.25), (1.27), (1.28) are explicit formulas, whereas (1.26) is a linear
integral equation (with parameter k) for ¢ on 0D. In addition, G of (1.28) is the Faddeev’s
Green function of [F1] for the Laplacian A. Note also that formulas and equation (1.25)-
(1.27) are obtained and analyzed in [Nol] for (1.19) specified as

D is an open bounded domain in Rd, d> 2,

(1.29)
0D € C?, v e L™(D).

Formulas and equation (1.25)-(1.27) reduce Problem 3 to Problems 1, 2. In addition, from
numerical point of view h(k,l) for (k,l) € OT can be relatively easily determined from &
via (1.27), (1.26), (1.25) if 7 is sufficiently small. However, if (k,I) € ©\O7, where 7 is
sufficiently great, then the determination of h(k,!) from ® via (1.27), (1.26), (1.25) is very
unstable (especially on the step (1.26)). The reason of this instability is that formulas and
equation (1.25)-(1.28) involve the exponential functions e~ %, ¢** and, actually, e**(#=2)
(arising in (1.27) in view of (1.28)), where (k,l) € ©, x € 0D, z € 0D, which rapidly
oscillate in z, z and may have exponentially great absolute values if (k,l) € ©\O7 (and,
therefore, |Re k| = |[Imk| = |Rel| = |[Im| > 7) for sufficiently great 7.

These remarks show that Problems 1, 2 are especially important in their versions 1b,
2b as regards their applications to Problem 3 via (1.25)-(1.28) (or via similar reductions).
In addition, in view of (1.13)-(1.15), one can see that it is much simpler to determine h on
I’ (or on I'") only than completely on © (on on O7, respectively) from & via (1.25)-(1.28)
for d > 3. Therefore, Problem 2b is of particular interest and importance in the framework
of applications of Problems 1, 2 to Problem 3 for d > 3.

In the present work we consider, mainly, Problems 1 and 2 for d = 3. In addition,
as it was already mentioned, we are focused on nonoverdetermined Problems 2a, 2b for v
satisfying (1.17). The main results of the present work are presented in Section 2. (Some of
these results were already mentioned above.) Note that only restrictions in time prevent
us from generalizing all main results of the present work to the case d > 3. Actually,
the results of the present work are obtained in the framework of a development of the
O-approach to inverse scattering at fixed energy in dimension d > 3 of [BC1], [HN], [No3],
[No5]. In particular, the central part of the present work consists in an analysis of the
non-linear d-equation (3.13) for the Faddeev function H on © for v satisfying (1.17) (with
v € C(R%)), see Sections 5,6,7.
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Actually, in the present work we do not consider Problems 1 and 2 for d = 2: inverse
scattering at fixed energy in dimension d = 2 differs considerably from inverse scattering
at fixed energy in dimension d > 3. Note that a global reconstruction method for Problem
2a for d = 2 and for v of the form (1.2), (1.22), where z € R?, 0 > 0,nin > 0, was given in
[Na2] in the framework of a development of the d-approach to inverse scattering at fixed
energy in dimension d = 2 (see references to [BLMP], [GN], [No2], [T] given in [Na2] in
connection with this approach). In addition, this result on Problem 2a is given in [Na2] in
the framework of applications to the (two-dimensional) electrical impedance tomography
via the reduction (1.25)- (1.27) for d = 2 (given first in [Nol]). Besides, note that there
is an essential similarity between the results of [Na2] on global reconstruction for Problem
2a for d = 2 and for v of the form (1.2), (1.22), where x € R?, 0 > 0in > 0, and results
of [BC2] on global inverse scattering reconstruction for some 2 x 2 first order system on
the plane (see also [BU] in this connection).

Applications of result of the present work to the electrical impedance tomography and
more generally to Problem 3 will be analyzed in detail in a subsequent paper (where we
plan to give, in particular, new stability estimates for Problem 3).

Concerning results given in the literature on Problem 3, see [KV], [SU], [HN] (note
added in proof), [Nol], [A], [Nal], [Na2], [BU], [Ma], [No4| and references therein.

2. Main results
As it was already mentioned in the introduction, the main results of the present work
include, in particular:
( I) uniqueness theorem, reconstruction procedure and stability estimate for Problem 2a
for v satisfying (1.17) (with o € C(R?)) and
(IT) approximate reconstruction method for Problem 2b for v satisfying (1.17) (with 0 €
C(R)),
see Theorem 2.1 and Corollary 2.1 formulated below in this section (and proved by means
of analysis developed in Sections 3-12).
We identify h‘r and h‘FT with R and R, on R, where

R = (2 + Py, 2 W) pere, (2.)

Ry-(p) = R(p) for |p| <27, peRY,

(2.2)
Ror(p) =0 for |p|>27, pe€ R,
where 7 is the function of (1.10).
Theorem 2.1. Let
NS LZO(R?’) for some p > 2, (2.3)
ol < C < ——— (2.4)

c1(p) + 8ce ()’

where LY (R*) and || - ||,. are defined in (1.9), c1(u) and cs(p) are the positive constants of
Lemmas 3.1 and 6.1. (For simplicity we also still assume that v € C(R*).) Let R be defined
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by (2.1) (for some given v of (1.10) for d = 3). Then

C
Re L*(R®), |R|, < ——m—, 2.5
o (R, i H“_l—cl(,u)C (2.5)
and R uniquely determines v via the following reconstruction procedure
R (66 g (710)(7.20) 5 (2.6)

where (6.6) is a nonlinear integral equation of Proposition 6.1 of Section 6, (7.1b), (7.2b)
are explicit formulas of Section 7 and where we solve (6.6) by the method of successive
approzimations (see Proposition 6.2 and Lemma 6.2). In addition, if Rappr is an arbitrary
approximation to R, where Rqpp,, also satisfies (2.5), and Vgppr 15 determined from Rgppy
via (2.6) (with H replaced by Heppy), then the following stability estimate holds:

s A 1—c(p)C
- UVappr S
1= Bamrlle < T2 700y + Beo ()

C’HR_ Rappr“w (2-7)

One can see that Theorem 2.1 includes uniqueness theorem, reconstruction procedure
and stability estimate for Problem 2a (of the introduction) for v satisfying (1.17) (with
b € C(R?)).

Theorem 2.1 follows from Proposition 3.1, Lemmas 6.2, 6.3, Propositions 6.1, 6.2 and
formulas (7.1), (7.2) (of Sections 3,6 and 7). In particular, condition (2.4) of Theorem 2.1
implies condition (6.20) of Proposition 6.2 and condition (3.6) of (part I of) Proposition
3.1.

Corollary 2.1. Let v satisfy (2.3), (2.4) and, in addition,
ve Ly (R?) for some u* > . (2.8)
(For simplicity we also still assume that © € C(R®).) Let Vg, denotes tappr reconstructed

from Rgppr via (2.6) (as in Theorem 2.1), where Rgyppr = Ror (defined by (2.1), (2.2) for
d =3). Then

R e L% (R?) (2.9)
e 11 (p)C IR
A ~ - Cl IU/ ,lL*
— b, < . . 2.1
e Y E ) Lol (R TR

One can see that Theorem 2.1 and Corollary 2.1 give an approximate reconstruction
method for Problem 2b (of the introduction) for v satisfying (1.17) (with & € C(R?)).

Note that (2.9) follows from the property that R € L7’ (R?), the assumption (2.8) and
the part II of Proposition 3.1 with 4 = p*. Further, Corollary 2.1 follows from Theorem 2.1
and estimates (6.25), (6.26). The approximate reconstruction of Corollary 2.1 is presented
in more detail in Proposition 6.3 complemented by formulas (7.5)-(7.8).

One can see that Theorem 2.1 and Corollary 2.1 give also reconstruction results for
Problem la and Problem 1b ( of the introduction) for d = 3 and v satisfying (1.17) (with

7
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v € C(R%)). Let us compare these results with the reconstructions for Problems 1a and 1b
for d = 3 via formulas (2.11), (2.12), (2.14) presented below. From formula (1.4), equation
(1.5) and Proposition 3.1 (of Section 3) it follows that if v satisfies (2.3), then

b(p) = li h(k. 1) f R3 2.11
W)= edm kD) forany peR, (2.11)

[Im k|=|Iml|=T—00

2c2(p)C? (In 7)2
Qe 7 (2.12)
for (k,1)e®©, p=k—1, [Imk|=|Iml|=7>71(C,u), [0, <C,

[0(p) = h(k, D] <

where c2(u) is the constant of Lemma 3.1 and 7(C, p) is the smallest number such that

Actually, for sufficiently regular v on R® with sufficient decay at infinity formula (2.11)
and some results of the type (2.12) (with less precise right-hand side) were given first in
[HN]. Note also that if

v e L®(R?), ess sup (1+ |z])*v(z)] < C
zeR° (2.13)
for some positive ¢ and C,

then

. 285(e)C? _
[0(p) = h(k )] < = for (k,))€®©, p=Fk—1, (2.14)

[ Imk| = |Iml| =71 > 7(C,e),

where é;(g) and 7(C, €) are some positive constants (similar to constants co () and 7(C, u)
of (2.12)) (see [Nal] and [No3] as regards estimate (2.14) under assumption (2.13)). One
can see that for d = 3 already the simple formulas (2.11), (2.12), (2.14) give a reconstruc-
tion method for Problem la and an approximate reconstruction method for Problem 1b.
However, for this approximate reconstruction of the Fourier transform ¢ from h on ©7
via (2.12), (2.14) the error decaies rather slowly as 7 — +o00: even for v of the Schwartz
class on R® the decay rate of this error, for example, in the uniform norm on the ball
B, = {peR®: |p| <r}, where r > 0 is fixed, is not faster than O(1/7) as 7 — +00. An
important advantage of the approximation vy, of Corollary 2.1 in comparison with the ap-
proximate reconstruction based on (2.12), (2.14) consists in a fast decay of the error norm
|6 —Dor ||, = O(1/7# ~H) as T — +oo (see estimate (2.10)), at least, if u* — y is sufficiently
great. For example, if v belongs to the Schwartz class on R® and, as in Theorem 2.1 and
Corollary 2.1, is sufficiently small in the sense (2.4) for some p, then estimate (2.10) holds
for any p* > pand [|0 — Uo7, = O(77°°) as 7 — +oo. This fast convergence of 0y, to v
as T — 400 is in particular important in the framework of applications to Problem 3 (of
the introduction) via the reduction (1.25)-(1.27): the point is that the determination of

8
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h’ o- from @ via (1.25)-(1.27) is sufficiently stable for sufficiently small 7 only (see related
discussion of the introduction), but o9, reconstructed from h‘FT (as described in Corollary
2.1) well approximates v even if 7 is relatively small (due to the rapid decay of the error
0 — U9, as T — +00). An obvious disadvantage of Theorem 2.1 and Corollary 2.1 in com-
parison with formulas (2.11), (2.12), (2.14) consists in the small norm assumption (2.4).
In a subsequent work we plan to propose an approximate reconstruction of v from h on
O7 (for d = 3) with a similar (fast) decay of the error for 7 — 400 as in Corollary 2.1 but
without the assumption that v is small in some sense.
As it was already mentioned in the introduction, in the present work we formulate
also:
(ITT) characterization for Problem 2a for v satisfying (1.17) and
( IV) new characterization for Problem la or more precisely a characterization for
Problem 1la for v satisfying (1.17),
see Theorems 2.2 and 2.3 presented next.

