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Abstract

We present a new method for estimating the frontier of a multidimensional sample. The

estimator is based on a kernel regression on the power-transformed data. We assume that

the exponent of the transformation goes to infinity while the bandwidth of the kernel goes to

zero. We give conditions on these two parameters to obtain almost complete convergence and

asymptotic normality. The good performance of the estimator is illustrated on some finite

sample situations.
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1 Introduction

Let (Xi, Yi), i = 1, . . . , n be independent copies of a random pair (X,Y ) with support S defined

by

S = {(x, y) ∈ E × R; 0 ≤ y ≤ g(x)}. (1)

The unknown function g : E → R is called the frontier. We address the problem of estimating g

in the case E = R
d. Our estimator of the frontier is based on a kernel regression on the power-

transformed data. More precisely, the estimator of g is defined for all x ∈ R
d by

ĝn(x) =

(
(p + 1)

n∑

i=1

Kh(x − Xi)Y
p
i

/
n∑

i=1

Kh(x − Xi)

)1/p

, (2)

where p = pn and h = hn are non random sequences such that h → 0 and p → ∞ as n → ∞. This

latter condition is the key so that the high power-transformed data “concentrate” along the frontier.
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We have also introduced Kh(t) = K(t/h)/hd where K is a probability distribution function (pdf)

on R
d. In this context, h is called the window-width.

From the practical point of view, note that, compared to the extreme value based estimators [6,

7, 10, 11, 13, 12], projection estimators [18] or piecewise polynomial estimators [22, 21, 17], this

estimator does not require a partition of S and is thus not limited to Bi-dimensional bounded

supports. Moreover, it benefits from an explicit formulation which is not the case of estimators

defined by optimization problems [9] such as local polynomial estimators [16, 15, 20]. From the

theoretical point of view, this estimator reveals to be almost completely convergent to g without

assumption neither on the of distribution X nor on the distribution of Y given X = x (see

Section 3). Note however that (p + 1)1/p → 1 when p → ∞. In fact, this correcting term is

specially designed for the case where Y given X = x is uniformly distributed on [0, g(x)]. In this

latter situation, the estimator is asymptotically Gaussian with the rate of convergence n−α/(d+α)

(see Section 4). This rate is proved to be minimax optimal for α− Lipschitzian d− dimensional

frontiers [22], Chapter 5. This result is generalized in [23] to boundaries of more general regions.

Another extensions are provided in [14, 17] to densities of Y given X = x decreasing as a power

of the distance from the boundary. We refer to [3, 4, 8] for the estimation of frontier functions

under monotonicity assumptions. We conclude this paper by an illustration of the behavior of our

estimator on some finite sample situations in Section 5. Technical lemmas are postponed to the

appendix.

2 Notations and assumptions

To motivate the estimator (2), consider the random variable Z = (p + 1)Y p and the conditional

expectation rn(x) = E(Z|X = x). Estimating the frontier g is often related to estimating the

regression function rn. For instance, if Y given X = x is uniformly distributed on [0, g(x)], we

have rn(x) = gp(x). A similar remark is done in [19] where regression estimators are modified to

build estimators of the frontier, but the profound difference here is that p → ∞. We denote by f

the pdf of the random vector X and we introduce

ϕ̂n(x) =
1

n

n∑

i=1

Kh(x − Xi)Zi, (3)

where Zi = (p + 1)Y p
i . Note that ϕ̂n(x) can be seen as a classical kernel estimator of ϕn(x) =

f(x)gp(x) but keep in mind that p → ∞. Similarly,

f̂n(x) =
1

n

n∑

i=1

Kh(x − Xi) (4)

is an estimator of f(x) and

r̂n(x) = ϕ̂n(x)/f̂n(x) (5)
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is an estimator of rn(x). Collecting (3), (4) and (5), our estimator (2) can be rewritten as

ĝn(x) = r̂n(x)1/p.

To establish the asymptotic properties of ĝn(x), the following assumptions are considered:

(A.0): Y given X = x is uniformly distributed on [0, g(x)].

