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Introduction

Let (X i , Y i ), i = 1, . . . , n be independent copies of a random pair (X, Y ) with support S defined by S = {(x, y) ∈ E × R; 0 ≤ y ≤ g(x)}.

(

) 1 
The unknown function g : E → R is called the frontier. We address the problem of estimating g in the case E = R d . Our estimator of the frontier is based on a kernel regression on the powertransformed data. More precisely, the estimator of g is defined for all x ∈ R d by ĝn (x) = (p + 1)

n i=1 K h (x -X i )Y p i n i=1 K h (x -X i ) 1/p , (2) 
where p = p n and h = h n are non random sequences such that h → 0 and p → ∞ as n → ∞.

This latter condition is the key so that the high power-transformed data "concentrate" along the 1 frontier. We have also introduced K h (t) = K(t/h)/h d where K is a probability density function (pdf) on R d . In this context, h is called the window-width.

From the practical point of view, note that, compared to the extreme value based estimators [START_REF] Gardes | Estimating the support of a Poisson process via the Faber-Shauder basis and extreme values[END_REF][START_REF] Geffroy | Sur un problème d'estimation géométrique[END_REF][START_REF] Girard | Extreme values and Haar series estimates of point process boundaries[END_REF][START_REF] Girard | Projection estimates of point processes boundaries[END_REF][START_REF] Girard | Central limit theorems for smoothed extreme value estimates of point processes boundaries[END_REF][START_REF] Girard | Extreme values and kernel estimates of point processes boundaries[END_REF], projection estimators [START_REF] Jacob | Estimating the edge of a Poisson process by orthogonal series[END_REF] or piecewise polynomial estimators [START_REF] Korostelev | Minimax theory of image reconstruction[END_REF][START_REF] Korostelev | Efficient estimation of monotone boundaries[END_REF][START_REF] Härdle | Estimation of a non sharp support boundaries[END_REF], this estimator does not require a partition of S and is thus not limited to bi-dimensional bounded supports. Moreover, it benefits from an explicit formulation which is not the case of estimators defined by optimization problems [START_REF] Girard | L 1 -optimal nonparametric frontier estimation via linear programming[END_REF] such as local polynomial estimators [START_REF] Hall | On polynomial estimators of frontiers and boundaries[END_REF][START_REF] Hall | Bandwidth choice for local polynomial estimation of smooth boundaries[END_REF][START_REF] Knight | Limiting distributions of linear programming estimators[END_REF]. From the theoretical point of view, this estimator reveals to be completely convergent to g without assumption neither on the distribution of X nor on the distribution of Y given X = x (see Section 3). Note however that (p + 1) 1/p → 1 when p → ∞. In fact, this correcting term is specially designed for the case where Y given X = x is uniformly distributed on [0, g(x)]. In this latter situation, the estimator is asymptotically Gaussian with the rate of convergence n -α/(d+α)

(see Section 4). This rate is proved to be minimax optimal for α-Lipschitzian d-dimensional frontiers [START_REF] Korostelev | Minimax theory of image reconstruction[END_REF], Chapter 5. This result is generalized in [START_REF] Mammen | Asymptotical minimax recovery of set with smooth boundaries[END_REF] to boundaries of more general regions.

Other extensions are provided in [START_REF] Hall | On the estimation of a support curve of indeterminate sharpness[END_REF][START_REF] Härdle | Estimation of a non sharp support boundaries[END_REF] to densities of Y given X = x decreasing as a power of the distance from the boundary. We refer to [START_REF] Deprins | Measuring labor efficiency in post offices[END_REF][START_REF] Farrel | The measurement of productive efficiency[END_REF][START_REF] Gijbels | On estimation of monotone and concave frontier functions[END_REF] for the estimation of frontier functions under monotonicity assumptions, and to [START_REF] Aragon | Nonparametric frontier estimation: a conditional quantile-based approach[END_REF][START_REF] Cazals | Nonparametric frontier estimation: A robust approach[END_REF] for the definition of robust estimators in this context.

We conclude this paper by an illustration of the behavior of our estimator on some finite sample situations in Section 5 and by describing our future work in Section 6. Technical lemmas are postponed to the appendix.