Theorem 2.2. Let v satisfy (2.3) and
[0l < C < 1/er(p), (2.15)

where ¢1(p) is the constant of Lemma 3.1. Then R (defined according to (2.1), (1.4), (1.5))
satisfies (2.5). Conversely, let

oo (3
Re Ly (R’) for some p>2 (2.16)

and
Rl <7/2, r<cr(p), (2.17)

where c7(p) is some positive constant. Then R is the scattering data (defined according to
(2.1), (1.4), (1.5)) for some potential v, where

be LR, il <. (2.18)

One can see that Theorem 2.2 gives a characterization for Problem 2a (of the intro-
duction) for v satisfying (1.17).

Consider
QO={keC® peR®: k2 =0, p*> = 2kp}, (2.19)
- p o, up
== (k) k=24 P, pemy, (2.20)
where 7 is the function of (1.10).
Note that
Q~0, =~T (2.21)
or more precisely
(k,p) e Q= (k,k—p) €O, (k,1)eO=(kk—1) €, (2.22)

(k,p)e=2= (k,k—p)el, (k)el' = (k,k—1) €E,

9
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where © and I" are defined by (1.3) and (1.10a) for d = 3. Due to (2.21), (2.22), h on © in
Problem 1 for d = 3 can be considered as H on 2 and h on I' in Problem 2 for d = 3 can
be considered as H on Z, where h and H are related by (1.4).

Consider

L) ={U € L7=(Q) : [||U]l],e < oo},

Ull, =ess sup (14 [p)*|U(k,p)|, p>0.
(k,p)€Q

(2.23)

Theorem 2.3. Let v satisfy (2.3), (2.15) and H be defined on Q by means of (1.5).

Then o
H e L (Q H < 2.24
€ (@), 1Al < T (220)
and for almost any p € R*\0 the 0- equation (3.13) for H on Q holds.
Conversely, let
H e Ly () for some pu>2, (2.25)

Hw <7, 7 < es(p),

where cg is a positive constant, and for almost any p € R3\0 the O- equation (3.13) holds.
Then H on ) is the scattering data (defined using (1.5)) for some potential v, where

b e LY (R?), ||o]l, <. (2.27)

One can see that Theorem 2.3 gives a characterization for Problem 1a (of the introduction)
for v satisfying (1.17) (and where h on O is considered as H on ). In a separate work
we plan to give a detailed comparison of Theorem 2.3 with related results of [BC1] and

[HN]. In particular, Theorem 2.3 develops and simplifies the results of [BC] on the range

characterization of H on ().

The scheme of proof of Theorems 2.2 and 2.3 consists in the following:

(1) The result that (2.3), (2.15) imply (2.5) and (2.24) follows from Proposition 3.1.

(2) It is a separate lemma that the 0- equation (3.13) remains valid for almost any p €
R*\0 if v satisfies (2.3) and (2.15).

(3) To prove the sufficiency parts of Theorems 2.2 and 2.3, we use Proposition 3.1, the
aforementioned separate lemma concerning the d- equation (3.13), and the analysis
developed in Sections 4,5,6 and 7. In addition, in the framework of this proof we
obtain that the constants c7(u) and cg(u) of Theorems 2.2 and 2.3 can be defined as
follows:

1 1

deg(p)” e1(p) + 2¢6(p

1

cs(p) = 00 T 200’ (2.29)

c7(p) = min ( )), (2.28)

where ¢; and cg are the constants of Lemmas 3.1 and 6.1.

10
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On the basis of this scheme we plan to give a complete proof of Theorems 2.2 and
2.3 in a separate work, where we plan to show also that Theorem 2.1 and Corollary 2.1
remain valid without the additional assumption that & € C(R?).

3. Some results on direct scattering

In this section we give some results on direct scattering at zero energy in three di-
mensions or, more precisely, some results concerning equation (1.5) and the function H of
(1.5) under assumption (1.8).

Consider the operator A(k) from (1.5) for d = 3:

(A(R)U)(p) = / 8(p ;ﬂi&;mg, peR? key, (3.1)

RS
where U is a test function, ¥ is defined by (1.7) for d = 3. Let C stand for continuous
functions.

Lemma 3.1. Let v satisfy (1.8), A(k) be defined by (3.1) and U € L;’LO(R?’). Then:
A(k)U € C(R?), (3.2)
AR U], < ex (0[] [1U 1 (3.3a)
(In (|7 k[))®
|Im k|

for k € ¥ (defined by (1.7) for d = 3), where c1(u), ca2(p) and p(p) are some positive
constants; in addition,

AR U | < ca() 0] u1U ] , In[Imk| > 2, (3.3b)

I(ACK) — A(R)U Nl < Ak KD [0]1 1T (3.4a)
for some A(k, k") such that
kl/imkA(k, k') =0, (3.4b)

where k, k' € X; in addition,
(A(k)U)(p) € C(Z x R*) as a function of k and p. (3.5)
Lemma 3.1 is proved in Section 8.

Proposition 3.1. Let v satisfy (1.8) and ||0||, < C. Then the following statements
are valid:

(1) if
m(C) = er(p)C < 1, (3.6)

then equation (1.5) is uniquely solvable for H(k,-) € LY (R?) for any k € ¥ (by the method
of successive approzimations) and

C
Hk ), < ——— kex .
|| ( 9 )HH— 1_01(H>C, 6 1) (3 7)
H—9eC(X xR, (3.80)
2
Hk,p) - o(p)| < ——C keT, peR® (3.80)

(1 = e (W) + [p)*

11
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(1) if

e InT)?

n2(C, 7) def CQ(,U/)C( n7) <1, Int>2 (3.9)
T

then equation (1.5) is uniquely solvable (by the method of successive approzimations) for

H(k,-) € LﬁO(R?’) for any k € ¥\X7, where

Yr={keX: |[Imk| <7}, (3.10)
and
H(k, )], < ¢ ke s\ (3.11)
T T 1 —ma(C [Im k)’ ’ '
H—9cC((Z\X7) x RY), (3.12a)
n2(C, |[Im k|)C

|H(k,p) — 0(p)| < EeX\Y7, peR>  (3.120)

(1= n2(C, [Im k[)) (1 + [p)*

Proposition 3.1 is proved in Section 8.

Further, note that if v satisfies (1.8) and ||9]|,, < C, where C' satisfies (3.6), and also
o € C(R?), then the Faddeev function H (of the part I of Proposition 3.1) satisfies the
following 0- equation on

ng(kap) ’Zp =
3
ds — (3.13)
S (er [ en-ontrepr oS0 i),
g=t £eSk
for any p € R*\0, where

Z,={kecC®: (k,p) €Q}, pecR\0, (3.14)
Sp={¢ecR>: € +2E=0}, ke Z, (3.15)

ds is arc-length measure on the circle Si in R3. Note also that, under the assumptions of
the part IT of Proposition 3.1 with & € C(R?), the d -equation (3.13) remains valid with Z,
replaced by Z, N (X\X7). Actually, at least under somewhat stronger assumptions on v
than in the part I of Proposition 3.1 with & € C(R?), the 0 - equation (3.13) was obtained
for the first time in [BC1].

4. Coordinates on 2

Consider Q) defined by (2.19). For our considerations we introduce some convinient
coordinates on €2. Let

Q,={kecC’ pecRN\L,: k? =0, p* = 2kp}, (4.1)

where
L,={peR®: p=tv, teR}, veSs° (4.2)

12
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Note that €2, is an open and dense subset of (2.
For p € R*\L, consider 6(p) and w(p) such that

8(p),w(p) smoothly depend on p € R*\L,,
take values in S*, and (4.3)
0(p)p =0, w(p)p =0, O(p)w(p) = 0.

Note that (4.3) implies that

0
w(p) = L X| |< ) for p € R*\L, (4.4a)

or ;
w(p) = P X‘ ‘(p) for p € R*\L,, (4.4b)

where x denotes vector product.
To satisfy (4.3), (4.4a) we can take
VXp px 0(p) 3

O(p) = ——, w(p) = , p € RI\L,. 4.5
)= ot v =P \ (45)

Lemma 4.1. Let 0, w satisfy (4.3). Then the following formulas give a diffeomorphism
between 2, and (C\0) x (R*\L,):
2k(0(p) + iw(p))
ilp|
P
(/\7p) - (k7p)7 where k = k/i(>‘7p> - Kl(/\7p)0(p) + HQ()\,]))CU(])) + 57 (47)

(k,p) — (\,p), where A= \k,p) = ) (4.6)

ka(hp) = Pl - Ly,

/il<)‘7p) ‘p‘ ()‘ + 4

)\)
where (k,p) € Qy,, (A, p) € (C\0) x (R*\L,).