(A.1): g is α-Lipschitz, f is β-Lipschitz, with 0 < α ≤ β ≤ 1,

(A.2): 0 < gmin ≤ g(x), ∀x ∈ R
d,

(A.3): f(x) ≤ fmax < ∞, ∀x ∈ R
d,

(A.4): K is a Lipschitzian pdf on R
d, with support included in B, the unit ball of R

d.

3 Almost complete convergence

First, the almost complete convergence of the frontier estimator toward the true frontier is estab-

lished. Note that no assumption on the conditional distribution of Y given X is required. This is

not so surprising since the Lp- norm of a bounded function converges to the L∞- norm as p → ∞.

Theorem 1 Suppose (A.1)–(A.4) hold and nhd/ log n → ∞. Then ĝn(x) converges almost com-

pletely surely to g(x) for all x ∈ R
d such that f(x) > 0.

Proof : Let x ∈ R
d such that f(x) > 0 and let ε such that 0 < ε < g(x). Define 0 < η < 1/4 by

η = ε/(4g(x)). Then, from Lemma 5,

{|ĝn(x) − g(x)| > ε} =

{∣∣∣∣∣

(
r̂n(x)

rn(x)

)1/p

− 1

∣∣∣∣∣ > 4η

}

⊆

{∣∣∣∣∣

(
ϕ̂n(x)

ϕn(x)

)1/p

− 1

∣∣∣∣∣ > η

}
∪






∣∣∣∣∣∣

(
f̂n(x)

f(x)

)1/p

− 1

∣∣∣∣∣∣
> η




 .

Since f̂n(x) converges almost completely surely to f(x), see i.e. [1], Chapter 4, Theorem III.3, it

follows that (f̂n(x)/f(x))1/p converges almost completely surely to 1. Therefore, writing

(
ϕ̂n(x)

ϕ(x)

)1/p

= (p + 1)1/pTn(x)

with

Tn(x) =

[
1

n

n∑

i=1

Kh(x − Xi)

(
Yi

g(x)

)p
1

f(x)

]1/p

and remarking that (p + 1)1/p → 1 as n → ∞, it suffices to consider

{|Tn(x) − 1| > η} ⊆ {Tn(x) > 1 + η} ∪ {Tn(x) < 1 − η} .

The two events are studied separately. First, let 0 < δ < η. Then, ‖x − Xi‖ ≤ h entails

Yi − g(x)(1 + δ) ≤ g(Xi) − g(x) − δg(x) ≤ Lgh
α − δgmin < 0
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for n large enough and where Lg is the Lipschitz constant associated to g. We thus have

Tn(x) =

[
1

n

n∑

i=1

Kh(x − Xi)

(
Yi

g(x)

)p

1{Yi < g(x)(1 + δ)}
1

f(x)

]1/p

≤ (1 + δ)

[
1

n

n∑

i=1

Kh(x − Xi)1{Yi < g(x)(1 + δ)}
1

f(x)

]1/p

,

and consequently,

{Tn(x) > 1 + η} ⊆

{
1

n

n∑

i=1

Kh(x − Xi)1{Yi < g(x)(1 + δ)}
1

f(x)
>

(
1 + η

1 + δ

)p
}

⊆

{
1

n

n∑

i=1

Kh(x − Xi)1{Yi < g(x)(1 + δ)}
1

f(x)
> 2

}
,

since, for n large enough, ((1 + η)/(1 + δ))p > 2. From [1], Chapter 5, Corollary II.4, the following

almost completely sure convergence holds:

1

n

n∑

i=1

Kh(x − Xi)1{Yi < g(x)(1 + δ)}
1

f(x)

a.s.c.
−→ P(Y < g(x)(1 + δ)|X = x) = 1,

and therefore

∞∑

n=1

P(Tn(x) > 1 + η) ≤

∞∑

n=1

P

(
1

n

n∑

i=1

Kh(x − Xi)1{Yi < g(x)(1 + δ)}
1

f(x)
− 1 > 1

)
< +∞,

which concludes the first part of the proof. Second,

Tn(x) ≥

[
1

n

n∑

i=1

Kh(x − Xi)

(
Yi

g(x)

)p

1{Yi > g(x)(1 − δ)}
1

f(x)

]1/p

≥ (1 − δ)

[
1

n

n∑

i=1

Kh(x − Xi)1{Yi > g(x)(1 − δ)}
1

f(x)

]1/p

,

and consequently,

{Tn(x) < 1 − η} ⊆

{
1

n

n∑

i=1

Kh(x − Xi)1{Yi > g(x)(1 − δ)}
1

f(x)
<

(
1 − η

1 − δ

)p
}

.