Notations and assumptions

To motivate the estimator [START_REF] Bosq | Théorie de l'estimation fonctionnelle. Economie et Statistiques avancées[END_REF], consider the random variable Z = (p + 1)Y p and the conditional expectation r n (x) = E(Z|X = x). Estimating the frontier g is often related to estimating the regression function r n . For instance, if Y given X = x is uniformly distributed on [0, g(x)], we have r

1/p n (x) = g(x)
. A similar remark is done in [START_REF] Jacob | Regression and edge estimation[END_REF] where regression estimators are modified to build estimators of the frontier, but the profound difference here is that p → ∞. This condition allows to obtain r 1/p n (x) → g(x) even when Y given X = x is not uniformly distributed (see Lemma 1 below). We denote by f the pdf of the random vector X and we introduce φn

(x) = 1 n n i=1 K h (x -X i )Z i , (3) 
where Z i = (p + 1)Y p i . Note that φn (x) can be seen as a classical kernel estimator of

ϕ n (x) = f (x)r n (x) but keep in mind that p → ∞. Similarly, fn (x) = 1 n n i=1 K h (x -X i ) (4) 
is an estimator of f (x) and rn (x) = φn (x)/ fn (x) [START_REF] Deprins | Measuring labor efficiency in post offices[END_REF] is an estimator of r n (x). Collecting (3), ( 4) and ( 5), our estimator (2) can be rewritten as ĝn (x) = rn (x) 1/p .

To establish the asymptotic properties of ĝn (x), the following assumptions are considered:

(A.1): g is α-Lipschitz, f is β-Lipschitz, with 0 < α ≤ β ≤ 1, (A.2): 0 < g min ≤ g(x), ∀x ∈ R d , (A.3): f (x) ≤ f max < ∞, ∀x ∈ R d , (A.4): K is a Lipschitzian pdf on R d , with support included in B, the unit ball of R d .
Note that (A.4) implies that, for all q ≥ 1, we have 0 < B K q (x)dx < +∞.

Complete convergence

In this section, the complete convergence of the frontier estimator toward the true frontier is established. The next lemma can be seen as the intuitive justification why no assumption on the conditional distribution of Y given X is required in the proof of Theorem 1.

Lemma 1 Under (A.2), for all x ∈ B, r n (x) 1/p → g(x)
as n → ∞.

Proof : Let ε > 0. Since (X, Y ) has support S defined by [START_REF] Aragon | Nonparametric frontier estimation: a conditional quantile-based approach[END_REF], it follows that

r n (x) = (p + 1)E (Y p |X = x) ≤ (p + 1)g p (x)
and thus, since (p + 1) 1/p → 1 as p → ∞, for n large enough and all x ∈ B,

r 1/p n (x) ≤ (1 + ε)g(x). (6) 
Moreover, we have,

r n (x) ≥ (p + 1)E (Y p 1{Y > g(x) -ε}|X = x) ≥ (p + 1)(g(x) -ε) p P(Y > g(x) -ε|X = x).
Now, since (X, Y ) has support S, one can assume without loss of generality that Y given X = x has support [0, g(x)] such that P(Y > g(x) -ε|X = x) > 0. It follows that

[(p + 1)P(Y > g(x) -ε|X = x)] 1/p → 1
as p → ∞, and consequently, for n large enough,

r 1/p n (x) ≥ (1 -ε)g(x). (7) 
Collecting ( 6) and [START_REF] Farrel | The measurement of productive efficiency[END_REF] gives the result.

Theorem 1 Suppose (A.1)-(A.4) hold and nh d / log n → ∞. Then g n (x) converges completely to g(x) for all x ∈ R d such that f (x) > 0.