Actually, Lemma 4.1 follows from properties (4.3) and the result that formulas (4.6),
(4.7) for A(k) and k() at fixed p € R*\ L, give a diffeomorphism between {k € C*: k2 =
0, p? = 2kp} and C\0. The latter result follows from the fact (see [GN],[No2]) that the
following formulas

ky + ks i|E|Y/? 1 |E|/? 1
g = - k = -
Z'|E|1/2 M 9 (>‘+/\)’ 2 2 (/\ /\)

give a diffeomorphism between {k € C*: k? = E}, E < 0, and C\0.
Note that for k and A of (4.6), (4.7) the following formulas hold:

13
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where (k,p) € Q,, (A\,p) € (C\0) x (R*\L,).
We consider A, p of Lemma 4.1 as coordinates on (2, and on 2.
5. O-equation for H on ) in the coordinates )\, p

Lemma 5.1. Let the assumptions of the part I of Proposition 3.1 be fulfilled and
v € C(R%). Let \, p be the coordinates of Lemma 4.1, where 0, w satisfy (4.3), (4.4a). Then

9 _ T [Tl A =D) EPTRRRE
sk =7 [ (D coso 1)~ ol sing )

H (kA p), =E(A, 0, 0)) H(E(A, p, 0), p+ (A, 0, ) )dyp

(5.1)

for X € C\0, p € R3\L,,, where k(\, p) is defined in (4.7) (and also depends on v, 6, w),

£ p,¢) = Rek(A,p)(cosp — 1) + k™ (A, p) sinp, (5.2)
1 _ Imk(/\7p) X RBIC()\,]))

where x in (5.3) denotes vector product.
Proof of Lemma 5.1 is given in Section 9. In this proof we deduce (5.1) from (3.13).
Note that (5.1) can be written as

SH(O.p).p) = (H HY\p), A€C\0, peRAL,, (5.4)

where

iy 2_1
(UL} Op) = -1 /(% 'A'M (cosip— 1) - 21 Sincp) ‘

Ur(k(A, ), =€\, 0, 0))Ua(E(X, p) + E(N 0, @), 0+ E(N, p, ) ) dep,

where Uy, Us are test functions on €2 (defined by (2.19)) and k(\, p), £(A, p, ¢) are defined
by (4.7), (5.2), (A\,p) € (C\0) x (R*\£,). Note that in the left-hand side of (5.1), (5.4)

(5.5)

(k(A,p),p) € (5.6a)

and in the right-hand side of (5.1), (5.5)

(k(/\,p), _g(/\7p7 90» € Q\(07 0)7
(kX p) + &N @), p+ &N, p, ) € Q\(0,0),

where A € C\0, p € R*\L,, ¢ € [-m,7] (and (0,0) denotes the point {k =0,p =0}).

Lemma 5.2. Let the assumptions of Lemma 4.1 be fulfilled. Let Uy, Uz € LY () for
some p1 > 2, where L7 (S2) is defined by (2.23). Let {U1, Uz} be defined by (5.5). Then:

{U1,Us} € L=((C\0) x (R°\L,)) (5.7)

14
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an AT
Uy, U Y\, p)| < el 2iin
(0, )0 ) < 1L ILC

<03(u)|>\| L ca@pllM =1 cs (1) [Pl )
(AP +1)2 AR+ p[(AL+ A2 A+ [pIAL+ A7)

for almost all (X, p) € (C\0) x (R*\L,).
Proof of Lemma 5.2 is given in Section 10.

(5.8)

6. Finding H on () from its nonredundant restrictions H‘E

Our next purpose is to give an integral equation for finding H on (2 from R = H|_,
where 2 and Z are defined by (2.19), (2.20). Actually, we will give an integral equation
for finding H on Q, from R = H‘_ , where 2, is defined by (4.1) and =, = 2N Q,. In
the coordinates of Lemma 4.1 this means that we will give an integral equation for finding

H()\,p) = H(k()\,p),p), A€ (C\(]? peE R3\£V7 (61)

from

R(p) = H(Xo(p),p) = H(k(Xo(p),p),p), pERNL,, (6.2)

where g of (6.2) is a piecewise continuous function of p € R*\ £, with values in
T={AeC: |\=1} (6.3)

These properties of Ay of (6.2) follow from the properties of v of (1.10a) and from (4.6).
Note that if, for example, v = 6, where 0, w are defined by (4.5), then A\o(p) = 1 for
peRNL,.

We will use the following formula

ou(q) 1 1
u(\) = (Ao)—%/c e <<_)\—<_)\O)dReCdlmC,

(6.4)
AE C\O, Ao € (C\O,

where u() is continuous and bounded for A € C\0, du(X)/OX is bounded for A € C\0,
and du(\)/OX = O(|A|7?) as |A| — oo. Note that the aforementioned assumptions on
Ou(\)/OA in (6.4) can be somewhat weakened. One can prove (6.4) using the formula

0 1

(where 0 is the Dirac function), the Liouville theorem and the property that (6.4) holds
for A\ = Ag.

Proposition 6.1. Let the assumptions of Lemma 5.1 be fulfilled. Let H = H(\,p),
R = R(p) be defined by (6.1), (6.2). Then H = H(\,p), (A\,p) € (C\0) x (R*\L,), satisfies

the following nonlinear integral equation
H(X\,p) = R(p) + M(H)(\,p), A€ C\0, peR\L,, (6.6)

15
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where
1 1 1
M =1 [0 (25— gy JaReCdIme
AeC\0, peRN\L,,
(U1, U2)(¢,p) = {U1,Us}(¢,p), ¢ €C\O, peRNL,, (6.8a
Uj(k,p) = Uj(A(k,p),p), (k,p) € R, j=1,2, (6.8b)

where U, Uy, Uy are test functions on (C\0) x (R*\L,), {U], UL} is defined by (5.5), Ao =
Xo(p) is the function of (6.2), A(k,p) is defined in (4.6).

Remark 6.1. In addition to (6.8), note that definition of (Uy, Us) can be also written

s 2_1
w0 = [ (';i' A fcosp 1)~ 1 Sin90> ‘

as

_n A (6.9)
Ui(z1(A\p, 9), —E(A , 9))Ua(22(N, 0, ), 0+ E(N, D, 9))dep,
where
2\ D) = 2’f<%p><9<—§<x,p,;|o;|> +iw(—60p9))
0 pe) = 2(k(A,p) + £, @) (0P + €N 9)) + iw(p + €N P, 9))) (6.10)

ilp|
A e C\0, p e R}\L,, ¢ € [—m, 7], k(\,p) is defined in (4.7), £(\, p, p) is defined by (5.2),
6, w are the vector functions of (4.3), (4.4a).

Remark 6.2. Under the assumptions of Theorem 6.1, equation (6.6) holds, at least,
for almost any (\,p) € (C\0) x (R*\L,).

Proposition 6.1 follows from Lemmas 4.1, 5.1, 5.2 and formula (6.4) for uw(\) = H(\, p)
(defined by (6.1)).

Consider

L2 ((C\0) x (RP\Ly)) = {U € L¥((C\0) x (R*\L,)) = [||U]ll, < oo},

U] = ess sup (I +IpD*|UN, p)], > 0. (6.11)
AeCro, peR*\ £,

Under the assumptions of Proposition 6.1, from the part I of Proposition 3.1 and formulas
(6.1), (6.2) it follows that

H,R € LY((C\0) x (R*\L,)) (6.12)
(where R is independent of A\ € C\0).

16
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Note that
MU)(A,p) = NU)(A,p) = N(U)(Xo(p),p), (6.13a)
NU)A p) =I(U,U)(A,p), (6.13b)
I TP =~ [ (0 ) () TS (6.130)

where (), p) € (C\0) x (R*\L,), U, Uy, Us are test functions on (C\0) x (R*\L,,), (U1, Us)
is defined by (6.8).

To deal with nonlinear integral equation (6.6) we use Lemmas 6.1, 6.2 and 6.3 given
below.

Lemma 6.1. Let U,U,Uz € L ((C\0) x (R3\L,)) for some p > 2. Let M(U),
N(U), I(Uy,Us) be defined by (6.7), (6.13), where X, p are the coordinates of Lemma 4.1
under assumption (4.4a). Then

I(Uy,Us), N(U), M(U) € Ly*((C\0) x (R*\L,)), (6.14a)

I(Ula U2)('7p)7 N(U)(-,p), M(U)(,p) € C<(C\O) N LOO<(C\O)
3 (6.14b)

for almost any p € R°\L,,

Uy, Ul < cs )OI |U2]]] o (6.15a)
NN @)1, < cs (@)U (6.15b)
M) < 2e6(w|U]1]2, (6.15¢)
HIN(U1) = N(U2)[l]n < cs (@) (IO + O UL = Uzl (6.16a)
M (U1) = M(U2)|[le < 2¢6 () (UL + [Tz [L) UL = Us|[] - (6.16b)

Lemma 6.1 is proved in Section 11.

Lemma 6.2. Let p > 2 and 0 < r < (4deg(p)) L. Let M be defined by (6.7) (where A\, p
are the coordinates of Lemma 4.1 under assumption (4.4a)). Let Uy € Li7((C\0)x (R3\L,))
and |||Uo|||,, < 7/2. Then the equation

U = Uy + M(U) (6.17)

is uniquely solvable for U € Li°((C\0) x RINL)), [|U]|,. < 7, and U can be found by the

method of successive approrimations, in addition,

r(4ce(p)r)"
2(1 — deg(p)r)”

where My, denotes the map V- — Uy + M (V).
Lemma 6.2 is proved in Section 12 (using Lemma 6.1 and the lemma about contraction
maps).

U = (Mu)" ()]l < neN, (6.18)
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Lemma 6.3. Let the assumptions of Lemma 6.2 be fulfilled. Let also Uy € L ((C\0) x
(R*\L,)), |||U0|||u < r/2 and U denote the solution of (6.17) with Uy replaced by Uy, where
U € L2 ((C\0) x (R*\L,)), |U|||u < r. Then

1% = Tolll,

T denor (6.19)

1T = Ulll <

Lemma 6.3 is proved in Section 12.
As a corollary of Proposition 6.1 and Lemmas 6.2 and 6.3, we obtain the following
result.

Proposition 6.2. Let the assumptions of Lemma 5.1 be fulfilled. Let

def 2C 1
- e < 7 6.20
1 —c(w)C  4es(p) (6.20)

where C'is the constant of Proposition 3.1. Let H = H(\,p), R = R(p) be defined by (6.1),
(6.2). Then

N < 7/2, [lIR[|] < /2 (6.21)

and R uniquely and stably determines H via nonlinear integral equation (6.6) considered for
||H||| < r. In addition, this equation is solvable by the method of successive approximations
according to (6.18) (of Lemma 6.2) and the stability estimate holds according to (6.19) (of
Lemma 6.3) (where Uy, U, Uy, U should be replaced by R, H, R, H, respectively).

Finally in this section, we apply Propositions 6.1, 6.2 and Lemmas 6.2, 6.3 to approx-
imate finding H on {2 from H‘ET, where

Q" ={(k,p) € Q: |Imk| < T}, (6.22)
=T =ENQ, (6.23)

where  and E are defined by (2.19), (2.20). In the coordinates of Lemma 4.1 this means
that we deals with approximate finding H = H (A, p) defined by (6.1) from Ro, = x2, R,
where R = R(p) is defined by (6.2) and xs denotes the multiplication operator by the
function x,(p), where

xs(p) =1 for |p| <s, xs(p)=0 for |p|>s, where peR> s>0. (6.24)

One can see that Ro, is a low-frequency part of R and, thus, H|_. is a low-frequency part

=T

of H ’E One can see also that 27 is a low-imaginary part of () and, therefore, =7 is a
low-imaginary part of =.
Note that
[ xar B[l < R s (6.25)
R[]~
R —xo:R|||, £ ——————F—— 6.26
1R = xer Rll < gt (6.26)

18
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for R € L2 ((C\0) x (R*\L,)), where 0 < p < p*, 7 > 0.
Using Propositions 6.1, 6.2, Lemmas 6.2, 6.3 and estimates (6.25), (6.26) we obtain
the following result.