Now, since P(Y > g(x)(1 − δ)|X = x) > 0, there exists γ > 0 such that, for n large enough,

(
1 − η

1 − δ

)p

− P(Y > g(x)(1 − δ)|X = x) < −γ,

entailing that, for n large enough,

{Tn(x) < 1−η} ⊆

{
1

n

n∑

i=1

Kh(x − Xi)1{Yi > g(x)(1 − δ)}
1

f(x)
− P(Y/g(x) > 1 − δ|X = x) < −γ

}
.

Taking into account of the following almost completely sure convergence

1

n

n∑

i=1

Kh(x − Xi)1{Yi > g(x)(1 − δ)}
1

f(x)

a.s.c.
−→ P(Y > g(x)(1 − δ)|X = x),
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it follows that

∞∑

n=1

P(Tn(x) < 1 − η)

≤

∞∑

n=1

P

(
1

n

n∑

i=1

Kh(x − Xi)1{Yi > g(x)(1 − δ)}
1

f(x)
− P(Y > g(x)(1 − δ)|X = x) < −γ

)

< +∞,

which concludes the second part of the proof.

4 Asymptotic normality

Second, the asymptotic normality of the frontier estimator centered on the true frontier is estab-

lished. To this end, asymptotic expansions of the expectation and variance of ϕ̂n(x) are needed.

These calculations are done under the assumption that Y given X = x is uniformly distributed

on [0, g(x)]. The next two lemmas are similar to classical ones in kernel regression (see for in-

stance [5], Theorem 6.11), but the dependence on n of the function ϕn(x) to estimate induces

technical difficulties.

Lemma 1 Under (A.0)–(A.4), if phα → 0, then for all x ∈ R
d

Eϕ̂n(x) = ϕn(x) [1 + O(phα)] .

Proof : From (3), it follows that

Eϕ̂n(x) = E(Kh(x − X)Z) = E(Kh(x − X)E(Z|X)),

so that, by a straightforward calculation, and recalling that ϕn(u) = gp(u)f(u), we obtain

Eϕ̂n(x) = E(Kh(x − X)gp(X)) =

∫

Rd

1

hd
K

(
x − u

h

)
ϕn(u)du (6)

=

∫

B

K(y)ϕn(x − hy)dy,

with a classical change of variable, and since K has a compact support. We thus can write:

Eϕ̂n(x) − ϕn(x) =

∫

B

K(y) [ϕn(x − hy) − ϕn(x)] dy.

Consider now the decomposition below:

|ϕn(x − hy) − ϕn(x)| ≤ f(x − hy) |gp(x − hy) − gp(x)| + gp(x) |f(x − hy) − f(x)| := T1 + T2.

Following Lemma 4,

T1 = f(x − hy)gp(x)

∣∣∣∣
gp(x − hy)

gp(x)
− 1

∣∣∣∣ ≤ 2fmax
Lg

gmin
gp(x)phα = gp(x)O(phα),

T2 ≤ gp(x)Lfhβ = gp(x)O(hβ) = gp(x)o(phα),
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where Lf and Lg are the Lipschitz constants of the functions f and g. Finally,

Eϕ̂n(x) − ϕn(x) = gp(x)O(phα) = ϕn(x)O(phα),

and the conclusion follows.

Lemma 2 Under (A.0)–(A.4), if phα → 0 then for all x ∈ R
d,

V(ϕ̂n(x)) =
1

nhd

(p + 1)2

2p + 1

∫

B

K2(s)ds
ϕ2

n(x)

f(x)
[1 + o(1)] .

Proof : We have

V(ϕ̂n(x)) =
1

n2

n∑

i=1

V (Kh(x − Xi)Zi) =
1

n
V (Kh(x − X)Z)

=
1

nh2d
E

(
K2

(
x − X

h

)
Z2

)
−

1

n
E

2 (ϕ̂n(x)) := T3 + T4.