Proof : Let x ∈ R d such that f (x) > 0 and let ε such that 0 < ε < g(x). Define 0 < η < 1/4 by η = ε/(4g(x)). Then, from Lemma 6,

{| g n (x) -g(x)| > ε} = r 1/p n (x) g(x) -1 > 4η ⊆ ϕ n (x) f (x)g p (x) 1/p -1 > η ∪    fn (x) f (x) 1/p -1 > η    .
Since fn (x) converges completely to f (x), see e.g. [START_REF] Bosq | Théorie de l'estimation fonctionnelle. Economie et Statistiques avancées[END_REF], Chapter 4, Theorem III.3, it follows that ( fn (x)/f (x)) 1/p converges completely to 1. Therefore, writing

ϕ n (x) f (x)g p (x) 1/p = (p + 1) 1/p T n (x) with T n (x) = 1 n n i=1 K h (x -X i ) Y i g(x) p 1 f (x) 1/p
and remarking that (p + 1) 1/p → 1 as n → ∞, it suffices to consider

{|T n (x) -1| > η} ⊆ {T n (x) > 1 + η} ∪ {T n (x) < 1 -η} .
The two events are studied separately. First, let 0 < δ < η. Then, x -X i ≤ h entails

Y i -g(x)(1 + δ) ≤ g(X i ) -g(x) -δg(x) ≤ L g h α -δg min < 0
for n large enough and where L g is the Lipschitz constant associated to g. We thus have

T n (x) = 1 n n i=1 K h (x -X i ) Y i g(x) p 1{Y i < g(x)(1 + δ)} 1 f (x) 1/p ≤ (1 + δ) 1 n n i=1 K h (x -X i )1{Y i < g(x)(1 + δ)} 1 f (x) 1/p
, and consequently,

{T n (x) > 1 + η} ⊆ 1 n n i=1 K h (x -X i )1{Y i < g(x)(1 + δ)} 1 f (x) > 1 + η 1 + δ p ⊆ 1 n n i=1 K h (x -X i )1{Y i < g(x)(1 + δ)} 1 f (x) > 2 ,
since, for n large enough, ((1 + η)/(1 + δ)) p > 2. From [START_REF] Bosq | Théorie de l'estimation fonctionnelle. Economie et Statistiques avancées[END_REF], Chapter 5, Corollary II.4, the following complete convergence holds:

1 n n i=1 K h (x -X i )1{Y i < g(x)(1 + δ)} 1 f (x) c -→ P(Y < g(x)(1 + δ)|X = x) = 1,
and therefore

∞ n=1 P(T n (x) > 1 + η) ≤ ∞ n=1 P 1 n n i=1 K h (x -X i )1{Y i < g(x)(1 + δ)} 1 f (x) -1 > 1 < +∞,
which concludes the first part of the proof. Second,

T n (x) ≥ 1 n n i=1 K h (x -X i ) Y i g(x) p 1{Y i > g(x)(1 -δ)} 1 f (x) 1/p ≥ (1 -δ) 1 n n i=1 K h (x -X i )1{Y i > g(x)(1 -δ)} 1 f (x) 1/p
, and consequently,

{T n (x) < 1 -η} ⊆ 1 n n i=1 K h (x -X i )1{Y i > g(x)(1 -δ)} 1 f (x) < 1 -η 1 -δ p .
Now, since P(Y > g(x)(1 -δ)|X = x) > 0, there exists γ > 0 such that, for n large enough,

1 -η 1 -δ p -P(Y > g(x)(1 -δ)|X = x) < -γ,
entailing that, for n large enough,

{T n (x) < 1-η} ⊆ 1 n n i=1 K h (x -X i )1{Y i > g(x)(1 -δ)} 1 f (x) -P(Y /g(x) > 1 -δ|X = x) < -γ .
Taking into account of the following complete convergence

1 n n i=1 K h (x -X i )1{Y i > g(x)(1 -δ)} 1 f (x) c -→ P(Y > g(x)(1 -δ)|X = x), it follows that ∞ n=1 P(T n (x) < 1 -η) ≤ ∞ n=1 P 1 n n i=1 K h (x -X i )1{Y i > g(x)(1 -δ)} 1 f (x) -P(Y > g(x)(1 -δ)|X = x) < -γ < +∞,
which concludes the second part of the proof.

Asymptotic normality

Second, the asymptotic normality of the frontier estimator centered on the true frontier is established. To this end, asymptotic expansions of the expectation and variance of φn (x) are needed.