Proposition 6.3. Let the assumptions of Proposition 6.2 be fulfilled. Let also

ve Ly (R3) for some u* > p. (6.27)
Let 7 > 0. Then:
xR < 7/2, (6.28a)
o) 3 .
Re L2 (RA\L,); (6.28b)

X2+ R uniquely and stably determines Hs,, where Ho, denotes the solution of the nonlinear
integral equation
Hyr = Xor R+ M(Ha.), |||[Har|||p <, (6.29)

see Lemmas 6.2, 6.3; the following estimate holds:

R[]
(14 27)#" =#(1 — deg(p)r) (6-30)

I[H — Horl[|, <
Note that (6.28b) follows from the property that R € LY (R*\L,), the assumption (6.27),
the part II of Proposition 3.1 for 4 = p* and definition (6.2). Estimate (6.30) follows
from Proposition 6.2, Lemma 6.3 (where Uy, U, Uy, U are replaced by R, H, x2rR, Hoar,
respectively) and from (6.28), (6.29), (6.26).
Actually, in Proposition 6.3, Ho, is a low-frequency approximation to H. In addition,
estimate (6.30) shows that the error between Hs, and H rapidly decays in the norm ||| - ||,
as 7 — 400 if u* — p is sufficiently great.

7. Finding ¢ on R® from H on Q and some related results

Actually, in this section we consider finding v on R?’\EV from H on €2, in the co-
ordinates of Lemma 4.1 under assumption (4.4a). In addition, under the assumptions of
Proposition 6.3, we consider also approximate finding © on R?’\EV from Hs, introduced in
Proposition 6.3 as a low-frequency approximation to H.

Under assumption (2.3), formulas (2.11), (4.7), (4.8) imply that

H(\ p) — 0(p) as A — 0, (7.1a)
H(\ p)— 0(p) as A\ — oo, (7.1b)

where A € C\0, p € R*\L, and H(\,p) is defined by (6.1). In addition, under the
assumptions of Proposition 6.1, formulas (6.6), (7.1) (and estimates (3.7), (3.8), (5.7),
(5.8)) imply that

o(p) = R(p) + M(H)(0,p), (7.2a)
o(p) = R(p) — N(H)(Mo(p); p) (7.20)
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for p € R*\L,, where M, N are defined by (6.7), (6.8), (6.13), and )¢ is the function of
(6.2). In addition, due to (6.13a), we have that

M(H)(0,p) = N(H)(0,p) = N(Ao(p),p), p €R\Ly, (7.3)
and, as a corollary of (7.2), (7.3), we have that
N(H)(0,p) =0, peR\L,. (7.4)

Further, under the assumptions of Proposition 6.3, using (6.29) we obtain that

Hy (N, p) — 05 (p) as A — 0, (7.5a)
Hor (N, p) — 05.(p) as A — oo, (7.5b)
where
05, (p) = Xx2- R(p) + M (Ha-)(0, p), (7.6a
by, (p) = x2r R(p) — N(Hz-)(Ao(p), p), (7.6b)

for p € R*\L,, where M, N are defined by (6.7), (6.8), (6.13) and )¢ is the function of
(6.2). In addition, formulas (1.9), (6.11), (7.1), (7.5) imply that

10— 05 Ml < N11H — Haell],o (7.7)

Under the assumptions of Proposition 6.3, formulas (6.30), (7.7) imply that & on R* can
be approximately determined from Hy, as 93 of (7.5), (7.6) and

1
TR —p

||®—?§§[T||M:O( ) as T — +oo. (7.8)

8. Proofs of Lemma 3.1 and Proposition 3.1
Proof of (3.3). We have that

|A(R)U (p)| < I(k, p) |0 u][U]] 1, (8.1)
where it
_ 3

RS
To prove (3.3) it is sufficient to prove that

c1(p)
I(k,p) < W, (8.3a)
c2(p) (I ([Im k[))?
I(k,p) < Tk o) In |[Imk| > 2, (8.3b)
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where k € ¥, p € R®. Note that

I(k’,p)§< / * / )(1+|p+f|)“(1dj|§\)“\52+2k£|’

1€I<Ip+£& [€1=]p+E]

where k € 3, p € R®. Note also that

gl <lp+&l=lp+&l = 1pl/2, €] = Ip+&l =€l = Ipl/2,

where &, p € R®. Using (8.4), (8.5) we obtain that
I(k,p) < (1 +[pl/2) (11 (k) + La(k, p)),

where

dg

LK) :R/3 (1 1EDPIE + 2ke)

B ¢
Lx(k.p) = / L+ o+ E)HIE + 2ke]

3

where k € 3, p € R3. Note that
Li(k) = Ix(k,0), keX.
Note further that

IQ(k7p> =

dg
| T R = e PP R (e R B R T e
R3
13<k7 Rek _p)7

dg
/ (141§ = p)#[€* — (Rek)? + 2ilm k|’

3

IB(kvp) =

where k € 3, p € R3.
In view of (8.6)-(8.10), to prove (8.3) it is sufficient to prove that

I3(k,p) < éi(p),

Ca(p)(n ([T m k[))*

I3(k,p) <

[Imk| > p(p),

where k € 3, p € R,

21
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Consider p; = p(p, Imk), p1 = p1(p,Imk), where

_pImk Imk
PU= 1 Tm k] [Tm k|

for [Imk|#0, py=0 for [Imk|=0, pL =p—p, (8.12)

where p, Imk € R®. Using the properties

ImkRek =0, (Rek)®*= (Imk)* for k€ X (8.13)
and changing variables in the integral of (8.10), we obtain that
IS(k7p) =
/ 8
o (14 (& = IpL)* + &3 + (& — sgn (py Im k)lpy )?)1/2)#1€2 — (Im k) + 2i [Im k|&s|
(8.14)
where k € X, p € R®. Further, using (8.14) we obtain that
Ii(p,s,t) =
/ dg , (8.16)
gy U @t 4G (G = sl 2180 + 86 + 65 = 971+ 20l3)

where k € £, p € R?, p,s,t € [0,+00[. Due to (8.15), to prove (8.11) it is sufficient to
prove that

[4</), 87t) <a (:u)/\/g7 (817@)
Ii(p,s,t) < ég(u\)/(élzp)27 Inp > 2, (8.17b)

where p, s,t € [0, +00[. Note that

wons( [ - [ )

&|<|€s— 1€3]>1€3—s]
d¢ <
(L4 (& =02+ & + (& — s))2(IEF + 6 + & — p? +2pl&3]) —

dg

. |<|{— | (T4 (61— 1) + &5 + EH/2(|EF + &5 + &5 — p?] +2p|£3|>+

dg
e s F (€& — 021 2+ (65— 9)2)P2(|E2 + €2+ (& — 5)2 — p2| + 20|€5 — 8)) <
dg
= 2]
QR/B A+ (& — 02+ &+ )2 + £+ — 2 + 20l6)) 214(p, 0, 1),

(8.18)
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where p, s,t € [0, 400][. In addition, in (8.18) we used, in particular, that

€ +65 +&5 — P74+ 2pl€s| = €7 + &3 + (63— 5)* — p°| + 2063 — 5| if |&5] = |€&5—s]. (8.19)

To prove (8.19) we rewrite it as

PP =& =& — & +2p|&] > p® — &5 — &5 — (& — 5)* +2p|&5 — s
for &3] > |63 —s|, €1 +&5 +&5 < p?,

4+ +&—p*+2p|&| >+ &+ (& — ) — p* +2p|&s — 5]
for |&5|> 163 —s], &§+&+& >p° G+ + (& —9)° > p7

4+ &+ —p+20/6] > p* — & — & — (& — 5)* + 2p|&s — 5]
for [&3]> (&3 —s|, &+ E2+E5>p% & +E+ (& —35)2 <pP

Inequality (8.20a) follows from the inequalities

—x2+2px2—y2+2py for 0<y<z<p,
y=|&—s| <z =161 <\/p? -+ <p

Inequality (8.20b) is obvious. Inequality (8.20c) follows from the inequalities

2?2 =02 +2px > 6% —y* +2py for 0<6<p, 0<y<6<u,

y=16—s|<d=1\/pP? - -G <a=|&|, d=1/p? - —& <p

In turn, inequality (8.23) follows from the inequalities

x2—62—|—2px22p5 for 0 <9 <u,

(8.21)
2 —y*+20y < 2p5 for 0<y <4 <p.

Thus formulas (8.19), (8.18) are proved.
Due to (8.18), to prove (8.17) it is sufficient to prove that

c1(p)

2v2’

&2 () (In p)?
2V2p
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Li(p,0,t) <

Ii(p,0,t) < Inp > 2,

(8.20a)

(8.200)

(8.20c¢)

(8.25)

(8.26a)

(8.26b)
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where p,t € [0, +oo[. Using spherical coordinates we obtain that

I4(p, O, t) =

4o ™ ™

/ // r? sin ydipdpdr B
1+ 72 412 — 2rtsine cos )/2(|r2 — p2| + 2pr|cosvp|)
—m 0

+oo m /2
9 / / / r? sin ydipdpdr <
(1+ 72 +t2 — 2rtsine cos )/ 2(|r2 — p2| + 2prcost)) —
0 —m O

400 7T/2 TI'/2

4 / / / r? sin Ydipdpdr < (8.27)
(1472 + 12 — 2rtsine) cos )/ 2(|r2 — p2| + 2prcos)) —
0 —w/2 0

400 7T/2 TI'/2

4/ / / r? sin Ydipdpdr B
(1472 +12 — 2rtcos p)H/2(|r2 — p2| +2prcostp)

0 —w/2 0
+oo w/2 g /2 ) g
4/ / L4 / sinydy r2dr,
(1+ 72+ 12 — 27t cos p)H/2 (|r2 — p?| +2prcost))
0 —x/2 0

where p,t € [0, +oc[. Further, we obtain that:

/2 /2

e
1+72+12—2rtcosp 1+7r2+12 —2rt(1 — 2(sin(p/2))2)

—m/2 —m/2
/4 /4
/ dp / V2 cos pdyp
2 : <2 .
1+ (r—t)% 4 4rt(sin p)? 1+ (r—1t)2 4 4rt(sinp)?
—m/4 —m/4
1/V2 Vart
4 / V2du B 2./2 du <
L+ (r—t)2 +4rtu  /rt 1+ (r—t)2+u? — (8.28)
0 0
\/2_7"75

Vrt 0/ 1+ ( r—t) + u)?