From Lemma 1, we immediately derive

T4 =
1

n
ϕ2

n(x) [1 + o(1)] .

We shall prove that

T3 =
1

nhd

(p + 1)2

2p + 1

∫

B

K2(s)ds
ϕ2

n(x)

f(x)
[1 + o(1)] , (7)

leading to T4/T3 = O(h/p), and the announced result follows. To this end, remark that

T3 =
1

nh2d
E

(
K2

(
x − X

h

)
E(Z2|X)

)

=
1

nh2d

(p + 1)2

2p + 1
E

(
K2

(
x − X

h

)
g2p(X)

)

=
1

nhd

(p + 1)2

2p + 1

∫

B

K2(s)ds

∫

Rd

1

hd
Q

(
x − u

h

)
g2p(u)f(u)du,

where we have introduced the kernel Q = K2/
∫

B
K2(s)ds. It is easily seen that the second integral

is similar to this appearing in Eϕ̂n(x), (see (6)), with K replaced by Q and p by 2p. Thus, as in

the proof of Lemma 1, we have

∫

Rd

1

hd
Q

(
x − u

h

)
g2p(u)f(u)du = g2p(x)f(x) [1 + o(1)] =

ϕ2
n(x)

f(x)
[1 + o(1)] ,

and (7) is proved.

As a simple consequence of Lemma 1 and Lemma 2, we have

Corollary 1 Under (A.0)–(A.4), if phα → 0, then for all x ∈ R
d, ϕ̂n(x)/ϕn(x)

P
→ 1.

We can now turn to our main result.
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Theorem 2 Suppose that nphd+2α → 0 and p/(nhd) → 0. Let us define

σ−1
n (x) = ((2p + 1)nhd)1/2

(
f(x)∫

B
K2(t)dt

)1/2

.

Then, under (A.0)–(A.4), for all x ∈ R
d,

σ−1
n (x)

(
ĝn(x)

g(x)
− 1

)
d
→ N(0, 1).

Proof : First, note that nphd+2α → 0 and p/(nhd) → 0 imply phα → 0. From Lemma 8, it

suffices to prove that

ξn :=
σ−1

n (x)

p

(
ϕ̂n(x)

ϕn(x)
−

Eϕ̂n(x)

ϕn(x)

)
d
→ N(0, 1).

To this end, define

Wi,n =
σ−1

n (x)

np

1

ϕn(x)
Kh(x − Xi)Zi

so that we can write

ξn =

n∑

i=1

(Wi,n − EWi,n) .

Following Lemma 2, we have

V (ξn) = nV (W1,n) =
σ−2

n (x)

p2

1

ϕ2
n(x)

V(ϕ̂n(x))

=
(2p + 1)nhdf(x)

p2
∫

B
K2(s)ds

1

ϕ2
n(x)

1

nhd

(p + 1)2

2p + 1

∫

B

K2(s)ds
ϕ2

n(x)

f(x)
[1 + o(1)]

= 1 + o(1). (8)

Thus, the condition of Lyapounov reduces to

n∑

i=1

E |Wi,n − EWi,n|
3

= nE |W1,n − EW1,n|
3
→ 0. (9)

In view of Lemma 9, we need the three first moments of W = W1,n . From Lemma 1,

E(W ) =
σ−1

n (x)

np

1

ϕn(x)
E(Kh(x − X)Z) =

σ−1
n (x)

np

1

ϕn(x)
E(ϕ̂n(x))

=
σ−1

n (x)

np
(1 + o(1)) =

(
2hd

np

)1/2 (
f(x)∫

B
K2(s)ds

)1/2

(1 + o(1)). (10)

Remarking that E(W 2) = V(W ) + (EW )2 and taking (8), (10) into account, it follows that

E(W 2) =
1

n
[1 + o(1)] + O

(
hd

np

)
=

1

n
(1 + o(1)). (11)

Introducing the kernel K3/
∫

B
K3(s)ds, and mimicking the proof of Lemma 2, we obtain

E(W 3) =
n−3/2h−d/2p1/223/2

3f(x)
3/2

∫
B

K3(s)ds
(∫

B
K2(s)ds

)3/2
(1 + o(1)) = κn−3/2h−d/2p1/2(1 + o(1)), (12)

where κ is a positive constant. Collecting (10), (11) and (12), it follows that

E(W )E(W 2) = o
(
E(W 3)

)

E
3(W ) = o

(
E(W 3)

)
,
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so that, from Lemma 9,

E |W − EW |
3

= E(W 3)(1 + o(1)) = κn−3/2h−d/2p1/2(1 + o(1)).