These calculations are done under the additional assumption

(A.5): Y given X = x is uniformly distributed on [0, g(x)].
The next two lemmas are similar to classical ones in kernel regression (see for instance [START_REF] Ferraty | Nonparametric modelling for functional data[END_REF], Theorem 6.11), but the dependence on n of the function ϕ n (x) induces technical difficulties. We first establish that ϕ n (x) is an asymptotically unbiased estimator of ϕ n (x) in the sense that

E ϕ n (x)/ϕ n (x) → 1 as n → ∞ provided that ph α → 0. Lemma 2 Under (A.1)-(A.5), if ph α → 0, then for all x ∈ R d E ϕ n (x) = ϕ n (x) [1 + O(ph α )] .
Proof : From (3), it follows that

E ϕ n (x) = E(K h (x -X)Z) = E(K h (x -X)E(Z|X)),
so that, by a straightforward calculation, and recalling that ϕ n (u) = g p (u)f (u), we obtain

E ϕ n (x) = E(K h (x -X)g p (X)) = R d 1 h d K x -u h ϕ n (u)du (8) = B K(y)ϕ n (x -hy)dy,
with a classical change of variable, and since K has a compact support. We thus can write:

E ϕ n (x) -ϕ n (x) = B K(y) [ϕ n (x -hy) -ϕ n (x)] dy.
Consider now the decomposition below:

|ϕ n (x -hy) -ϕ n (x)| ≤ f (x -hy) |g p (x -hy) -g p (x)| + g p (x) |f (x -hy) -f (x)| := T 1 + T 2 .
Following Lemma 5,

T 1 = f (x -hy)g p (x) g p (x -hy) g p (x) -1 ≤ 2f max L g g min g p (x)ph α = g p (x)O(ph α ), T 2 ≤ g p (x)L f h β = g p (x)O(h β ) = g p (x)o(ph α ),
where L f and L g are the Lipschitz constants of the functions f and g. Finally,

E ϕ n (x) -ϕ n (x) = g p (x)O(ph α ) = ϕ n (x)O(ph α ),
and the conclusion follows.

Similarly, we now provide an equivalent expression for V( ϕ n (x)/ϕ n (x)) which appears to be of order p/(nh d ). Thus, condition p/(nh d ) → 0 will be necessary in Corollary 1 to obtain the weak consistency of ϕ n (x), i.e. to ensure that ϕ n (x)/ϕ n (x)

P → 1. Lemma 3 Under (A.1)-(A.5), if ph α → 0 then for all x ∈ R d , V( ϕ n (x)) = 1 nh d (p + 1) 2 2p + 1 B K 2 (s)ds ϕ 2 n (x) f (x) [1 + o(1)] .
Proof : We have

V( ϕ n (x)) = 1 n 2 n i=1 V (K h (x -X i )Z i ) = 1 n V (K h (x -X)Z) = 1 nh 2d E K 2 x -X h Z 2 - 1 n E 2 ( ϕ n (x)) := T 3 + T 4 .
From Lemma 2, we immediately derive

T 4 = 1 n ϕ 2 n (x) [1 + o(1)] .
We shall prove that

T 3 = 1 nh d (p + 1) 2 2p + 1 B K 2 (s)ds ϕ 2 n (x) f (x) [1 + o(1)] , (9) 
leading to T 4 /T 3 = O(h/p), and the announced result follows. To this end, remark that

T 3 = 1 nh 2d E K 2 x -X h E(Z 2 |X) = 1 nh 2d (p + 1) 2 2p + 1 E K 2 x -X h g 2p (X) = 1 nh d (p + 1) 2 2p + 1 B K 2 (s)ds R d 1 h d Q x -u h g 2p (u)f (u)du,
where we have introduced the kernel Q = K 2 / B K 2 (s)ds. It is easily seen that the second integral is similar to this appearing in E ϕ n (x), (see ( 8)), with K replaced by Q and p by 2p. Thus, as in the proof of Lemma 2, we have

R d 1 h d Q x -u h g 2p (u)f (u)du = g 2p (x)f (x) [1 + o(1)] = ϕ 2 n (x) f (x) [1 + o(1)] ,
and ( 9) is proved.