4[( 1 B 1 )_
VIt \ 1T+ (r =12 1+ —0)2+v2rt)
8

ST 021t 02+ vorh)
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/2 1
/ sin Y dy B du B
\r2—p2\+2prcos¢_0 72 — p2| +2p1u

1 1 1 2pr
—In (|r* = p?| +2 =—h(l4+ ———
o n (|r* —p*| + pru)‘o o n( -+ T ),

(8.29)

where p,t € [0, +oo[. Using (8.27)-(8.29) we obtain that

400

u>2 d
Li(p,0,t) < 32/ !
0

\/1 (r —t)2 \/1 (r —t)2 -l—\/%)S

+00 400 (830&)

dr dr
2 _— 2 =327 f = t>
3 /1+(r—t) <3 /1-1—1“2 327 for p=0, t>0,

0 —00

In

k22 16 (1+ =] )rdr
Lip,0,t) < / = 8.30b
V14 (r=1)2(/14 (r —t)2 4+ V2rt) (8.300)

Is(p,t/p) for p>0, t>0,
where

+oo pln <1 + —|7_2211)7'd7'
I5(p,e) = 16 /
| VT 2T P (/LT 2 — o) + pV2re)

, p>0,e>0.

As regards I5(p, ), we will estimate it separately for ¢ € [0,1/4], € € [1/4,2] and
€ [2,400]. For € € [0,1/4], p > 0, we start with the partition:

/2 3/2  +oq pln <1 + —r2211>7"d7"
1,5:16/+/+/) -
(6. <) ( 1+ p2(r —e)2 + pvV2re/1 + p2(r — €)? (8.31)

0 1/2 3/2
16(15,1(p; €) + I5 2(p, €) + I5 3(p, €)),

1/2 3/2 too
where I 1, I5 2, I5 3 correspond to [, [, [, respectively. Further,
0 1/2 3/2
1/2
prdr

=1n(7/3)I51(p,e), (8.32)

Is1(p,e) < (7/3) O/ 1+ p*(r —€)* + py/re(l + plr — €l)
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where p > 0, € € [0,1/4]. In addition:

1/2 1/4
I o 5)—/ prdr _1/ pdr _1n(1+p2/4)
5,180 €)= 14+ p2r2 2 1+ p2r 2p

0 0

for p > 0, e =0;

1/2  3/2  1/(2€)

Is1(p,e) = </+/+ / )1+(p€)2(r—1)5j—2;gj/?(1+,05|7—1|) B

0 1/2  3/2

I~5’1’1(p, 8) + f57172(p, 8) + f57175(p, 8) for p > 0, IS 6]0, 1/4],

1/2 3/2 1/(2¢)

where 51 1, I5 1.2, I5 1. correspond to [, [, [ respectively. In addition:

0 1/2 3/2

pe /4 (pe)?

: p
1 NS < T3 )
51108 < T~ pat o) < G )
3/2 )
~ e“(3/2)dr
Is12(p,e) < 2/ Pe(3/2) =
/ 1+ pe/1/2(1 + pe(1 — 1))
1/2 ) a2
pedr 3V 2pe 9 \(1/2
3/ = In (V2 + pe + (pe)?r =
T+ eV (pePrvE (e Gl
2 2 2 2
p 2(V/2 + pe) p 32v/2
(2e)71 -1 2( N 1)d (2e)71 2
- pes(r T perdr
I < — <3 — =
5,1,3(:07 5) = / 1+ (p8)27'2 = / 1+ (p€>27_2
1/2 1/2
3pe” 1/<2s> 2
SE In (1 + (pe)? }1/4 §—ln(1—|—p/4),

where p > 0, € €]0,1/4]. Further,

3/2
p 2r
Is2(p.e) < T4 2/16 / In (1+ m)rdﬁ
1/2
+Oop(2r/\r2 — 1|)rdr +oo4p(1 +(r2—=1)"Ydr 8
Is 3(p,e) < / < / < ,
’ L+ p?(r —¢)? (1+p(r—e))? 1+p5/4
3/2 3/2
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where p > 0, € €]0,1/4].
For ¢ € [1/4,2], p > 0 we use the partition:

1/8 3  4og pln (1—1—%)7@7‘
Is(p,e) =16 +/+ /) —
5(ps€) (0/ / L+ p2(r—e)2+p /27“5\/1—|-p2(7“—€)2 (8.39)

178
16(I5,4(p, €) + Is 5(p,€) + Is 6(p, €)),

1/8 3 400
where I5 4,155, I5 6 correspond to [, [, [, respectively. In addition:
1/8 3

o

1/8

Is4(p,e) <In(3/2) / prar ____In(3/2)p
0

14+ p2(r—e)?2 = 64+ p2’

(8.40)

r
m)rdr, (841@)

3
Is5(p,e) < p / In (1+
178

3 3pln <1+%1|>dr

. 1+ py/1/32(1+plr —gl)

Is 5(p,e) <

3pln ( 1+ 24 |dr
( / i / )1+p\/p1/732<+ pQ\/l/%rﬂ

[r—e|<|r—1],1/8<r<3  |r—e|2|r—1],1/8<r<3

3 pln <1+|7n%6)dr 3 pln <1—|—|r%1)dr
12%5(/ +/ ) <
/

A2+ p+p?lr —¢f A2+ p+p?r =1

(8.41b)

1 1 )d
48\/_/pn 48[/—n Lo
4\f—i—p+pr I+pr

48\/_ In (1 + 22)dr P21
/ / 1 + 7 -
3p

1
48\/§/ln3p—|—1n1/7' / (1+2p)drY
p 147 147 N
0

1

1

<1n(1+2p) In (1/2 + (3/2)p) + In (3p) 1nz+/1 fdeT), p>1,

=

48

b ‘

0
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+oo t+oo
p(2r/|r? — 1|)rdr 4p(1+ (r2 = 1)~ Y)dr 5
R e e ARl e (T e v
3

where p > 0, € € [1/4,2].
For € € [2,+00[, p > 0 we use the partition:

Is(p,e) = 16(I5,7(p, €) + Is s(p, €)), (8.43)

where Is 7 = Is1 + I52, Iss = I53, where I5 1, I5 2, I53 are defined as in (8.31). In
addition,

3/2
P 2r
I < In(l14+ ———)rd 44
5,7(/),5) = 1+,02/4 / n( + |7‘2 _ 1|)T T, (8 )
0

—+00

p(2r/|r? — 1|)rdr _
15,8(,076) < / 1—|—p2(r—€)2—|—p\/§(1+P|7"_5|) =

3/2
400
/ 2p(1 + (r?2 —1)"Ydr
1+ V3p 4+ V3p2|r —e| + p2(r —¢)?
3/2 (8.45)
400 1 +oo

/ dpdr < 8pdr / 8pdr
L+ V3p+V3p2Ir[ 4 p%r =) VBp+V3pPr ) Tt T

/ / 16pdr _iln(l-ﬁ-p)_‘_ 16
V3] 1+pr (1+pr)2 V3 p 1+p’

where p > 0, € € [2,+o0].
Estimates (8.26) follow from (8.30)-(8.45). Thus, estimates (8.17), (8.11), (8.3) are
proved. The proof of (3.3) is completed.

Proof of (3.2). Let

X Ue)
f1(&) =0(8), f2(§) = € 2kt (8.46)
where € € R3, k € ¥. We have, in particular, that
f1 € L®(R?), f, e LYR?). (8.47)
Property (3.2) follows from (8.46), (8.47) and the following lemma.
Lemma 8.1. Let f1, fo satisfy (8.47). Then the convolution
f1 % foa € C(R®) N L>®(R?), (8.48)
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where

(hrx 52)0) = [ Ao~ Q€1 p e, (5.49)
RB
Lemma 8.1 follows from the following properties of (fixed) f; € L®(R?), fo € L*(R?):

[ 1120106 < . (8.50a)
RZ%
/ 2(€)|de — 0 as 7 — +oo, (3.500)
B'r‘
sup /|f2(£)\dﬁﬁ 0 as € — 0, (8.50¢)
mesAgsA
Vr>0,e>0A>13ue€C(B,y1) such that
(8.50d)
mes supp (f1 =) < 2, ulleqa, ) < Ml o gge,
where
B.={¢eR®: |¢ <) (8.51)
The proof of (3.2) is completed.
Proof of (3.4). Due to (3.3a), we have that
1(A(k) = AD)Ulp < 2c1 (01wl UN s K, 1€ 2. (8.52)

Besides, we have that

|(A(k> - A(l))U(p>| < (Al(lv 57p) + AQ(k7 l7 5,]9) + A3(k7 l757 T7p) + A4(k7 l7 T7p)>><

o U -
where .
_ de
Aulher) _m/ T T P+ P2 + 28] (85
_ de
B _Du/ O T+ DR+ e e+ 2kel (559
_ 2( — D)eld
Sterd= | G e e 6
B \D(l,e)
_ 2/(k — D)eld
S _Rs/ (L+ o+ EDF(1+ [ED]€2 + 2he[E + 2] (557
\B:
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where

D(le) = {E e R |2+ 21| <e),
B, is defined by (8.51),

0<e<l, 2+2<r |k—I|<1, kleX, peR®
where |z| = (|Re z|?> + [Im z|*)'/? for z € C?. Note that

€2 + 20¢] > €% + 2RelE] > [€](|€] — 2|Rel]) > 2| > 4 > ¢
for ¢ € R*\B,

and, therefore,
D(l,e) C B,

under conditions (8.59). Further, we estimate separately Ay, Ay, Az and Ay.
Estimate of Ay. In a similar way with (8.6), (8.7) we obtain that

Al(l757p> S (1 + |p|/2)_H (Al,l(lag) + (Al,Q(l757p>)7

A1’1<l,€) = / (1 i |£|)u|§2 + 2l§|7
D(l,e)
Aya(l,e,p) = (/) (1+ |p+ &])r[e2 + 21|’
D(l,e

where 0 < e < 1,1 € X, p € R®. In addition,
Ara(le) < Ars(le), Al e,p) < Ais(le),

where

Ars(le) = / s _ / V2d¢ (8.13)
e €2+ 20¢] = €2 + 2Re I¢| + 2[Im 1€
D(l,e) D(le)

V2dE

<
(€ + Rel)2 — (Rel)?| + 2[ImI(€ + Rel)| —
[(E+Rel)2—(Rel)2+2iIlm l(€+Rel)|<e

\/ﬁdé% p1=|Rell,(8.13) / \/§d£
|

<
|€2 — (Rel)?| + 2|Im ¢ -
|§2—(Rel)?|<e |€2—p?|<e

// V/2r? smwdzpmpdr — 4B (),

72— g2l + 27| cos )

(p7+e)/?