Returning to (9), we have

n∑

i=1

E |Wi,n − EWi,n|
3

= nE |Wn − EWn|
3

= κ
( p

nhd

)1/2

(1 + o(1)) → 0,

and the result is proved.

Remark 1 Theorem 2 holds when σ−1
n (x) is replaced

σ̂−1
n (x) = ((2p + 1)nhd)1/2

(
f̂n(x)∫

B
K2(t)dt

)1/2

,

since in this context f̂n(x)
P
→ f(x). This allows to produce pointwise confident intervals for the

frontier.

Remark 2 To fulfill the assumptions of Theorem 2, one can choose h = n−1/(d+α) and p =

εnnα/(d+α), where (εn) is a sequence tending to zero arbitrarily slowly. These choices yield

σ−1
n (x) = ε1/2

n nα/(d+α)

(
2f(x)∫

B
K2(t)dt

)1/2

(1 + o(1)),

which is the optimal speed (up to the εn factor) for estimating α− Lipschitzian d− dimensional

frontiers, see [22], Chapter 5.

The good performances of ĝn(x) on finite sample situations are illustrated in the next section.

Remark 2 will be of great help to choose p and h sequences.

5 Numerical experiments

Here, we limit ourselves to unidimensional random variables X (p = 1) with compact support

E = [0, 1]. Besides, Y given X = x is uniformly distributed on [0, g(x)]. The behavior of the

proposed frontier estimator is investigated on different situations:

• Two distributions are considered for X: a uniform distribution U([0, 1]) and a beta distribu-

tion B(2, 2).

• Two frontiers are considered. The first one

g1(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + exp (−60(x − 1/4)2) if 0 ≤ x ≤ 1/3,

1 + exp (−5/12) if 1/3 < u ≤ 2/3,

1 + 5 exp (−5/12) − 6 exp (−5/12)x if 2/3 < u ≤ 5/6,

6x − 4 if 5/6 < u ≤ 1.
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is continuous but is not derivable at x = 1/3, x = 2/3 and x = 5/6. The second one

g2(x) = (1/10 + sin(πx))
(
11/10 − exp

(
−64(x − 1/2)2

)
/2

)

is C∞.

• Two sample sizes are used n1 = 300 and n2 = 150.

The following kernel is chosen

K(t) = cos2(πt/2)1{t ∈ [−1, 1]},

with associated window width h = 4σ̂(X)n−1/2 and with p = n1/2. The dependence of these

sequences with respect to n is chosen according to Remark 2. The multiplicative constants are

chosen empirically. The experiment involves several steps:

• First, m = 100 replications of the sample are simulated.

• For each of the m previous set of points, the frontier estimator ĝn is computed.

• The m associated L1 distances to g are evaluated on a grid.

• Finally, the best situation (ie the estimation corresponding to the smallest L1 error) and the

worst situation (ie the estimation corresponding to the largest L1 error) are represented.

Results are depicted on Figure 1–3. Note that, even in the worst situations, the empirical choices

of sequences h and p seem satisfying for all the considered frontiers and densities of X. In fact, the

worst situations are obtained when no points were simulated at the boundaries of the [0, 1] interval.

This is specially the case on Figure 2(b) since the density of the beta distribution decreases to 0

at the boundaries of this interval.

6 Appendix: Auxiliary lemmas

The following lemma provides convenient bounds obtained by a specific study of the functions

u → |(1 + u)p − 1| − 2p|u| and u → (1 + u)1/p − 1− 1
pu. The study is left to the reader. Note that

these bounds could not be directly derived from the Taylor formulas |(1 + u)p − 1| = |pu + o(u)|

and
∣∣∣(1 + u)1/p − 1 − 1

pu
∣∣∣ =

∣∣∣ 1
2p ( 1

p − 1)u2 + o(u2)
∣∣∣ where the dependence on p of o(u) and o(u2) is

not precised.