As a simple consequence of Lemma 2 and Lemma 3, we have

Corollary 1 Under (A.1)-(A.5), if ph α → 0 and p/(nh d ) → 0, then, for all x ∈ R d , ϕ n (x)/ϕ n (x) P → 1.
We can now turn to our main result.

Theorem 2 Suppose that nph d+2α → 0 and p/(nh d ) → 0. Let us define

σ -1 n (x) = ((2p + 1)nh d ) 1/2 f (x) B K 2 (t)dt 1/2 . Then, under (A.1)-(A.5), for all x ∈ R d , σ -1 n (x) g n (x) g(x) -1 d → N (0, 1).
Proof : First, note that nph d+2α → 0 and p/(nh d ) → 0 imply ph α → 0. From Lemma 9, it suffices to prove that

ξ n := σ -1 n (x) p ϕ n (x) ϕ n (x) - E ϕ n (x) ϕ n (x) d → N (0, 1).
To this end, define

W i,n = σ -1 n (x) np 1 ϕ n (x) K h (x -X i )Z i
so that we can write

ξ n = n i=1 (W i,n -EW i,n ) .
Following Lemma 3, we have

V (ξ n ) = nV (W 1,n ) = σ -2 n (x) p 2 1 ϕ 2 n (x) V( ϕ n (x)) = (2p + 1) nh d f (x) p 2 B K 2 (s)ds 1 ϕ 2 n (x) 1 nh d (p + 1) 2 2p + 1 B K 2 (s)ds ϕ 2 n (x) f (x) [1 + o(1)] = 1 + o(1).
Thus, the condition of Lyapounov reduces to

n i=1 E |W i,n -EW i,n | 3 = nE |W 1,n -EW 1,n | 3 → 0. (10) 
Taking into account that W 1,n is a positive random variable, the triangular inequality together with Jensen's inequality yield

E |W 1,n -EW 1,n | 3 ≤ 8E W 3 1,n .
Introducing the kernel K 3 / B K 3 (s)ds, and mimicking the proof of Lemma 3, we obtain

E(W 3 1,n ) = n -3/2 h -d/2 p 1/2 2 3/2 3f (x) 3/2 B K 3 (s)ds B K 2 (s)ds 3/2 (1 + o(1)) = κn -3/2 h -d/2 p 1/2 (1 + o(1)), ( 11 
)
where κ is a positive constant. Returning to [START_REF] Geffroy | Sur un problème d'estimation géométrique[END_REF], we have

n i=1 E |W i,n -EW i,n | 3 ≤ 8κ p nh d 1/2 (1 + o(1)) → 0,
and the result is proved.

Remark 1 Theorem 2 holds when σ -1 n (x) is replaced with

σ -1 n (x) = ((2p + 1)nh d ) 1/2 f n (x) B K 2 (t)dt 1/2 , since in this context f n (x) P → f (x)
. This allows to produce pointwise confident intervals for the frontier.

Remark 2 To fulfill the assumptions of Theorem 2, one can choose h = n -1/(d+α) and p = ε n n α/(d+α) , where (ε n ) is a sequence tending to zero arbitrarily slowly. These choices yield

σ -1 n (x) = ε 1/2 n n α/(d+α) 2f (x) B K 2 (t)dt 1/2 (1 + o(1)),
which is the optimal speed (up to the ε n factor) for estimating α-Lipschitzian d-dimensional frontiers, see [START_REF] Korostelev | Minimax theory of image reconstruction[END_REF], Chapter 5.

The good performances of ĝn (x) on finite sample situations are illustrated in the next section.

Remark 2 will be of great help to choose p and h sequences.

Numerical experiments

Here, we limit ourselves to unidimensional random variables X (p = 1) with compact support

E = [0, 1]. Besides, Y given X = x is distributed on [0, g(x)] such that P(Y > y|X = x) = 1 - y g(x) γ , (12) 
with γ > 0. This conditional survival distribution function belongs to the Weibull domain of attraction, with extreme value index -γ, see [START_REF] Embrechts | Modelling extremal events[END_REF] for a review on this topic. The case γ = 1 corresponds to the situation where Y given X = x is uniformly distributed on [0, g(x)]. The larger γ is, the smaller the probability ( 12) is, when y is close to the frontier g(x). The behavior of the proposed frontier estimator is investigated on different situations:

• Two distributions are considered for X: a uniform distribution U ([0, 1]) and a beta distribution B(2, 2).