(max (p? —£,0))1/2 —7 0
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(P2 w2
/ r2 sin ) dap dr (8.29)
|72 — p2| +2prcosty

Ay 4(p,e) =
(max (p2—e,0))1/2 0

(p>+e)t/?

1 2pr r
— In(l4+ ———)—dr <
2 / ( |2 — p?| ) p (8.66)
(max (p2—¢,0))1/2
) p (p°+e)'/? )
P r—p
— + / ) In(1+ ——)(1+ dr =
(o A
(max (p2—¢,0))1/2 P
A1,4,1(p7 6) + A1,4,2(p7 6)7
P (p*+e)'/?
where Aq 4.1, Ay 4,2 correspond to f , f respectively, 0 < e < 1,1 € 3,
(max (p2—e,0))1/2 p
p1 = |Rel| =1|/v2, 0 < p. In addition,
cl/2
A1 4(pe) = / dr=¢? for p=0, 0<e<1, (8.67a)
0
1 f 2 (8.68) 1 f 1, 2
P ‘ P e
A e) < = In(1 dr < = — dr =
wieasy [ mepEersy [ SOy
(max (p%—¢,0))1/2 (max (p%—e,0))1/2
2/) «@ W P
- %(P —r)! =
(max (p%—¢,0))1/2
(2p)~ 2 1/2\1-« (869 (2p)” (1—a)/2
_\F o, —£.0 < e a
2a(1 — ) (p = (max (" —,0))") - 2a(l- 04)8
(8.67b)
for p>0,0<e<],0<ac<l,
(5.68) (p*+2)!/2 (pP+e)!/2
8.68 1, 20 \a
A < —(——) d dr =
p P
2p)" I (8.69) (8.67¢)
(2p) (PP +e)?=p) "+ (PP +e)?—p) <

20(1 — @)

forp>0,0<e<l,0<a<l.
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Note that in (8.67b), (8.67c) we used the inequalities

In(1+2z)<a'2z* for >0, 0<a<l, (8.68)
(x4e)/2 =22 <eV? for >0, ¢>0. (8.69)
Due to (8.62)-(8.67) we have that
2|Rel|)”
Ai(l,e,p) < 87V2(1 + |p|/2) ™ (1 + %)sﬂ—aw (8.70)
a(l —a

forleX,0<e<1l,peR’ 0<a<]l.
Estimate of Ay. In a similar way with (8.62)-(8.65) we obtain that

Ao(k,1,e,p) < 2(1+ |p|/2) " Ag(k, 1), (8.71)
N D)
Ao(k,1,c) = / LS <
€2 + 2Re k€| + 2|Im k€]
D(l,e)
V2d¢ _
(€ + Rek)2— (Rek)?|+ 2[Imk(€ + Rek)|  (872)
|((€+Rek)—(Re k—Rel))2—(Rel)2|<e
V2d¢
€2 — (Re k)?| + 2[Im kg|
|(6—(Re k—Re1))?—(Re )?|<e
where k,1 € £,0< e <1, p e R® Note that
(€= —p°|<eomax(p’—€,0)<((—()*<p’+e= (8.73)
max ((max (p? — €,0))"/2 — [¢],0) < [¢] < [¢] + (p* +)*/? (8.74)
G max (p— €2 = |¢],0) < [¢] < p+ Y2+ ¢], (8.75)

where £, € R®, p >0, 0 < ¢ < 1. Using (8.72) and (8.73)-(8.75) for ( = Rek — Rel,
p = |Rel|, in a similar way with (8.65), (8.66) we obtain that

AQ(k7 la 6) =
p1+6

27”/5( 7 i ) " <1 i ITQ—MZJRI) <1 e ;kpk)dr - (8.76)

max (p;—6,0) Pk

27T\/§(Az,1(pk,/)l,5) +A2,2<pk,,0l75))7
pr = |Rek| #0, p=]|Rel], 6§ =¢c'/?>+|Rek—Rel|, k,le%, 0<e<l,

- - Pk p1+4
where Ay 1, Ay 9 correspond to f , f respectively. In addition, in a similar way
max (p;—6,0) Pk
with (8.67) we obtain that

Ag(k,l,e) < 4nvV2(6 + p1 — pi) < 4nV/2(e*/? + 2|Rek — Rel|) for k=0, (8.77a)
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a((lei):—) (pr — max (p; — 6,0))' 7 <
(2p1)"

1—a _ (2|Rek|)”
a(l_a)(5+|pk_pl|> < O_/(l—(l/)

AQ,I(pkvplvé) S
(8.77b)
(eY/? + 2|Rek — Rel|)'~

(2p8)"
a(l —a)

(eY2 4+ 2|Rek — Rel|)'=® + 2(¢Y/? + 2|Re k — Rel]),

Az,z(pk,m,5) < (pr4+6—pr) "+ 2(p1 +6 — pr) <

(2|Re k|)™
a(l —a)

where k, [, e, pi, p1, 0 are the same as in (8.76) and 0 < o < 1.
Due to (8.71), (8.76), (8.77) we have that

(8.77¢)

(2|Rek|)”
a(l —a)
for k,leX, |k—1]<1, 0<e<1, peR® 0<a<l.

Ao (k,l,e,p) < 8mV2(1 + \p\/z)—“< + 3a) (eY/?2 4+ 2|Rek — Rel|)*

(8.78)

Estimate of As. We have that

(8.51),(8.58) 2k — l|rd¢ (82a)

= / (T + o+ ED(1 + [E)F]E2 + 2he e
B, (8.79)

AS(ka la g, T, p)

2|k —lfr _e1(p)
e (L+[p)n

under conditions (8.59).
Estimate of A4. We have that

(8.57),(8.59),(8.60) \k — 1|d¢ (8.3a)

= / At lp T ENr(i+ EDe + 2ke] =
R\, (8.80)

A4(167 l7 T,p)

c1(p)
(1 + [p])*~

under conditions (8.59).
Now formulas (3.4) follow from (8.52), (8.53) and estimates (8.70), (8.78)-(8.80) with
e=k—1°,0< |k -1 <1for fixed k € %, r > 2(|k| +v2) + 2, a €]0,1] and 8 €]0, 1[.
The proof of (3.4) is completed.
Finally, property (3.5) follows from the presentation

(AR)U)(p) — (A(K)U)(p) =
(A(R)U)(p) = (AR)U) (D)) + (AR)U) (@) — (A(K)U)(p'))

k=1

(8.81)

and properties (3.2), (3.4). The proof of Lemma 3.1 is completed.
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Proof of Proposition 3.1. Proposition 3.1 follows from equation (1.5) written as
H(k,-)=0— A(k)H(k,") (8.82)

and Lemma 3.1. In addition, to obtain (3.8a), (3.12a) we use the presentation

H(k,p) — H(K,p'") = (H(k,p) — H(k,p')) + (H(k,p') — H(K',p)), (8.83)
where
Ak Bk ) -0 2 A HE, ), (8.84)
H(k,- (3'2%8‘84) C(R?) as soon as H(k,-) € Ly (R%), (8.85)
H(k, ) = H(K ) = H(k, ) = HE, ) O (1+ AR) ™ = (1 + A(K) )i =
(I 4+ A(R)TH(I + AR) ™ = (I + A(R) I+ A(K') " Ho = (8.86)
(I + A(k))~H(A(K") — A(R) (I + A(K') ™),
. _ o (8.85) 5 ) s
H(k,-)—H(K',-) € C(R”) assoonas H(k,-),H(K,-)e L7 (R"), (8.87a)
1k, — HE, ), “2E 0 as & -k (8.87)
as soon as (I + A(K"))™! is uniformly bounded in a neighborhood of &, .
sup (1-+[p'|)[H (k') — ALK, 0] 70 as K — k
peR? (8.88)

as soon as (I + A(K'))™! is uniformly bounded in a neighborhood of k,

where k, k' € &, p,p' € R,
The proof of Proposition 3.1 is completed.

9. Proof of Lemma 5.1

The proof of Lemma 5.1 of the present work is similar to the proof of Lemma 4.1 of
[No5]. Proceeding from (3.13), (4.3), (4.4a), (4.7), (5.2), (5.3) in a similar way with the
proof of Lemma 4.1 of [No5] we obtain that:

0 T Ok k2
— H(k(A\ = —— —0 —
{¢eR”: e2+2ke=0} (9.1)
ds 3
H(k7_£)H<k+§7p+§)W7 )‘GC\O7 pER \EV,

where k = k(\,p), k1 = k1(\,p), k2 = Ka(A,p) are defined in (4.7), 0 = 0(p), w = w(p)
are the vector-functions of (4.3), (4.4a), ds is arc-length measure on the circle {¢€ € R? :
€2 + 2k€ = 0} and, in addition,

ds = |Rek|dyp, (9.2)
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OR1 OFRo OR1 OFRo
b eof = == = -1
) o€ + o wé ( 3 Rery + 2 Re /12) (cosp — 1)+
_ _ (9.3)
P <6—K_1[m Ko — 6—,{_2Im /@1) sin
2[Imk|\ OX oA

under the assumption that the circle {£ € R?: £242k¢ = 0} is parametrized by ¢ €]—7, 7|
according to (5.2). (Note that in the proof of Lemma 4.1 of [No5] the d-equation similar
to (9.1) is not valid for |A| = 1 but it is not indicated because of a misprint.)

The difinition of k1, ko (see (4.7)) implies that

3R1 z\p\ 1 6/%2 \p\ 1
L1, = =C1+= 9.4
U A S Ch c)) (0.4)
11 -1 1
Remzﬁ()\—)\%———:), Im/ﬁ:@()\—l—)\—l———i—r),
pl,, 1 1 pl,, 7 1 1 '
Re:‘iQ:—()\—F)\—X—X), [m/igzg()\—)\—x—i—i),
where A € C\0, p € R*. Due to (9.4), (9.5) we have that
%Re K1+ %Re Ko =
Ip|? 1 -1 1 1 -1 1
S (=) A=At 1 =3+ Z)A+A-T-3)) =
Ip|? 1 A 1 1 1
Py A+ 4o — 9.6
32( +)\ A A2 ) )\A2+)\3+ (9:6)
o1 1 X 11 1
A+ A4 b —— — =) =
* A )\+)\2+)\ A2 )\3)
pl® 1, pP? 1
OR1 OFRo
7 - =27 =
) R, S
Ip|? 1 11 1 -1 1
5 (=) A=A= 3+ 5+ 0+ F)A+A+ 1 +7)) =
p|? 11 X 11 1
32(>\ A STy ettt et (9.7)
DTS SR S +i)—
AX A2 A AN N
p|® 2 1 pl? (A + 1)
_ N+ S )= — _
IO Sy LA TR VES
Due to (9.6), (9.7), (4.8) we have that
OF: OFs 1 Ip] (A2 = 1)
R R =X 9.8
(8/\ cRt s “Z)umiq S VI (98)
OF1 OFa pl Ipl
(axlm’” axlm“l)mmw— 22 (9:9)
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where (A, p) € (C\0) x (R*\L,).