Lemma 3 Suppose p ≥ 1.

(i) Then, p|u| ≤ ln 2 entails |(1 + u)p − 1| ≤ 2p|u|.

(ii) Let C ≥ 2. Then, |u| < 1/2 entails
∣∣∣(1 + u)1/p − 1 − 1

pu
∣∣∣ ≤ C

p u2.
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The next lemma is dedicated to the control of the local variations of the frontier on a neighborhood

of size h.

Lemma 4 Suppose (A.1), (A.2) hold. If phα → 0 and ‖x− y‖ ≤ h, then for sufficiently large n,

∣∣∣∣

(
g(x)

g(y)

)p

− 1

∣∣∣∣ ≤ 2
Lg

gmin
phα,

where Lg is the Lipschitz constant of the function g.

Proof : Take u = g(x)
g(y) − 1 and observe that p|u| ≤ p

Lg

gmin

‖x − y‖α, Thus, if ‖x − y‖ ≤ h, and

phα → 0, we have p|u| ≤ ln 2 for sufficiently large n. Then, following Lemma 3(i), for sufficiently

large n, we obtain

|(1 + u)p − 1| =

∣∣∣∣

(
g(x)

g(y)

)p

− 1

∣∣∣∣ ≤ 2p|u| ≤ 2
Lg

gmin
phα,

and the result is proved.

Lemma 5 will reveal useful to establish the almost complete convergence of random variables ratio.

Lemma 5 Let S, T be real random variables, a, b non zero real numbers, and 0 < η < 1/2. Then,

{∣∣∣∣
S

T
−

a

b

∣∣∣∣ > 4η
∣∣∣
a

b

∣∣∣
}

⊆

{∣∣∣∣
S

a
− 1

∣∣∣∣ > η

}
∪

{∣∣∣∣
T

b
− 1

∣∣∣∣ > η

}
.

Proof : Consider the following obvious equality:

(
S

T
−

a

b

)
=

a

b

(
S

a
− 1

)
+

a

b

(
1 −

T

b

)
+

(
S

T
−

a

b

)(
1 −

T

b

)
. (13)

The triangular inequality yields for all η > 0:

{∣∣∣∣
S

a
− 1

∣∣∣∣ ≤ η

}
∩

{∣∣∣∣
T

b
− 1

∣∣∣∣ ≤ η

}
⊆

{∣∣∣∣
S

T
−

a

b

∣∣∣∣ ≤ 2η
∣∣∣
a

b

∣∣∣ + η

∣∣∣∣
S

T
−

a

b

∣∣∣∣

}
.

Taking 0 < η < 1, we obtain

{∣∣∣∣
S

a
− 1

∣∣∣∣ ≤ η

}
∩

{∣∣∣∣
T

b
− 1

∣∣∣∣ ≤ η

}
⊆

{∣∣∣∣
S

T
−

a

b

∣∣∣∣ ≤
2η

1 − η

∣∣∣
a

b

∣∣∣
}

.

Finally, note that 2η
1−η < 4η for 0 < η < 1/2.

The next three lemmas are of great use to deduce successively the asymptotic normality of ĝn(x)

from r̂n(x) and the asymptotic normality of r̂n(x) from ϕ̂n(x).

Lemma 6 Let x ∈ R
d. If f̂n(x)/f(x)

P
→ 1 and ϕ̂n(x)/ϕn(x)

P
→ 1, then

(
r̂n(x)

rn(x)
− 1

)
=

(
ϕ̂n(x)

ϕn(x)
− 1

)
−

(
f̂n(x)

f(x)
− 1

)
(1 + op(1)).

Proof : The hypotheses yield brn(x)
rn(x) = bϕn(x)

bfn(x)
/ϕn(x)

f(x)

P
→ 1. Thus it suffices to consider S = bϕn(x)

ϕn(x) ,

T =
bfn(x)
f(x) , and a = b = 1 in the equality (13).
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Lemma 7 Let x ∈ R
d. If f̂n(x)/f(x)

P
→ 1 and ϕ̂n(x)/ϕn(x)

P
→ 1, then

(
ĝn(x)

g(x)
− 1

)
=

1

p

(
r̂n(x)

rn(x)
− 1

)
(1 + op(1)).