• Two frontiers are introduced. The first one

g 1 (x) = 1 + exp (-60(x -1/4) 2 ) if 0 ≤ x ≤ 1/3, 1 + exp (-5/12) if 1/3 < x ≤ 2/3, 1 + 5 exp (-5/12) -6 exp (-5/12)x if 2/3 < x ≤ 5/6, 6x -4 if 5/6 < x ≤ 1.
is continuous but is not derivable at x = 1/3, x = 2/3 and x = 5/6. The second one

g 2 (x) = (1/10 + sin(πx)) 11/10 -exp -64(x -1/2) 2 /2 is C ∞ .
• Four sample sizes are simulated n ∈ {200, 300, 500, 1000}.

• Three exponents are used γ ∈ {1, 2, 3}.

The following kernel is chosen

K(t) = cos 2 (πt/2)1{t ∈ [-1, 1]},
with associated window width h = 4σ(X)n -1/2 and with p = n 1/2 . The dependence of these sequences with respect to n is chosen according to Remark 2 with α = d = 1. The multiplicative constant 4σ(X) in h is chosen heuristically. The dependence with respect to the standard-deviation of X is inspired from the density estimation case. The scale factor 4 was chosen on the basis of intensive simulations.

Here, the experiment involves several steps:

• First, m = 500 replications of the sample are simulated.

• For each of the m previous set of points, the frontier estimator ĝn is computed.

• The m associated L 1 distances to g are evaluated on a grid.

• The mean, smallest and largest L 1 errors are recorded.

Some results are depicted on Figure 123, where the best situation (i.e. the estimation corresponding to the smallest L 1 error) and the worst situation (i.e. the estimation corresponding to the largest L 1 error) are represented. Note that, even in the worst situations, the empirical choices of sequences h and p seem satisfying for all the considered frontiers and densities of X. In fact, the worst situations are obtained when no points were simulated at the boundaries of the support. This is specially the case on Figure 3(b) since the density of X decreases to 0 at the boundaries of the [0, 1] interval and the density of Y |X = x decreases to 0 in the neighborhood of g(x).

Finally, the above estimator is compared to three other ones:

• The estimator ĝn with p = 1, which reduces to a rescaling of the regression estimator, in a similar spirit as in [START_REF] Jacob | Regression and edge estimation[END_REF].

• Geffroy's estimator [START_REF] Geffroy | Sur un problème d'estimation géométrique[END_REF], denoted by ĝG n , which is a step function based on the extreme values of the sample.

• The kernel estimator ĝK n introduced in [START_REF] Girard | Extreme values and kernel estimates of point processes boundaries[END_REF], which is a smoothed and bias-corrected version of Geffroy's estimator.

Results are summarized in Table 1. It appears that, when γ increases, performances of all estimators decrease, since the simulated points are getting more and more distant from the frontier function. In the case p = 1 and γ = 3, one can see that ĝn does not converge to the true frontier when n increases. This shows that the condition p → ∞ is necessary to obtain the convergence of the estimator. Finally, note that in all the situations considered in Table 1, ĝn outperforms ĝG n and ĝK n .

Conclusion and further work

To conclude, let us note that, even though ĝn converges to the true frontier g in case of non uniform conditional distributions, it is possible to design new estimators dedicated to particular parametric models. For instance, in case of model [START_REF] Girard | L 1 -optimal nonparametric frontier estimation via linear programming[END_REF], estimator ĝn could be modified to obtain gn,γ (x) = 1 γB(1 + p, γ)

n i=1 K h (x -X i )Y p i n i=1 K h (x -X i ) 1/p
, where B is the beta function defined by

B(a, b) = 1 0 u a-1 (1 -u) b-1 du.
Of course, ĝn corresponds to the particular case gn,1 . When γ is assumed to be known, the new multiplicative constant yields a very efficient bias correction, see Figure 4 for an illustration. A part of our future work will consist in defining an estimator of γ and plugging it into gn,γ . New asymptotic results will be established. We also plan to investigate the asymptotic properties of local polynomial estimators based on the same ideas as those used for ĝn and gn,γ .