The d-equation (5.1) follows from (9.1), (9.2), (9.3), (9.8), (9.9) and the property that
|Re k| = |Imk| for k € ¥ defined by (1.7).

Lemma 5.1 is proved.

10. Proof of Lemma 5.2
Let us show, first, that

{U1,Us} € L2, ((C\0) x (R*\L,)). (10.1)

local

Property (10.1) follows from definition (5.5), the properties

Ui(k,—&(k,p)) € L*°(X x [0,27]) (as a function of k,¢),
Ui(k,—&(k,p)) € L=(Q x [0,27]) (as a function of k,p, ¢ (10.2)

(with no dependence on p)),

Us(k+&(k,p),p+ E(k, @) € L=(2 x [0,27]) (as a function of k,p, @), (10.3)

where

Y={keC®: K2 =0}, Q={kecC? peR®: K2 =0, p> =2kp},  (10.4)
Imkx Rek

€(k,p) = Rek(cosp — 1) + k' sing, k' = el

(10.5)

(where x in (10.5) denotes vector product), and from Lemma 4.1. In turn, (10.2) follows
from U; € L*>®(R), definition (10.4) and the fact that p = —&(k,¢), ¢ € [0,27], is a
parametrization of the set {p € R®: p? = 2kp}, k € £\{0}. To prove (10.3), consider

O={kecC?® 1ecC: ¥*=12=0, Imk=Iml}. (10.6)
Note that
O~ Q,
(10.7)
(k,) e® = (k,k—1)€Q, (k,p)eQ= (k,k—p)€0.
Consider

ug(k, 1) = Us(k, k — 1), (k,1) € ©. (10.8)

The property Uy € L*°(2) is equivalent to the property us € L°°(0). Property (10.3) is
equivalent to the property

ua(k + &(k,p),1) € L=(0 x [0,27]) (as a function of k,I, ). (10.9)
Property (10.9) follows from the property

u2(C(l, ¢, 0) +iIml, 1) € L (X x [0,27] x [0, 27])

10.10
(as a function of 1,1, @), ( )
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where

ZL_ImlxRel

C(lvlﬂvw) - RGZCOS(QO—'QZ)> +ZL Siﬂ(cp—zb), |Iml|

(10.11)

(where x in (10.11) denotes vector product). Note that k = ((I, 1, ), ¢ € [0, 27] at fixed
Y € [0,27] is a parametrization of the set S; = {k € C*: k> =12, Imk = Iml}, 1 € £\0.
In turn, (10.10) follows from us € L*°(©), definition (10.6) and the aforementioned fact
concerning the parametrization of S;. Thus, properties (10.10), (10.9), (10.3) are proved.
This completes the proof of (10.1).

Let us prove now (5.8).

We have that

{Ul,UQ} = {Ul,UQ}l —|—{U1,U2}2, (10.12)

where )
_mlpl(AF =1)

Ui, U. A p) = =
{ 1 2}1( 7p) 8)\‘)\‘

{U1, Uz}3(A, p), (10.13a)

us

{U1,Uz}3(\,p) = /_W(COW —1)x (10.13b)

Ur(k(A,p), =&\ 0, 0))Ua(E(X, p) + €N 0, @), 0+ E(N, p, ) ) dep,

|p|

{U1, Uz} = K{U17U2}4(>\,p), (10.14a)

us

{U1, Uz234(Ap) = /_7r sin px (10.14b)

Ur(k(A,p), =€\, 0, 0))Ua(E(X, p) + €N 0, 0), 0+ E(N, p, ) )dep,

AeC\0, p e R3\L,.
Formulas (5.2), (5.3) imply that

1€12 = |Re k|*((cos p — 1) 4 (sin)?) = 4|Re k|*(sin (p/2))?, (10.15)

where § = (A, p, ), k = k(A p).
The relation p? = 2k(\,p)p, A € C\0, p € R*\L,,, implies that

p=—Rek(\ p)(cosyp — 1) — k(A p)sinp (10.16)

for some 1) = (A, p) € [—, 7], where k+(\,p) is defined by (5.3). Formulas (5.2), (5.3),
(10.16) imply that

Ip+ &> = |Rek|*((cos ¢ — cos ) + (sinp — sinep)?) = 4|Re k|*(sin 7 ; ¢)2,
. (10.17)
Ip|* = 4|Re k|* (sin 5)2,

where £ = &£(\, p, @), k =k(\,p), ¥ =9\, p).
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Using the assumptions of Lemma 5.2 and formulas (10.13b), (10.14b), (10.15), (10.17)
we obtain that
{U1, Uz}s(A, p)| < A(r, ¢, s i) [[|UL] ][ 1 U21
|{U17 U2}4(/\7p)| S B(T7¢7M?M)|||U1|||H|||U2|||H
for r = |Rek(\,p)|, ¥ = ¥(\,p) (of (10.16)) and almost all (\,p) € (C\0) x (R*\L,),

where

(10.18)

[T (1 — cosp)dy .
Al v, o, 0) = /_ﬂ (1 + 2r|sin(p/2)])2(1 + 2r| sin(25%)[)8’ (10.19a)
_ [T | sin p|dy
By, e 6) = /_ﬂ (1 + 2r|sin(p/2))*(1 + 2r|sin(£52)[)8’ (10.199)

forr >0, ¢ € [-m, 7], @ > 2, § > 2. In addition, in (10.18) we used also that, in view of
Lemma 4.1, properties (10.2), (10.3) and definitions (10.13), (10.14), the variations of Uy,
U; on the sets of zero measure in €2 imply variations of {U;, Us}3 and {U;, Us}4 on sets of
zero measure, only, in (C\0) x (R*\Z,).

Further, we use the following lemma of [No5|.

Lemma 10.1 ([No5]). Letr > 0, ¢ € [—7, 7|, p = 2r|sin(¢/2)], « > 2, 8 > 2. Then

4
r 1, ) sz (r, 0, ), (10.20)
PP p 1
Al(’l“,'ll),(l/,ﬁ) S min (@,ﬁ)m7 (1021)
p’ 1
As(r, 1, o, ) < _3W, (10.22)
403 1
3 2r 1
Ay(r, v, a, B) < (1+T2 + (1+\/§r)a)(1+p/2)ﬁ’ (10.24)
4
B(r,,a,8) < S By(r, 4, o, ), (10.25)
j=1
0t V2 1
Bi(r, 9, a, 3) < min (ﬁ, - )(1 YR (10.26)
p? 1
(T 'QZJ ﬁ) 1“2 W, (1027)
B < 4 ! 10.28
3<T,¢,a,ﬁ)_T—2(1+p)o‘(1+p/2>, ( : )
By(r,v,a,0) < > 3 L (10.29)

(l-l-r * (1+\/§r)a)(1+p/2)6'
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Lemma 10.2. Let
r=r(\p) = Z(|)\| + |)\|) |sin (¢/2)| = o (10.30)

where A € C\0, p > 0, ¢ € [—m,w|. Then:

2 _q 43
pHA\‘w s VBN + 1>‘2<‘1 /2P Hosy
21 2. 43
p||/|\|)\|2 s < (A2 + 1)2(1|A+| p/2)* e
2 44
pHA\LP CE (|A|2i1312|(1\|+ P )
A2 1 drpl| A2 — 1
! \‘w e A <p/4><7wri=|+|w—1‘>>2<1 YEYER (10:34)
< G T e
3
17 S TR o e
.43
75 = G e 7 e
8
W5 S AT G0+ ) 727 (10:38)
where A; = A;(r, ||, o, 8), B; = Bj(r,|Y],a, () are the same as in Lemma 10.1, j =
1,2,3,4, a>2, 3>2.
Proof of Lemma 10.2. Using (10.30) we obtain that
3 43 )\ 3 1 43 3
prin (i ) = e o (85) < e 0
pmmin (% \gp) _ (|A1|‘25|i|21)2 min (g\/i) < (‘1;\[%1‘; (10.40)

where A € C\0, p > 0. Estimates (10.31), (10.35) follow from (10.21), (10.26) and (10.39),
(10.40). Estimates (10.32), (10.33), (10.36), (10.37) follow from (10.22), (10.23), (10.27),
(10.28) and (10.30). Estimates (10.34), (10.38) follow from (10.24), (10.29), the inequalities

3 27 4
1+ 7‘2 1 1+7r
L+ v = T (10.41)
5 3 _ .8

+ 3
147 (1+\/§r)a_1+r
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where 7 > 0, a > 2, and from (10.30). Lemma 10.2 is proved.

Estimate (5.8) follows from (10.12)-(10.14), (10.18), (4.8), (10.17) (for |p|) and Lem-
mas 10.1, 10.2. Property (5.7) follows from (10.1) and (5.8).

Lemma 5.2 is proved.