Proof : From the hypotheses, wn(x) := brn(x)
rn(x) − 1 = op(1). Moreover, following Lemma 3(ii), on

the event {|wn(x)| < 1/2} we have:

∆n(x) :=

∣∣∣∣

(
ĝn(x)

g(x)
− 1

)
−

1

p

(
r̂n(x)

rn(x)
− 1

)∣∣∣∣ =

∣∣∣∣(1 + wn(x))
1/p

− 1 −
wn(x)

p

∣∣∣∣ ≤ C
1

p
w2

n(x).

We thus have, on the one hand,

p∆n(x)1{|wn(x)|<1/2} = op(wn(x)).

On the other hand, for all ε > 0,

{
p
∆n(x)

wn(x)
1{|wn(x)|≥1/2} > ε

}
⊆ {|wn(x)| ≥ 1/2}

leading to

P

{
p
∆n(x)

wn(x)
1{|wn(x)|≥1/2} > ε

}
≤ P {|wn(x)| ≥ 1/2} → 0,

and thus

p
∆n(x)

wn(x)
1{|wn(x)|≥1/2} = op(wn(x)),

which completes the proof.

Lemma 8 Suppose that nphd+2α → 0 and p/(nhd) → 0. Let us define

σ−1
n (x) = ((2p + 1)nhd)1/2

(
f(x)∫

B
K2(t)dt

)1/2

,

and let Q be an arbitrary distribution. Then, under (A.0)–(A.4),

{
σ−1

n (x)

p

(
ϕ̂n(x)

ϕn(x)
−

Eϕ̂n(x)

ϕn(x)

)
d
→ Q

}
=⇒

{
σ−1

n (x)

(
ĝn(x)

g(x)
− 1

)
d
→ Q

}
.

Proof : First, note that nphd+2α → 0 and p/(nhd) → 0 imply phα → 0. Thus, from Corollary 1,

ϕ̂n(x)/ϕn(x)
P
→ 1. Besides, p/(nhd) → 0 implies nhd → ∞, and thus, using a classical result

on density estimation (see for instance [1], Chapter 4, Theorem II.1), we have f̂n(x)/f(x)
P
→ 1.

Lemma 6 thus entails

σ−1
n (x)

p

(
r̂n(x)

rn(x)
− 1

)
=

σ−1
n (x)

p

(
ϕ̂n(x)

ϕn(x)
− 1

)
−

σ−1
n (x)

p

(
f̂n(x)

f(x)
− 1

)
(1 + op(1))

=
σ−1

n (x)

p

(
ϕ̂n(x)

ϕn(x)
−

Eϕ̂n(x)

ϕn(x)

)
−

σ−1
n (x)

p

(
f̂n(x)

f(x)
−

Ef̂n(x)

f(x)

)
(1 + op(1))

+
σ−1

n (x)

p

(
Eϕ̂n(x)

ϕn(x)
− 1

)
−

σ−1
n (x)

p

(
Ef̂n(x)

f(x)
− 1

)
(1 + op(1)).

11



Following Lemma 1, we have,

σ−1
n (x)

p

(
Eϕ̂n(x)

ϕn(x)
− 1

)
= O

((
nhd

p

)1/2
)

O (phα) = O
((

nphd+2α
)1/2

)
= o(1),

and from a classical result on density estimation Ef̂n(x) − f(x) = O(hα), see [2], Proposition 2.1,

we have

σ−1
n (x)

p

(
Ef̂n(x)

f(x)
− 1

)
= O

((
nhd

p

)1/2
)

O (hα) = O
((

np−1hd+2α
)1/2

)
= o(1).

Consequently,

σ−1
n (x)

p

(
r̂n(x)

rn(x)
− 1

)
=

σ−1
n (x)

p

(
ϕ̂n(x)

ϕn(x)
− 1

)
−

σ−1
n (x)

p

(
f̂n(x)

f(x)
− 1

)
(1 + op(1)) + op(1).