Appendix: Auxiliary lemmas

The following lemma provides convenient bounds obtained by a specific study of the functions

u → |(1 + u) p -1| -2p|u| and u → (1 + u) 1/p -1 -1 p u.
The study is left to the reader. Note that these bounds could not be directly derived from the Taylor formulas

|(1 + u) p -1| = |pu + o(u)| and (1 + u) 1/p -1 -1 p u = 1 2p ( 1 p -1)u 2 + o(u 2 )
where the dependence on p of o(u) and o(u 2 ) is not precised.

Lemma 4 Suppose p ≥ 1. (i) Then, p|u| ≤ ln 2 entails |(1 + u) p -1| ≤ 2p|u|. (ii) Let C ≥ 2. Then, |u| < 1/2 entails (1 + u) 1/p -1 -1 p u ≤ C p u 2 .
The next lemma is dedicated to the control of the local variations of the frontier on a neighborhood of size h.

Lemma 5 Suppose (A.1), (A.2) hold. If ph α → 0 and x -y ≤ h, then for sufficiently large n, g(x) g(y)

p -1 ≤ 2 L g g min ph α ,
where L g is the Lipschitz constant of the function g.

Proof : Take u = g(x) g(y) -1 and observe that p|u| ≤ p Lg gmin x -y α , Thus, if x -y ≤ h, and ph α → 0, we have p|u| ≤ ln 2 for sufficiently large n. Then, following Lemma 4(i), for sufficiently large n, we obtain

|(1 + u) p -1| = g(x) g(y) p -1 ≤ 2p|u| ≤ 2 L g g min ph α ,
and the result is proved.

Lemma 6 is used to establish the complete convergence of random variables ratio.

Lemma 6 Let S, T be real random variables, a, b non zero real numbers, and

0 < η < 1/2. Then, S T - a b > 4η a b ⊆ S a -1 > η ∪ T b -1 > η .
Proof : Consider the following obvious equality:

S T - a b = a b S a -1 + a b 1 - T b + S T - a b 1 - T b . ( 13 
)
The triangular inequality yields for all η > 0:

S a -1 ≤ η ∩ T b -1 ≤ η ⊆ S T - a b ≤ 2η a b + η S T - a b .
Taking 0 < η < 1, we obtain

S a -1 ≤ η ∩ T b -1 ≤ η ⊆ S T - a b ≤ 2η 1 -η a b .
Finally, note that 2η 1-η < 4η for 0 < η < 1/2.

The next three lemmas are of great use to deduce successively the asymptotic normality of g n (x) from r n (x) and the asymptotic normality of r n (x) from ϕ n (x).

Lemma 7 Let x ∈ R d . If f n (x)/f (x) P → 1 and ϕ n (x)/ϕ n (x) P → 1, then r n (x) r n (x) -1 = ϕ n (x) ϕ n (x) -1 - f n (x) f (x) -1 (1 + o p (1)). Proof : The hypotheses yield b rn(x) rn(x) = b ϕn(x) b fn(x) / ϕn(x) f (x) P → 1. Thus it suffices to consider S = b ϕn(x) ϕn(x) , T = b fn(x) f (x)
, and a = b = 1 in the equality [START_REF] Girard | Extreme values and Haar series estimates of point process boundaries[END_REF].

Lemma 8 Let x ∈ R d . If f n (x)/f (x) P → 1 and ϕ n (x)/ϕ n (x) P → 1, then g n (x) g(x) -1 = 1 p r n (x) r n (x) -1 (1 + o p ( 1 

)).

Proof : From the hypotheses, w n (x) := b rn(x) rn(x) -1 = o p (1). Moreover, following Lemma 4(ii), on the event {|w n (x)| < 1/2} we have:

∆ n (x) := g n (x) g(x) -1 - 1 p r n (x) r n (x) -1 = (1 + w n (x)) 1/p -1 - w n (x) p ≤ C 1 p w 2 n (x).
We thus have, on the one hand,

p∆ n (x)1 {|wn(x)|<1/2} = o p (w n (x)).
On the other hand, for all ε > 0,

p ∆ n (x) w n (x) 1 {|wn(x)|≥1/2} > ε ⊆ {|w n (x)| ≥ 1/2} leading to P p ∆ n (x) w n (x) 1 {|wn(x)|≥1/2} > ε ≤ P {|w n (x)| ≥ 1/2} → 0,
and thus

p ∆ n (x) w n (x) 1 {|wn(x)|≥1/2} = o p (w n (x)),
which completes the proof.