11. Proof of Lemma 6.1

Let
B | dRe¢dImC
*“*‘Axmv+n2 S 1Ly

(CP+1Dp  dRecdImg
Jo(\, :/ : 11.2
2= e TR+ T+ TR ¢ A 2
p d ReCdIm(
T3\, p :/ : 11.3
O e T T I 1A )
where A € C, p > 0.
Lemma 11.1. The following estimates hold:
J1<)\) < nq, A€ C, (114)
J2<)‘7:0) < na, A€ (C7 p > 07 (115)
Js(\,p) <ng, A€C, p>0, (11.6)
for some positive constants nq,n2, ng (where Ji, Jo, J3 are defined by (11.1)-(11.3)).
Proof of Lemma 11.1.
Proof of (11.4). We have that
2|¢| dReCdIm(
avs( [ o+ ) <
= (<P + DT +17 -
[CISIC=A1 [¢I=[¢=Al
/ 2d ReCdIm / 2d ReCdIm < (11.7)
(I€1? + 1) (¢l +1)? (IC=AP+ (¢ = A+ 1)I¢= Al '

I<I<I¢=Al I<I=[¢=Al
/+°O Amrdr +/+°° Amrdr <
o PPEDE+12 0 Jy DD Y
where A € C. Estimate (11.4) is proved.
Proof of (11.5). We have that
J2<)‘7:0) = J2,1<)‘7:0) + J2,2<)‘7:0)7 (118&)

(P + 1)pd ReC dTm ¢
A = —
210 p) / CE(L 1 p0¢ + XD — N

I¢l<1

/ p(I¢* + 1)d Re¢d Im ¢
(<] + p(IC1 +1))%1¢ = Al

(11.8b)

I¢I<1
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(I¢)?+1)pd ReCdIm¢
Jo 2 (A = 11.8
o |<Zl CP( T (2] + 1EF D)2 — A (1L8c)
where A\ € C, p > 0. In addition,
2pd ReCdIm(
mons( [ oo [ )T S
I¢I<1 I¢l<1
[CI<IC—=A] [CI>1¢—=A]
2pd ReCdIm( 2pd ReCdIm(
<|[1 (1<T+ p)7IC] +|<[1 (S E e (11.9a)
/4deeCdImC:/°O 8mpdr _gn
T+l Jo Gap2 o0
2pd ReCdIm(
Jo o (A
& ’M( / * / )<1+p|c|>2|<—A|S
\Cl‘g\?*kl \Cl‘g\?fkl
9pd ReCdIm( 2pd ReCdIm(
KZ 1P +<|Z Al A=A S L)
/4dee§dImC: > 8mpdr _8r
A+ pCD7Cl ~ Jo TxprE 00

where A € C, p > 0. Estimate (11.5) follows from (11.8), (11.9).
Proof of (11.6). We have that

dReC dIm¢

T2 (\ P

3 ’M( /) )<\<|+p<|<\2+1>\<—xw—
[CI<IC=A]  [CI>]¢—A]

/ 2pd ReCdIm( < Adrmpdr
( 0

I+ p(CP+INC Sy rrp(2+1)

C (11.10)
/1 drtp dr /°° Arp dr
+ _— =
o rtp 1 r(l+pr)

1

Amtp d 1

/ P 74:87r,01n(£),
o rtp P

where A € C, p > 0. Estimate (11.6) follows from (11.10).

Lemma 11.1 is proved.

Using formulas (6.13c), (6.8), Lemmas 4.1, 5.2, 11.1 and smoothing properties of the
convolution with 1/¢ on the complex plane C we obtain properties (6.14) for I(Uy, Us) and
estimate (6.15a). Properties and estimates (6.14), (6.15b), (6.15¢) for N(U) and M (U)
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follow from property (6.14) and estimate (6.15a) for I(Uy,Us). Estimate (6.16a) follows
from the formula

N(Ul)—N(UQ):[(U1—U2,U1)—|—I(U2,U1—U2) (11.11)

and from estimate (6.15a). Estimate (6.16b) follows from (6.13a), (6.14a) and (6.16a).
Lemma 6.1 is proved.

12. Proof of Lemmas 6.2 and 6.3
Proof of Lemma 6.2. Suppose that

U,V € L2((C\0) x (RO\L,)), [Ullu <7 [IIVII] < 7 (12.1)
Then using Lemma 6.1 and the assumptions of Lemma 6.2 we obtain that

My, (U) € Li?((C\0) x (R*\Ly)),

My, ()] < U0l + N[ < 7/2 4 2¢6(p)r* < 7, (12.2)
| My, (U) = Muy,(V)||lp < al|lU =V, a=4des(pu)r <1, (12.3)

where
My, (U)=Us+ M(U). (12.4)

Due to (12.1)-(12.4), My, is a contraction map of the ball U € L;°((C\0) x (R3\L,)),
|[U]l],. < r. Using now the lemma about contraction maps we obtain that (6.17) is uniquely
solvable for U of the aforementioned ball by the method of successive approximations. In
addition, using the formulas

0 = (POl < 32 Mo 1) — (Mo YOl (12:5)
1M P410) — (g YOl £ (12.60)

deg (1) 111 (M, ) (0) = (Myo )"~ O], 5 =123,

. , (12.6a
(M +(0) — (MY Ol <
(12.4) (12.6b)

(dea(m)r) 1| Mo, (0) — (M, ) ()l =
(4es(u)r)’[|Uoll] < (des()r)r/2, j=1,2,3,...,

where U is the solution of (6.17) in the aforementioned ball and (My,)°(0) = 0, we obtain
(6.18).

Lemma 6.2 is proved.

42



On non-overdetermined inverse scattering at zero energy in three dimensions
Proof of Lemma 6.3. We have that

U—U=Uy—Uy+MU) - M), (12.7)

MUY\, p) = M@\, p) * Y L0 -0, (12.8)

where
Ly oW = I(W,U)(\,p) + LU, W)(A,p) + I(W,U)(Xo(p), p) + I(U, W) (Xo(p), p), (12.9)

where I(Uy,Us) is defined by (6.13c), W is a test function on (C\0) x (R*\L,). In view
of (12.8), (12.9) we can consider (12.7) as a linear integral equation for ”unknown” U — U
with given Uy — Uy, U, U. Using (12.9), (6.14), (6.15a), and the properties |||U]|[,, < r,
|T]||,. < 7, we obtain that

Ly gW € L ((C\0) x (RM\L,)),

N (12.10)
Ly, oWl < des(u)r([[W][],. for W e LEP((C\0) x (RP\L,)).
Using (12.8)-(12.10) and solving (12.7) with respect to U — U by the method of successive
approximations, we obtain (6.19).
Lemma 6.3 is proved.

References

[ A] G.Alessandrini, Stable determination of conductivity by boundary measurements, Appl.

Anal. 27 (1988), 153-172.
[ BC1] R.Beals and R.R.Coifman, Multidimensional inverse scattering and nonlinear partial
differential equations, Proc. Symp. Pure Math. 43 (1985), 45-70.
[ BC2] R.Beals and R.R.Coifman, The spectral problem for the Davey-Stewartson and Ishi-
mori hierarchies, Nonlinear evolution equations: integrability and spectral methods,
Proc. Workshop, Como/Italy 1988, Proc. Nonlinear Sci., (1990), 15-23.
[BLMP] M.Boiti, J.Leon, M.Manna and F.Pempinelli, On a spectral transform of a KDV- like
equation related to the Schridinger operator in the plane, Inverse Problems 3 (1987),
25-36.
[ BU] R.M.Brown and G.Uhlmann, Uniqueness in the inverse conductivity problem for non-
smooth conductivities in two dimensions, Comm. Partial Diff. Eq. 22 (1997), 1009-
1027.

[ C] A.-P.Calderén, On an inverse boundary value problem, Seminar on Numerical Analysis
and its Applications to Continuum Physics (Rio de Janeiro, 1980), pp.65-73, Soc.
Brasil. Mat. Rio de Janeiro, 1980.

[ ER] G.Eskin and J.Ralston, The inverse back-scattering problem in three dimensions, Com-
mun. Math. Phys. 124 (1989), 169-215.

[ F1] L.D.Faddeev, Growing solutions of the Schridinger equation, Dokl. Akad. Nauk
SSSR 165 (1965), 514-517 (in Russian); English Transl.: Sov. Phys. Dokl. 10 (1966),
1033-1035.

43



[ F2]

[ G]

[ GN]

[ No2]

[ No3|

[ Nod]

[ Noj]

[SU]

[ T]

R.G.Novikov

L.D.Faddeev, Inverse problem of quantum scattering theory II, Itogi Nauki i Tekhniki,
Sovr. Prob. Math. 3 (1974), 93-180 (in Russian); English Transl.: J.Sov. Math. 5
(1976), 334-396.

[.M.Gelfand, Some problems of functional analysis and algebra, Proceedings of the
International Congress of Mathematicians, Amsterdam, 1954, pp.253-276.
P.G.Grinevich, S.P.Novikov, Two-dimensional "inverse scattering problem” for nega-
tive energies and generalized-analytic functions. 1. Energies below the ground state,
Funkt. Anal. i Pril. 22(1) (1988), 23-33 (In Russian); English Transl.: Funkt. Anal.
and Appl. 22 (1988), 19-27.

G.M.Henkin and R.G.Novikov, The 0- equation in the multidimensional inverse scat-
tering problem, Uspekhi Mat. Nauk 42(3) (1987), 93-152 (in Russian); English
Transl.: Russ. Math. Surv. 42(3) (1987), 109-180.

R.Kohn and M.Vogelius, Determining conductivity by boundary measurements 11, In-
terior results, Comm. Pure Appl. Math. 38 (1985), 643-667.

N.Mandache, Fxponential instability in an inverse problem for the Schrodinger equa-
tion, Inverse Problems 17 (2001), 1435-1444.

H.E.Moses, Calculation of a scattering potential from reflection coefficients, Phys.
Rev. (2) 102 (1956), 559-567.

A.I.Nachman, Reconstructions from boundary measurements, Ann. Math. 128 (1988),
531-576.

A.I.Nachman, Global uniqueness for a two-dimensional inverse boundary value prob-
lem, Ann, Math. 142 (1995), 71-96.

R.G.Novikov, Multidimensional inverse spectral problem for the equation —Avp +
(v(z) — Eu(z))y = 0, Funkt. Anal. i Pril. 22(4) (1988), 11-22 (in Russian); English
Transl.: Funct. Anal. and Appl. 22 (1988), 263-272.

R.G.Novikov, The inverse scattering problem at fixed energy level for the two-dimen-
sional Schrédinger operator, J.Funct. Anal. 103 (1992), 409-463.

R.G.Novikov, Scattering for the Schrodinger equation in multidimensional non-linear
0- equation, characterization of scattering data and related results, Scattering
(E.R.Pike and P.Sabatier, eds) chapter 6.2.4, Academic, New York, 2002
R.G.Novikov, Formulae and equations for finding scattering data from the Dirichlet-
to-Neumann map with nonzero background potential, Inverse Problems 21 (2005),
257-270.

R.G.Novikov, The 0- approach to approximate inverse scattering at fized energy in
three dimensions, International Mathematics Research Papers, 2005:6, (2005), 287-
349.

R.T.Prosser, Formal solutions of inverse scattering problem. III, J.Math. Phys. 21
(1980), 2648-2653.

J.Sylvester and G.Uhlmann, A global uniqueness theorem for an inverse boundary
value problem, Ann. Math. 125 (1987), 153-169

T.Y.Tsai, The Schrédinger operator in the plane, Inverse Problems 9 (1993), 763-787.

44