Again, using a classical result on density estimation, V(f̂n(x)) = O(1/(nhd)), see [2], Proposi-

tion 2.2, we have

V

(
σ−1

n (x)

p

f̂n(x)

f(x)

)
= O

(
nhd

p

)
O

(
1

nhd

)
= O(1/p) = o(1),

and thus
σ−1

n (x)

p

(
r̂n(x)

rn(x)
− 1

)
=

σ−1
n (x)

p

(
ϕ̂n(x)

ϕn(x)
− 1

)
+ op(1). (14)

Suppose now that there exists a probability distribution Q such that

σ−1
n (x)

p

(
ϕ̂n(x)

ϕn(x)
−

Eϕ̂n(x)

ϕn(x)

)
d
→ Q.

From (14), we deduce that
σ−1

n (x)

p

(
r̂n(x)

rn(x)
− 1

)
d
→ Q.

Finally, from Lemma 7 we can conclude that

σ−1
n (x)

(
ĝn(x)

g(x)
− 1

)
d
→ Q,

and the result is proved.

Finally, Lemma 9 allows to build bounds for the centered third moment of a positive random

variable basing on the non-centered moments.

Lemma 9 Let W be a positive random variable such that E
∣∣W 3

∣∣ < ∞, and m = E (W ) < ∞.

Then,

E
(
W 3

)
+ 3mE

(
W 2

)
− 2m3 ≤ E |W − m|

3
≤ E

(
W 3

)
+ 3mE

(
W 2

)
.

Proof : Remarking that

E |W − m|
3

= E (W − m)
3
− 2E

[
(W − m)

3
1{W<m}

]
,

it follows that

E (W − m)
3
≤ E |W − m|

3
≤ E (W − m)

3
+ 2m3,

and the lemma is proved.

12



References
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de l’Université de Paris, XIII:191–210, 1964.

[8] I. Gijbels, E. Mammen, B. U. Park, and L. Simar. On estimation of monotone and concave

frontier functions. Journal of the American Statistical Association, 94(445):220–228, 1999.

[9] S. Girard, A. Iouditski, and A. Nazin. L1-optimal nonparametric frontier estimation via linear

programming. Automation and Remote Control, 66(12):2000–2018, 2005.

[10] S. Girard and P. Jacob. Extreme values and Haar series estimates of point process boundaries.

Scandinavian Journal of Statistics, 30(2):369–384, 2003.

[11] S. Girard and P. Jacob. Projection estimates of point processes boundaries. Journal of

Statistical Planning and Inference, 116(1):1–15, 2003.

[12] S. Girard and P. Jacob. Extreme values and kernel estimates of point processes boundaries.

ESAIM: Probability and Statistics, 8:150–168, 2004.

[13] S. Girard and L. Menneteau. Central limit theorems for smoothed extreme value estimates

of point processes boundaries. Journal of Statistical Planning and Inference, 135(2):433–460,

2005.

[14] P. Hall, M. Nussbaum, and S. Stern. On the estimation of a support curve of indeterminate

sharpness. Journal of Multivariate Analysis, 62(2):204–232, 1997.

13



[15] P. Hall and B. U. Park. Bandwidth choice for local polynomial estimation of smooth bound-

aries. Journal of Multivariate Analysis, 91(2):240–261, 2004.

[16] P. Hall, B. U. Park, and S. E. Stern. On polynomial estimators of frontiers and boundaries.

Journal of Multivariate Analysis, 66(1):71–98, 1998.
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(a) Best situation
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(b) Worst situation

Figure 1: The frontier g1 (continuous line) and its estimation (dashed line). The sample size is

n1 = 300 and X is uniformly distributed on [0, 1].
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(a) Best situation
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(b) Worst situation

Figure 2: The frontier g1 (continuous line) and its estimation (dashed line). The sample size is

n1 = 300 and X is B(2, 2) distributed [0, 1].
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(a) Best situation
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(b) Worst situation

Figure 3: The frontier g2 (continuous line) and its estimation (dashed line). The sample size is

n2 = 150 and X is uniformly distributed on [0, 1].
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