Lemma 9 Suppose that nph d+2α → 0 and p/(nh d ) → 0. Let us define

σ -1 n (x) = ((2p + 1)nh d ) 1/2 f (x) B K 2 (t)dt 1/2
, and let Q be an arbitrary distribution. Then, under (A.1)-(A.5),

σ -1 n (x) p ϕ n (x) ϕ n (x) - E ϕ n (x) ϕ n (x) d → Q =⇒ σ -1 n (x) g n (x) g(x) -1 d → Q .
Proof : First, note that nph d+2α → 0 and p/(nh d ) → 0 imply ph α → 0. Thus, from Corollary 1,

ϕ n (x)/ϕ n (x) P → 1.
Besides, p/(nh d ) → 0 implies nh d → ∞, and thus, using a classical result on density estimation (see for instance [START_REF] Bosq | Théorie de l'estimation fonctionnelle. Economie et Statistiques avancées[END_REF], Chapter 4, Theorem II.1), we have f n (x)/f (x)

P → 1.
Lemma 7 thus entails

σ -1 n (x) p r n (x) r n (x) -1 = σ -1 n (x) p ϕ n (x) ϕ n (x) -1 - σ -1 n (x) p f n (x) f (x) -1 (1 + o p (1)) = σ -1 n (x) p ϕ n (x) ϕ n (x) - E ϕ n (x) ϕ n (x) - σ -1 n (x) p f n (x) f (x) - E f n (x) f (x) (1 + o p (1)) + σ -1 n (x) p E ϕ n (x) ϕ n (x) -1 - σ -1 n (x) p E f n (x) f (x) -1 (1 + o p (1)).
Following Lemma 2, we have,

σ -1 n (x) p E ϕ n (x) ϕ n (x) -1 = O nh d p 1/2 O (ph α ) = O nph d+2α 1/2 = o(1),
and from a classical result on density estimation

E f n (x) -f (x) = O(h α ), see [4], Proposition 2.1,
we have

σ -1 n (x) p E f n (x) f (x) -1 = O nh d p 1/2 O (h α ) = O np -1 h d+2α 1/2 = o(1).
Consequently,

σ -1 n (x) p r n (x) r n (x) -1 = σ -1 n (x) p ϕ n (x) ϕ n (x) -1 - σ -1 n (x) p f n (x) f (x) -1 (1 + o p (1)) + o p (1).
Again, using a classical result on density estimation, V( f n (x)) = O(1/(nh d )), see [START_REF] Collomb | Estimation non paramétrique de la régression par la méthode du noyau[END_REF], Proposition 2.2, we have

V σ -1 n (x) p f n (x) f (x) = O nh d p O 1 nh d = O(1/p) = o(1),
and thus

σ -1 n (x) p r n (x) r n (x) -1 = σ -1 n (x) p ϕ n (x) ϕ n (x) -1 + o p (1). ( 14 
)
Suppose now that there exists a probability distribution Q such that

σ -1 n (x) p ϕ n (x) ϕ n (x) - E ϕ n (x) ϕ n (x) d → Q.
From ( 14), we deduce that

σ -1 n (x) p r n (x) r n (x) -1 d → Q.
Finally, from Lemma 8 we can conclude that

σ -1 n (x) g n (x) g(x) -1 d → Q,
and the result is provedb) Worst situation Figure 1: The frontier g 1 (continuous line) and its estimation (dashed line). The sample size is n = 300, X is uniformly distributed on [0, 1] and γ = 1. 

Figure 2 :Figure 3 :

 23 Figure2: The frontier g 1 (continuous line) and its estimation (dashed line). The sample size is n = 300, X is B(2, 2) distributed on [0, 1] and γ = 1.
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